Функции гис. Геоинформационная система (ГИС). Улучшить интеграцию внутри организации

ГИС (ДубльГИС Барнаул)

Однозначное краткое определение этому явлению дать достаточно сложно. Географическая информационная система (ГИС) - это возможность нового взгляда на окружающий нас мир. Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете. Эта технология объединяет традиционные операции работы с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий. Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза. До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах. В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи. По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

История ГИС

Начальный период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Принцип работы ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы. Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели

ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Слои ГИС

Вся картографическая информация в ГИС организована в виде слоев. Слои, это самый первый уровень абстракции в ГИС. Работая с ГИС, мы обязаны разделить существующие у нас данные на слои. Каждый слой содержит объекты определенного вида, объединенные общими характеристиками. Работая в ГИС, мы можем подключать и отключать интересующие нас слои, или менять порядок их отображения. Слои бывают следующих типов:

Точечные

Точечные слои содержат объекты, которые можно абстрагировать до точки, например скважины или города. Ради ясности понимания даже город можно представить точкой.

Линейные

Эти объекты можно абстрагировать до ломаной или гладкой линии, например реки, дороги, или трубопроводы.

Полигональные или площадные

Объекты этого типа представляются как находящиеся в пределах некоторого полигона, например лицензионные участки.

Площадные объекты могут состоять из нескольких контуров. Это необходимо если требуется представить полигон с дыркой внутри. На рисунке представлен пример обычного полигона и полигона, состоящего из двух контуров.

Последняя точка полигона всегда должна совпадать с первой точкой. Правильно это или нет, но так уж повелось в геоинформационных системах. Таким образом, полигон не может иметь менее четырех точек. Если полигон имеет нулевую площадь, то есть вырождается, то его необходимо удалить. Полигон также не должен иметь самопересечений. Подобные недочеты позже могут привести к серьезным ошибкам в расчетах, и потому их следует избегать.

Изображения

Растровые графические изображения, привязанные к географическим координатам, например космоснимки или отсканированые карты.

Сеточные модели

Это структурные карты и карты параметров. Первоначально такие модели основывались на прямоугольной сетке, где в узлах сетки указано значение Z (параметра).

Теперь строение подобных моделей зачастую боле сложное, но по традиции их продолжают называть сетками или гридами. Современные гриды могут содержать разломы, области уточнения или быть основаны на сплайнах. Смысл сеточных моделей остается прежним: непрерывное представление параметра на определенной площади.

Сетка сплайнов отличается от обычной сетки тем, что ее поверхность является идеально гладкой, что более естественно для большинсва моделей. Сетки с разломами содержат дополнительные сегменты для моделирования ровного разрыва. На обычной сеточной модели разрыв получается ступенчатым. Сеточные модели, также называют картами в изолиниях.

Специальные виды слоев

Эти пять типов слоев стандартны для любой профессиональной ГИС, но кроме них могут существовать и другие, специальные типы данных, обусловленые областью применения данной системы. Например, это могут быть разломы (для моделирования сеток с разломами), растровые карты (для представления очень больших растровых изображений), 3D модели (для трехмерных моделей пластов).

Таблицы данных ГИС

Точки линии и полигоны имеют таблицы аттрибутивных данных для своих объектов.

Каждому объекту на карте соответствует строка в таблице данных. Используя таблицу данных можно находить и сортировать объекты, выделять их на карте по аттрибутам или смотреть атрибуты выделенных объектов. Атрибутивная таблица позволяет искать объекты, сортировать их, выделять по условиям, группировать, создавать фильтры, проводить вычисления. Таблица аттрибутов превращает ГИС в базу данных, в которой вы можете проводить анализ данных или управление данными при помощи развитых инструментов ГИС. Без таблиц аттрибутов геоинформационные системы не имели бы смысла, а карты в них не были бы картами, а были просто рисунками, как рисунки в CorelDraw или Paint.

Точки в составе линий и полигонов также имеют свои аттрибутивные таблицы. Так, например, сейсмопрофили можно загрузить вместе с данными по отпикированным горизонтам и использовать их для построения карт в изолиниях. Таблица данных поддерживает понятие выделенных объектов, такие строки в таблице помечены другим цветом. Выделенные объекты также, несколько иначе отображаются и на карте. Выделение объектов очень часто используется при анализе данных. Выделять объекты можно как в таблице, так и на карте, а также по заданным условиям.

Формирование слоев

Очень важной темой является правильное формирование структуры слоев. Полезность любой базы данных, и ГИС в том числе, сильно зависит от правильной структуры данных. Даже можно сформулировать следующее: полезность базы прямо пропорциональна ее правильной организации и порядку в данных. Если данные в базе содержат большое количество ошибок или неправильно организованы, то это может свести на нет все достоинтва базы данных как таковой. По этой причине важным является умение правильно структурировать информацию. Например, если вы загружаете данные сейсморазведки, то правильно будет объединить все сейсмопартии в одном слое, а не создавать несколько слоев групируя их по районам или площадям. Лучше придерживаться такого правила: один тип данных - одна таблица (или один слой). С другой стороны разнородные объекты лучше помещать в разные слои, даже если они объеденены общей тематикой. Так автодороги и железные дороги лучше разделить на два слоя, а потом поместить их в группу "Транспортные пути".

Координаты

Всем известно, что земля круглая, а карта плоская, и поверхность шара невозможно развернуть на плоскость без деформаций. По этой причине в картографии используют проекции. Поекции это правила и формулы преобразования одних координат в другие. Обычно используется преобразование из сферических (географических) координат в прамоугольные координаты (координаты карты). Проекции бывают равноплощадными или равноугольными, то есть сохраняют площадь объектов или углы. Иногда проекция может искажать и то и другое, минимизируя искажения вобщем. Для нашей страны стандартной сиситемой преобразования является система координат "42-ого года". Система "42-ого года" делит территорию земного шара на 60 зон, по 6 градусов. Тюменская область, например, находится в пределах 12-ой, 13-ой и 14-ой зон. "42-ой год" это равноплощадная проекция. ГИС устроены так, что могут хранить данные в одной системе координат, а отображать в другой. Поэтому необходимо не запутаться с тем, в какой системе координат хранятся данные, и в какой они отображены на карте. Чтобы уменьшить путаницу с проекциями Isoline поддерживает только два варианта исходных данных:

  • Прямогугольные координаты (любые произвольные координаты, к которым не применяется никаких преобразований).
  • Географические координаты (градусы, минуты, секунды, которые при отображении на карте пересчитываются в какую либо проекцию).

Вот варианты отображения одного и того же участка в разных системах координат и проекциях.

Проекция "поликоническая". Реальные координаты - градусы, отображаемые кординаты - градусы.

Проекция не установлена. Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Проекция не установлена. Реальные координаты - градусы, отображаемые кординаты - прямоугольные.

Проекция "поликоническая". Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Как видно из рисунков два верхних нас вполне устраивают, а третий и четвертый нет. Третий рисунок, на самом деле, вполне корректен, но проекция не указана, и поэтому мы видим изображение "как есть", в градусах. На четвертом рисунке мы попытались отобразить полигон, данные которого не градусы, в проекции "поликонической" и система нас не поняла. Из этого можно сделать следующее заключение: для прямоугольных координат устанавливать проекцию нельзя, так как в этом случае формулы преобразования применяются к ним второй раз, и изображение получается неверным.

Также необходимо принимать во внимание такой факт, что прямая проведенная в одной системе координат не является прямой в другой системе, а площади объектов могут отличаться, даже если проекции равноплощадные.

Прямоугольные координаты

"поликонические", без корректировки отображения.

Координатная сиситема Мольвейде.

поликонические", с корректировкой отображения.

Поэтому если вам нужны точные длины линий, точные площади, и точное отображение, то необходимо воспользоваться специальными средствами системы.

Задачи, которые решает ГИС

ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование

Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление

В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ

При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация

Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Технологии, связанные с ГИС

ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS

Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

Что ГИС могут сделать для Вас

Делать пространственные запросы и проводить анализ

Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниях сэкономить миллионы долларов. ГИС помогает сократить время получения ответов на запросы клиентов; выявлять территории подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами (например, почвами, климатом и урожайностью с/х культур); выявлять места разрывов электросетей. Риэлторы используют ГИС для поиска, к примеру, всех домов на определенной территории, имеющих шиферные крыши, три комнаты и 10-метровые кухни, а затем выдать более подробное описание этих строений. Запрос может быть уточнен введением дополнительных параметров, например стоимостных. Можно получить список всех домов, находящих на определенном расстоянии от определенной магистрали, лесопаркового массива или места работы.

Улучшить интеграцию внутри организации

Многие применяющие ГИС организации обнаружили, что одно из основных ее преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных и возможности их совместного использования и согласованной модификации разными подразделениями. Возможность совместного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяет повысить эффективность работы как каждого подразделения, так и организации в целом. Так, компания, занимающаяся инженерными коммуникациями, может четко спланировать ремонтные или профилактические работы, начиная с получения полной информации и отображения на экране компьютера (или на бумажных копиях) соответствующих участков, например водопровода, и заканчивая автоматическим определением жителей, на которых эти работы повлияют, и уведомлением их о сроках предполагаемого отключения или перебоев с водоснабжением.

Принятие более обоснованных решений

ГИС, как и другие информационные технологии, подтверждает известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Однако, ГИС - это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры принятия решений, обеспечивающее ответы на запросы и функции анализа пространственных данных, представления результатов анализа в наглядном и удобном для восприятия виде. ГИС помогает, например, в решении таких задач, как предоставление разнообразной информации по запросам органов планирования, разрешение территориальных конфликтов, выбор оптимальных (с разных точек зрения и по разным критериям) мест для размещения объектов и т. д. Требуемая для принятия решений информация может быть представлена в лаконичной картографической форме с дополнительными текстовыми пояснениями, графиками и диаграммами. Наличие доступной для восприятия и обобщения информации позволяет ответственным работникам сосредоточить свои усилия на поиске решения, не тратя значительного времени на сбор и обмысливание доступных разнородных данных. Можно достаточно быстро рассмотреть несколько вариантов решения и выбрать наиболее эффектный и эффективный.

Создание карт

Картам в ГИС отведено особое место. Процесс создания карт в ГИС намного более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) на любую территорию, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать по мере необходимости. В крупных организациях созданная топографическая база данных может использоваться в качестве основы другими отделами и подразделениями, при этом возможно быстрое копирование данных и их пересылка по локальным и глобальным сетям.

ГИС в России

Наибольшее распространение в России из зарубежных систем имеют: программный продукт ArcGIS компании ESRI , семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo .

Из отечественных разработок широкое распространение получила программа ГИС Карта 2008 компании ЗАО КБ "Панорама" .

Используются также и другие программные продукты отечественной и зарубежной разработки: ГИС ИНТЕГРО , MGE корпорации Intergraph (использует MicroStation в качестве графического ядра), IndorGIS , STAR-APIC , ДубльГИС , Mappl , ГеоГраф ГИС , 4geo и пр.

Внедрение информационных систем в разные сферы деятельности человека находят свое место в области геодезии и смежных, связанных с ней и другими земными областями исследований. Направляясь параллельным курсом с возникновением и развитием спутниковой геодезии, информационные системы предоставили технологические, управленческие, геологические, метеорологические, картографические, транспортные, многоотраслевые возможности получения необходимой пространственной информации определенной степени точности.

Любая геоинформационная система (ГИС) - это, говоря современным языком, прежде всего проект на основе научных и практических данных с целью получения какого-то конечного результата по поставленной тематике.

ГИС - это своего рода новая форма геоизысканий, связанных на основе сбора и обработки необходимых данных методами геодезии, прикладной математики и созданных компьютерных приложений.

В словосочетании «геоинформационная система» содержатся три основополагающих слова, раскрывающих его сущность.

Со словом «гео» связаны все объекты изысканий и исследований внутри, около и на земной поверхности.

С «информационной» составляющей словосочетания связаны методы обработки и преобразования получаемой информации в необходимый цифровой графический продукт.

«Система» считается связующей составляющей, которая придает целостность всей картине исследований и объединяет все ее элементы и параметры в пространственную форму.

Геоинформационные системы можно рассматривать как программные средства, которые позволяют работать с пространственно-соотнесенной информацией, с геоизображением, но не с простым изображением, а которое зарегистрировано. Процесс регистрации (привязки) подразумевает под собой определенные действия по ориентированию изображений конкретным образом в той или иной системе координат . Именно такая возможность считается главной особенностью ГИС в отличие от других программ.

Она обладает и специальными инструментами, которые позволяют обычную карту сделать реальной моделью существующей поверхности. Так в определенный момент пришла идея карту совместить с информацией, то есть карта не сама по себе, а она обладает специальными атрибутами (описательными характеристиками), которые являются непространственными. Соотнесение пространственной информации с непространственной, увязка в единую систему и создание инструментов анализа привело к появлению ГИС конструкций. Совмещение позиционной и непозиционной информаций можно считать главным ноу-хау ГИС построений.

Структура геоинформационной системы

Геоинформационная конструкции состоит из четырех составных частей:

  • Первая часть подразумевает под собой сбор данных и материалов из всевозможных первоисточников информации; существуют позиционные (с координатной привязкой) и непозиционные (описательные, в атрибутивных таблицах) первоисточники;
  • Вторая часть состоит из выборки необходимых данных и ее хранения на компьютерных носителях;
  • Третья часть технологическая, которая служит для систематизации, описания, сравнения, выделения, и главное анализа данных различными способами;
  • Четвертая часть результирующая, с выводами окончательных результатов в требуемых формах в соответствии с техническими заданиями.

Возможности, возникающие при работе в ГИС

В процессе работы с геоинформационными системами можно сделать вывод о том, что они позволяют давать быстрые ответы на многие вопросы и принимать оптимальные решения в различных сферах деятельности человека, а именно:

  • что находится в определенных районах местоположения?
  • Где находится конкретный объект?
  • Оценивать динамику изменений во времени, пространстве, объемах и так далее;
  • какие пространственные структуры существуют?
  • Позволяют осуществлять моделирование с конкретными техническими проектными условиями (например, картограмма земляных масс)

Основные функциональные возможности приложений ГИС состоят в следующем:

  • Регистрации геоизображений;
  • Создание новых геоизображений (векторизацмя);
  • Создание баз данных и ихстатистическая обработка;
  • Анализ и обработка пространственных данных (геоанализ);
  • Анализ непространственных (атрибутивных) данных;
  • Визуализация и картографирование;
  • Хранение данных.

Виды геоинформационного строительства

Следует выделить возможности классифицировать ГИС по разным критериям:

  • По территориальному признаку (глобальные, национальные, региональные, территориальные, местные)
  • По тематическому признаку (геологические, сельскохозяйственные, лесные, метеорологические, городские и другие)
  • По функциональным признакам (многомасштабные, пространственно-временные)

Перспективы развития геоинформационных конструкций

В настоящее время перспективными направлениями развития геоинформационного порядка считаются:

  • данные дистанционного зондирования земли (все, что получаем с космических мультиспектральных снимков различного диапазона, радиоданных искусственных спутников земли);
  • глобальное позиционирование (GPS технологии) с ГИС-приложениями в коммуникационном пространстве;
  • интернет и геоинформационные системы (хранение информации в сети по технологии «облако», поисковые системы, другие порталы);
  • ГИС телевидение;
  • ГИС2 (ГИС изучающие сами себя).

Геоинформационная система - система сбора, хранения, анализа и графической визуализации пространственных(географических) данных и связанной с ними информации о необходимых объектах. Также используется в более узком смысле - как инструмента (программного продукта), позволяющего пользователям искать, анализировать и редактировать как цифровую карту местности, так и дополнительную информацию об объектах.

"Географическая информационная система" - это совокупность аппаратно-программных средств и алгоритмических процедур, предназначенных для сбора, ввода, хранения, математико-картографического моделирования и образного представления геопространственной информации.

Геопространственные данные" означают информацию, которая идентифицирует географическое местоположение и свойства естественных или искусственно созданных объектов, а также их границ на земле. Эта информация может быть получена с помощью (помимо иных путей), дистанционного зондирования, картографирования и различных видов съемок.

Географические данные содержат четыре интегрированных компонента: местоположение,

Свойства и характеристики, пространственные отношения, время.

ГИС: география,картография,дистанционное зондирование,топография и фотограмметрия,информатика,математика и статистика.

2.Сферы использования гис.

ГИС включает в себя возможности систем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяется в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.

3.Классификация гис.

По функциональным возможностям: - полнофункциональные ГИС общего назначения;

Специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;

Информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:

Закрытые системы не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки; - открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).

По проблемно-тематической ориентации – общегеографические, экологические и природопользовательские, отраслевые (водных ресурсов, лесопользования, геологические, туризма и т. д.).

По способу организации географических данных – векторные, растровые, векторно-растровые ГИС.

4. Структура гис.

Непозиционные (атрибутивные): описательные.

Данные (пространственные данные):

Позиционные (географические): местоположение объекта на земной поверхности.

Аппаратное обеспечение (ПК, сети, накопители, сканеры, плоттеры и т. д.).

Программное обеспечение (ПО).

Технологии (методы, порядок действий и т. д.).

Геоинформационные системы и технологии

Геоинформационная система (ГИС) - это многофункциональная информационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы.

Геоинформационные технологии (ГИТ) - это информационные технологии обработки географически организованной информации.
Основной особенностью ГИС, определяющей ее преимущества в сравнении с другими АИС, является наличие геоинформационной основы, т.е. цифровых карт (ЦК), дающих необходимую информацию о земной поверхности. При этом ЦК должны обеспечивать:
точную привязку, систематизацию, отбор и интеграцию всей поступаю¬щей и хранимой информации (единое адресное пространство);
комплексность и наглядность информации для принятия решений;
возможность динамического моделирования процессов и явлений;
возможность автоматизированного решения задач, связанных с анализом особенностей территории;
возможность оперативного анализа ситуации в экстренных случаях.
История развития ГИТ восходит к работам Р. Томлисона по созданию Канадской ГИС (CGIS), проводившимся в 1963-1971 гг.
В широком смысле ГИТ - это наборы данных и аналитические средства для работы с координатно привязанной информацией. ГИТ - это не информационные технологии в географии, а информационные технологии обработки географически организованной информации.
Существо ГИТ проявляется в ее способности связывать с картографическими (графическими) объектами некоторую описательную (атрибутивную) информацию (в первую очередь алфавитно-цифровую и иную графическую, звуковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (а обычно выделяют точечные, линейные и площадные объекты) ставится в соответствие строка таблицы - запись в БД. Использование такой связи, собственно, и открывает столь богатые функциональные возможности перед ГИТ. Эти возможности, естественно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопросы "что это?" указанием объекта на кар¬те и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Исторически первое и наиболее универсальное использование ГИТ - это информационно-поисковые, справочные системы.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение, а следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД, так как ГИТ более удобны и наглядны в использовании и предоставляют ДЛ свой "картографический интерфейс" для организации запроса к базе данных вместе со средствами генерации "графического" отчета. И, наконец, ГИТ добавляет обычным СУБД совершенно новую функциональность - использование пространственных взаимоотношений между объектами.
ГИТ позволяет выполнять над множествами картографических объектов операции, подобные обычным реляционным (JOIN, UNION, INTERSECTION). Операции этой группы называются оверлейными, так как используют в разных вариантах пространственное наложение одного множества объектов на другое. Фактически оверлейные операции обладают большим аналитическим потенциалом, и для многих сфер применения ГИТ являются основными, обеспечивая решение прикладных задач (землепользования, комплексной оценки территорий и другие).
ГИТ предлагает совершенно новый путь развития картографии. Прежде всего, преодолеваются основные недостатки обычных карт: статичность данных и ограниченность емкости "бумаги" как носителя информации. В последние десятилетия не только сложные специализированные карты типа экологических, но и ряд обычных бумажных карт из-за перегруженности информацией становятся "нечитаемыми". ГИТ решает эту проблему путем управления визуализацией информации. Появляется возможность выводить на экран или на твердую копию только те объекты или их множества, которые необходимы пользователю в данный момент. То есть фактически осуществляется переход от сложных комплексных карт к серии взаимоувязанных частных карт. При этом обеспечивается лучшая структурированность информации, что позволяет ее эффективно использовать (манипулирование, анализ данных и т.п.). Очевидно, что наблюдается тенденция возрастания роли ГИТ в процессе активизации информационных ресурсов, т.к. огромные массивы картографической информации эффективно переводимы в активную машиночитаемую форму только с помощью ГИТ. Кроме того, в ГИТ карта становится действительно динамическим объектом.


Последнее обусловлено следующими новыми возможностями ГИТ:
изменяемостью масштаба;
преобразованием картографических проекций:
варьированием объектным составом карты;
"опросом" через карту в режиме реального времени многочисленных БД, содержащих изменяемую информацию;
варьированием символогией, то есть способом отображения объектов (цвет, тип линии и т.п.), в том числе определение символогии через значения атрибутивных признаков объектов, что позволяет синхронизировать визуализацию с изменениями в БД.
В настоящее время широко распространено понимание того, что ГИТ - это не класс или тип программных систем, а базовая технология {umbrella technology) для многих компьютерных приложений (методов и программ), работающих с пространственной информацией.
Поскольку ЦКМ являются наборами данных сложной структуры, то их целесообразно представлять в различных форматах. Под форматом ЦКМ понимается специально введенная система классификации и кодирования данных о местности. От принятого формата ЦКМ во многом зависит оперативность решения функциональных задач (ФЗ) в системах управления военного назначения. Так, например, в случае представления рельефа местности горизонталями вычисление профиля местности занимает в тысячи раз больше времени, чем при представлении рельефа в форме матрицы высот.
Одним из важнейших и наиболее часто встречающихся типов информационной потребности в геоинформации является построение изображения участка карты на экране АРМ {визуализация карты). Но средства отображения ЦКМ на экране АРМ, наряду с приведенными выше требованиями к средствам доступа, должны отвечать еще ряду специфических требований, обусловленных необходимостью восприятия информации человеком. По существу - это следующие эргономические требования, которые целесообразно рассматривать в комплексе с другими:
по "читабельности" обстановки (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком информации оперативной обстановки на фоне карты);
по "читабельности" карты, (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком собственно картографической информации);
по "комфортности" восприятия, (т.е. форма отображения данных не должна вызывать чрезмерных напряжения человека при восприятии ин¬формации и раздражения его органов чувств в целях обеспечения требуемой продолжительности сохранения его работоспособности).
ФЗ требует для своего решения различные данные о местности. По мнению авторов, все множество этих задач по характеру использования ЦКМ можно разделить на четыре основных класса:
задачи, требующие выдачу изображения карты на устройства ввода- вывода средств автоматизации и использующие ее в качестве фона для вывода оперативной обстановки (ОКФ);
задачи, использующие информацию о характере и профилях местности (ОХПМ);
задачи, использующие информацию о дорожной сети (РДС);
задачи, использующие информацию о местоположении объекта в пределах территории государства, зоны ответственности или нейтральной территории (ОМП).
Задачами ОКФ являются все задачи, отображающие оперативную обстановку на местности в процессе диалога с пользователем. Данные задачи могут отображать "поверх карты" информацию о группировках своих войск и войск противника, зонах радиоактивного, химического, биологического заражения, сплошных разрушений, пожаров, затоплений, о направлениях и рубежах действий, районах сосредоточения и др. Общая для задач ОКФ особенность использования ЦКМ заключается в необходимости быстрого вывода изображения карты на экран АРМ в различных масштабах.
К задачам ОХПМ относятся задачи выбора места развертывания радиорелейных станций (РРС), тропосферных станций (ТРС), радиолокационных станций (PJIC), средств радиотехнической разведки, радиоэлектронной борьбы и т.д. Задачи оценки защитных свойств местности в районах развертывания пунк¬тов управления (ПУ) и узлов связи (УС), планирования огневого воздействия и т.п. также относятся к классу ОХПМ. Особенностью задач ОХПМ является необходимость определения с высокой скоростью характеристик местности в окрестностях точки с произвольными координатами.
К задачам РДС относятся, в частности, задачи определения маршрута и планирования порядка перемещения воинских формирований, оптимального пла-нирования перевозок средств снабжения или почты и некоторые другие. Данные задачи используют данные ЦКМ о дорожной сети, которые должны быть представлены в специальной форме - в виде графа, в котором все пересекающиеся дороги имеют общую вершину в перекрестках.
Задачи ОМП используют в ЦКМ данные о государственных (сухопутных и морских) и иных границах, заданные в специальной форме - в виде замкнутых контуров.
По типу информационных потребностей многие ФЗ можно отнести сразу к нескольким различным классам. В частности, задача определения оптимального района развертывания РРС может обладать свойствами классов ОХПМ и РДС, а в процессе решения для организации диалога с пользователем - свойствами класса ОКФ.

В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими техноло­гиями.

Прежде всего, это графические технологии систем автоматизированного проектирования (САПР), векторных графических редакторов, и с другой сторо­ны - технологии реляционных СУБД. Большинство реализаций современных ГИТ в своей основе и представляет собой интеграцию этих двух типов инфор­мационных технологий. Следующий тип родственных информационных техно­логий - технологии обработки изображений растровых графических редакто­ров. Некоторые реализации ГИТ базируются на растровом представлении гра­фических данных. Поэтому очень многие современные ГИС общего назначения интегрируют возможности как векторного, так и растрового представления. В свою очередь, ряд технологий обработки изображений, предназначенных для работы с данными аэро- и космических съемок, очень близко примыкают к ГИТ, а иногда частично выполняют и их функции. Но обычно они к ГИТ ком­плементарны и имеют специальные средства для взаимодействия с ними (ERDAS LiveLink to ARC/INFO)

Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и по­строении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа ме­стности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регист­рацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.

Сущность ГИТ проявляется в ее способности связывать с картографически­ми (графическими) объектами некоторую описательную (атрибутивную) ин­формацию (в первую очередь алфавитно-цифровую и иную графическую, зву­ковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (точечному, линейному или площадному) ставится в со­ответствие строка таблицы - запись в БД. Использование такой связи и обеспе­чивает богатые функциональные возможности ГИТ. Эти возможности, естест­венно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопро­сы "что это?" указанием объекта на карте и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Ис­торически первое и наиболее универсальное использование ГИТ - это инфор­мационно-поисковые, справочные системы.

Таким образом, ГИТ можно рассматривать как некое расширение техноло­гии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относит­ся к объектам, для которых важную роль играет их пространственное положе­ние, форма и взаиморасположение. Следовательно, ГИТ во многих приложени­ях значительно расширяют возможности обычных СУБД.

ГИТ, так же как и любая другая технология, ориентирована на решение оп­ределенного круга задач. Поскольку области применения ГИС достаточно ши­роки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, ре­шаемых в каждой из них, и особенностей, связанных с конкретным классом ре­шаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то еди­ной ГИС-технологии достаточно проблематично.

Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рас­сматривать как базовые. Они различаются в конкретных реализациях только де­талями, например, программным сервисом сканирования и постсканерной обра­ботки, возможностями геометрического преобразования исходного изображе­ния в зависимости от исходных требований и качества материала и т.д.

Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде слу­чаев могут отсутствовать.

По результатам анализа обобщенной модели ГИС-технологии можно выде­лить следующие базовые операции ГИТ:

  • редакционно-подготовительные работы, т. е. сбор, анализ и подготовка исходной информации (картографические данные, аэрофотоснимки, дан­ные дистанционного зондирования, результаты наземных наблюдений, статистическая информация и т.д.) для автоматизированной обработки;
  • проектирование геодезической и математической основ карт;
  • проектирование карт;
  • построение проекта цифровой тематической карты;
  • преобразование исходных данных в цифровую форму;
  • разработка макета тематического содержания карты;
  • определение методов автоматизированного построения тематического содержания;
  • формирование цифровой общегеографической основы создаваемой кар­ты;
  • создание цифровой тематической карты в соответствии с разработанным проектом;
  • получение выходной картографической продукции.

Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Получен­ные цифровые массивы данных поступают в комплекс технических средств об­работки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной инфор­мации и создания цифровой тематической карты.

Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вы­вода на фотоноситель и т.д.

Исходные и обработанные цифровые данные хранятся в подсистеме архив­ного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.

Области применения ГИТ в настоящее время чрезвычайно многообразны.

Прежде всего, это различные кадастры, системы управления распределен­ным хозяйством и инфраструктурой. Здесь развиты специализированные при­ложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопро­водного хозяйства большого химического завода, земельного кадастра, опери­рующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории

и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных мар­шрутов и оптимизации перевозок, распределения сети ресурсов и услуг (скла­дов, магазинов, станций скорой помощи, пунктов проката автомобилей).

Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей сре­ды. Здесь также встречаются как комплексные системы, так и специализиро­ванные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологиче­ских последствий разработок и т.п. В геологических применениях, как и в эко­логических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моде­лирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсмо­разведки и весьма специфическое и развитое ПО по их обработке и анализу. Ве­лика потребность в комплексных решениях, увязывающих собственно геологи­ческие и иные проблемы, что невозможно решить без привлечения универсаль­ных ГИС.

Отдельно следует выделить сугубо транспортные задачи. Среди них: плани­рование новых маршрутов транспорта и оптимизация процесса перевозок с воз­можностью учета распределения ресурсов и меняющейся транспортной обста­новки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно бази­рующиеся на спутниковых системах навигации с использованием цифровой картографии.

Характерной чертой внедрения ГИТ в настоящее время является интеграция систем и баз данных в национальные, международные и глобальные информа­ционные структуры. К глобальным проектам относится, например, GDPP - "Проект глобальной базы данных", разрабатываемый в рамках Международной геосферно-биосферной программы. На национальном уровне существуют ГИС в США, Канаде, Франции, Швеции, Финляндии и других странах. В России в настоящее время разрабатываются региональные ГИС, в частности, для ведения земельного кадастра и муниципального управления, а также ведомственные ГИС, например, в Министерстве внутренних дел.

Анализ существующего на сегодняшний день опыта применения ГИТ пока­зывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.

Современные ГИС представляют собой новый тип интегрированных систем, которые, с одной стороны, включают методы обработки данных существующих автоматизированных систем, а с другой - обладают спецификой в организации и обработке данных

Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:

  • ГИС как система управления - предназначена для обеспечения поддерж­ки принятия решений на основе использования картографических дан­ных;
  • ГИС как автоматизированная информационная система - объединяет ряд технологий известных информационных систем (САПР и других);
  • ГИС как геосистема - включает технологии фотометрии, картографии;
  • ГИС как система, использующая БД, - характеризуется широким набо­ром данных, собираемых с помощью разных методов и технологий;
  • ГИС как система моделирования, система предоставления информации - является развитием систем документального оборота, систем мультиме­диа и т.д.

ГИС с развитыми аналитическими возможностями близки к системам стати­стического анализа и обработки данных, причем в ряде случаев они интегриро­ваны в единые системы, например:

имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;

добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);

развитие собственной ГИС в рамках пакета SAS - лидера среди систем обработки числовой информации.

Наиболее развитые ГИС (обычно с сильной поддержкой и растровой моде­ли), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распростра­нения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, рабо­тающие в графических средах типа MS Windows, также включают в себя про­стейшие средства картографической визуализации.

Наличие широкого спектра тенденций развития в разных областях информа­ционных технологий, интересы которых сходятся в области ГИТ, а также появ­ление универсальных пакетов широкого применения привело к тому, что гра­ницы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).

Современная полнофункциональная ГИС - это многофункциональная ин­формационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при ре­шении расчетных задач, подготовке и принятии решений. Основное назначение полнофункциональной ГИС заключается в формировании знаний о Земле, от­дельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью дос­тижения наибольшей эффективности их работы.

Полнофункциональная ГИС должна обеспечивать:

  • двустороннюю связь между картографическими объектами и записями табличной базы данных;
  • управление визуализацией объектов, обеспечивающее выбор состава и формы отображения;
  • работу с точечными, линейными и площадными объектами;
  • ввод карт с дигитайзера или сканера и их редактирование;
  • поддержку топологических взаимоотношений между объектами и про­верку с их помощью геометрической корректности карты, в т.ч. замкну­тости площадных объектов, связности, прилегания и др.;
  • поддержку различных картографических проекций;
  • геометрические измерения на карте длины, периметра, площади и др.;построение буферных зон вокруг объектов и реализацию других овер­лейных операций;
  • создание собственных обозначений, в том числе новых типов маркерных знаков, типов линий, типов штриховок и др.;создание дополнительных элементов оформления карты, в частности подписей, рамок, легенд;
  • вывод высококачественных твердых копий карт;решение транспортных и других задач на графах, например, определение кратчайшего пути и т.п.;
  • работу с топографической поверхностью.

Помимо полнофункциональных ГИС общего назначения, выделяют специа­лизированные, которые часто имеют нечеткие границы со специализированны­ми пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентиро­ванные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.

Неспециализированные ГИС более низкого уровня, чем полнофункциональ­ные системы общего назначения, обычно называют "персональными системами картографической визуализации" {desktop mapping systems, desktop GIS), иногда даже отделяя этот класс систем от собственно ГИС. Отличительной их чертой являются, прежде всего, ограниченные аналитические возможности (например, отсутствуют оверлейные операции для площадных объектов) и слабые возмож­ности ввода и редактирования картографической основы. Типичным примером такой системы является ГИС Maplnfo, в которой за счет своей меньшей сложно­сти более проста в обучении и использовании и более доступна массовому пользователю.

К настоящему времени число ГИС-пакетов, предлагаемых на рынке, исчис­ляется несколькими тысячами. Однако в большинстве это специализированные системы. Реальных полнофункциональных ГИС-пакетов общего назначения на рынке несколько десятков. В основном программное обеспечение для ГИС раз­рабатывают специализированные фирмы, только в некоторых случаях это про­дукты крупных фирм, для которых ГИС - не основной продукт (IBM, Intergraph, Computervision, Westinghouse Electric Corp., McDonnel Douglas, Siemens Nixdorf). По числу известных пакетов и по числу инсталляций преобладают ПК (MS DOS, MS Windows) и UNIX- рабочие станции.

Следует отметить, что в настоящее время полнофункциональные ГИС обще­го назначения в основном ориентированы на рабочие станции с операционной системой UNIX. На ПК, как правило, функционируют системы с редуцирован­ными возможностями. Отчасти это определяется спецификой пользователей ПК, для многих из которых простая ГИС нужна только как дополнение к обыч­ному офисному ПО. Но главная причина - в требованиях, которые мощная ГИС предъявляет к аппаратным средствам компьютера.

Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно боль­ших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС ну­жны дисплеи высокого разрешения и быстрый графический адаптер или акселе­ратор, причем требования к палитре жестче, чем в САПР. Они скорее аналогич­ны требованиям к издательским системам профессиональной полиграфии. Осо­бенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого чис­ла замкнутых многоугольников (полигонов) сложной формы.

Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особен­но высокие требования к объемам дисковой и основной памяти, а также к быст­родействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэросним­ков, моделирования природных процессов и при работе с рельефом земной по­верхности. Один цветной аэроснимок высокого разрешения стандартного фор­мата, если перевести его в цифровую форму без потери "точности" (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требу­ется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использо­вать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотосним­ки "впечатываются" в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обраба­тываться различными способами, чтобы избирательно выделить на них различ­ную информацию (операции различного рода фильтрации, преобразования кон­траста, операции с использованием быстрого преобразования Фурье, классифи­кационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее

выполнять их по требованию. Современные специализированные рабочие стан­ции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лес­ных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.

Следует отметить, что скорость накопления объемов аэрокосмических (осо­бенно космических) данных пока идет в том же темпе или даже опережает тем­пы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а уве­личение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длитель­ное время технической основой мощных полнофункциональных ГИС с анали­тическими функциями будут оставаться специализированные рабочие станции.

Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что се­годня основные пакеты наиболее "серьезных" ГИС еще не переведены на ПК.

Основными направлениями использования ПК при работе с ГИС в настоя­щее время являются:

  • использование ПК в качестве терминалов совместно с рабочими стан­циями для работы с большими ГИС (ARC/INFO);
  • использование ПК в качестве станций ввода и модификации цифровых карт местности с дигитайзера или сканера (PC ARC!INFO, ArcCAD);
  • использование ПК для ГИТ-проектов с небольшим объемом единовре­менно активной информации (PC ARC/INFO, ArcCAD, ArcView);
  • использование ПК в учебных целях, для знакомства с методологией ГИТ;
  • использование ПК на начальных стадиях больших проектов, когда объем базы данных еще не вырос, не требуется полная функциональность на больших объемах и требуется еще доказывать полезность использования ГИТ и необходимость вложения серьезных средств.

Так как современные ГИС представляют собой, как правило, сложные про­граммно-информационные комплексы, разработанные специально для приме­нения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:

  • операционная система;
  • ядро прикладного программного обеспечения;
  • модули тематической обработки данных;
  • интерактивный интерфейс пользователя.

К модулям тематической обработки данных относятся:

  • программное обеспечение ввода-вывода данных;
  • прикладное программное обеспечение анализа векторной и растровой информации;
  • СУБД;
  • программное обеспечение распознавания образов;
  • программное обеспечение выбора картографической проекции;
  • программное обеспечение для преобразования изображений;
  • программное обеспечение картографической генерализации;
  • программное обеспечение генерации условных знаков и т.д..

Информатизация коснулась сегодня всех сторон жизни общества, и трудно, пожалуй, назвать какую-либо сферу человеческой деятельности - от обучения в школе до высокой государственной политики, где бы не ощущалось ее мощное воздействие.

Информатика «дышит в затылок» всем наукам о Земле, догоняя и увлекая их за собой, преобразуя, а порой полностью порабощая в стремлении к бесконечному компьютерному совершенству. Ученые уже не мыслят сегодня своей работы без компьютеров и баз цифровой информации. В науках о Земле информационные технологии породили геоинформатику и географические информационные системы (ГИС) , причем слово «географические» в данном случае означает «пространственность» и «территориальность», а еще и комплексность географического подходам.

ГИС - это аппаратно-программный и одновременно человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение данных. Географические информационные системы отличаются от других информационных систем тем, что все их данные обязательно пространственно координированы, т. е. привязаны к территории, к географическому пространству. ГИС используют при решении всевозможных научных и практических задач. ГИС помогают анализировать и моделировать любые географические ситуации, составлять прогнозы и управлять процессами, происходящими в окружающей среде. ГИС применяются для исследования всех тех природных, общественных и природно-общественных объектов и явлений, которые изучают науки о Земле и смежные с ними социально-экономические науки, а также картография, дистанционное зондирование. В то же время ГИС - это комплекс аппаратных устройств и программных продуктов (ГИС-оболочек), причем важнейший элемент этого комплекса - автоматические картографические системы.

Структуру ГИС обычно представляют как систему информационных слоев. Условно можно рассматривать эти слои в виде «слоеного пирога» или этажерки, на каждой полочке которой хранится карта или цифровая информация по определенной теме.

В процессе анализа эти слои «снимают с полочек», рассматривают по отдельности или совмещают в разных комбинациях, анализируют и сопоставляют между собой. Для какого-то одного заданного пункта или ареала можно получить данные по всем слоям сразу, но главное - появляется возможность получать производные слои. Одно из важнейших свойств ГИС как раз в том и состоит, что на основе имеющейся информации они способны порождать новую производную информацию.

Ресурсные ГИС - один из наиболее распространенных видов ГИС в науках о Земле. Они предназначены для инвентаризации, оценки, охраны и рационального использования ресурсов, для прогноза результатов их эксплуатации. Чаще всего для их формирования используют уже имеющиеся тематические карты, которые цифруют и вводят в базы данных в виде отдельных информационных слоев. Кроме картографических материалов в ГИС включают данные многолетних наблюдений, статистические сведения, и др. Примером может служить «ГИС — », созданная странами черноморского бассейна. Этот бассейн с разнообразной морской жизнью, обильными рыбными ресурсами, теплыми песчаными пляжами и неповторимыми по красоте прибрежными ландшафтами, привлекающими туристов, в последние десятилетия испытывает катастрофическое ухудшение экологической обстановки. Это резко сокращает рыбные ресурсы, снижает рекреационный потенциал, ведет к деградации ценнейших прибрежных водно-болотных угодий. Для централизованного принятия срочных мер по спасению Черного моря разработали «Программу по спасению Черного моря». Важной частью этой программы стало создание ресурсно-экологической «ГИС — Черное море». Эта ГИС выполняет две функции - моделирование и информирование о в целом и отдельных компонентах его среды. Информация необходима для проведения научных исследований в акватории и прилегающей части черноморского бассейна и для принятия решений по охране и защите этой уникальной акватории. «ГИС — Черное море» содержит около 2000 карт. Они заключены в семь тематических блоков: география, биология, метеорология, физическая океанография, химическая океанография, биология, рыбные ресурсы.

Геоинформационное картографирование

Взаимодействие геоинформатики и картографии стало основой для формирования нового направления - геоинформационного , т. е. автоматизированного моделирования и картографирования объектов и явлений на основе ГИС.

С внедрением ГИС традиционная картография испытала кардинальную перестройку. Ее можно сравнить разве что с теми изменениями, которые сопровождали переход от рукописных карт к печатным полиграфическим оттискам. Картографы прошлых эпох в самых смелых фантазиях не могли предвидеть, что вместо гравирования на литографском камне можно будет вычерчивать карту, водя курсором по экрану компьютера. А в наши дни геоинформационное картографирование почти полностью заменило традиционные методы составления и издания карт.

Программно-управляемое картографирование заставляет по-новому взглянуть на многие традиционные проблемы. Принципиально изменился выбор математической основы и компоновки карт, компьютерные карты можно достаточно быстро переводить из одной проекции в другую, свободно масштабировать, менять «нарезку» листов, вводить новые изобразительные средства (например, мигающие или перемещающиеся по карте знаки), использовать для генерализации математические фильтры и сглаживающие функции и т. п. Трудоемкие прежде операции подсчета длин и площадей, преобразование карт или их совмещение стали рутинными процедурами. Возникла электронная картометрия. Создание и использование карт стало единым процессом, в ходе компьютерной обработки изображения постоянно трансформируются, переходят из одной формы в другую.

ГИС-технологии породили еще одно новое направление - оперативное картографирование, т. е. создание и использование карт в реальном или близком к реальному масштабе времени. Появилась возможность быстро, а точнее сказать, своевременно информировать пользователей и воздействовать на ход процесса. Иначе говоря, при картографировании в реальном времени поступающая информация немедленно обрабатывается и составляются карты для оценки, мониторинга, управления, контроля за процессами и явлениями, изменяющимися в том же темпе.

Оперативные компьютерные карты предупреждают (сигнализируют) о неблагоприятных или опасных процессах, позволяют следить за их развитием, давать рекомендации и прогнозировать развитие ситуаций, выбирать варианты стабилизации или изменения хода процесса. Такие ситуации создаются, например, при возникновении в , когда приходится оперативно следить за их распространением и быстро принимать меры по ликвидации пожара. В период таяния снегов и во время катастрофических ливней приходится отслеживать разливы рек и , а в чрезвычайных ситуациях - изменения экологического состояния территории. В период ликвидации Чернобыльской аварии картографы день и ночь не отходили от компьютеров, составляя оперативные карты перемещения облаков радиоактивного загрязнения над территориями, прилегающими к очагу катастрофы. Так же ведут слежение за развитием политических событий и военными действиями в горячих точках планеты. Исходные данные для оперативного картографирования - это аэро- и космические снимки, непосредственные наблюдения и замеры, статистические материалы, результаты опросов, переписей, референдумов и др. Огромные возможности и порой неожиданные эффекты дают картографические анимации. Модули анимационных программ способны перемещать карты или трехмерные диаграммы по экрану, менять скорость демонстрации, передвигать отдельные знаки, заставлять их мигать и вибрировать, менять окраску и освещенность карты, «подсвечивать» или «затенять» отдельные участки изображения и т. п. Например, на карте меняется цвет районов, подверженных опасности: «безопасная» голубоватая окраска постепенно переходит в розоватую, а потом в ярко-красную, пунцовую, что означает: опасно, возможен сход лавин! Совершенно необычные для картографии эффекты создают панорамы, изменения перспективы, частей изображения (можно делить «наплывы» и удалять объекты), иллюзии движения над картой (выполнять «облет» территории), в том числе с разной скоростью. В обозримом будущем перспективы развития картографии в науках о Земле связываются, прежде всего, и почти целиком с геоинформационным картографированием, когда отпадает необходимость готовить печатные тиражи карт: по запросу можно будет всегда в режиме реального времени получить на экране компьютера изображение изучаемого объекта или явления. Некоторые картографы полагают, что внедрение электронных технологий «означает конец трехсотлетнего периода картографического черчения и издания печатной картографической продукции». Взамен карт и пользователь сможет затребовать и сразу получить все необходимые данные в машиночитаемом или визуализированном виде. И даже само понятие «атлас» предлагается пересмотреть.