Интегрирование корней иррациональных функций. Решение интегралов онлайн

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)
Перейти: Онлайн сервис "Несобственный интеграл"

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования
Перейти: Онлайн сервис "Тройной интеграл"

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Под иррациональным понимают выражение, в котором независимая переменная %%x%% или многочлен %%P_n(x)%% степени %%n \in \mathbb{N}%% входят под знак радикала (от латинского radix — корень), т.е. возводятся в дробную степень. Некоторые классы иррациональных относительно %%x%% подынтегральных выражений заменой переменной удается свести к рациональным выражениям относительно новой переменной.

Понятие рациональной функции одной переменной можно распространить на несколько аргументов. Если над каждым аргументом %%u, v, \dotsc, w%% при вычислении значения функции предусмотрены лишь арифметические действия и возведение в целую степень, то говорят о рациональной функции этих аргументов, которую обычно обозначают %%R(u, v, \dotsc, w)%%. Аргументы такой функции сами могут быть функциями независимой перменной %%x%%, в том числе и радикалами вида %%\sqrt[n]{x}, n \in \mathbb{N}%%. Например, рациональная функция $$ R(u,v,w) = \frac{u + v^2}{w} $$ при %%u = x, v = \sqrt{x}%% и %%w = \sqrt{x^2 + 1}%% является рациональной функцией $$ R\left(x, \sqrt{x}, \sqrt{x^2+1}\right) = \frac{x + \sqrt{x^2}}{\sqrt{x^2 + 1}} = f(x) $$ от %%x%% и радикалов %%\sqrt{x}%% и %%\sqrt{x^2 + 1}%%, тогда как функция %%f(x)%% будет иррациональной (алгебраической) функцией одной независимой переменной %%x%%.

Рассмотрим интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%%. Такие интегралы рационалируются заменой переменной %%t = \sqrt[n]{x}%%, тогда %%x = t^n, \mathrm{d}x = nt^{n-1}%%.

Пример 1

Найти %%\displaystyle\int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}}%%.

Подынтегральная функция искомого аргумента записана как функция от радикалов степени %%2%% и %%3%%. Так как наименьшее общее кратное чисел %%2%% и %%3%% равно %%6%%, то данный интеграл является интегралом типа %%\int R(x, \sqrt{x}) \mathrm{d}x%% и может быть рационализирован посредством замены %%\sqrt{x} = t%%. Тогда %%x = t^6, \mathrm{d}x = 6t \mathrm{d}t, \sqrt{x} = t^3, \sqrt{x} =t^2%%. Следовательно, $$ \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} = \int \frac{6t^5 \mathrm{d}t}{t^3 + t^2} = 6\int\frac{t^3}{t+1}\mathrm{d}t. $$ Примем %%t + 1 = z, \mathrm{d}t = \mathrm{d}z, z = t + 1 = \sqrt{x} + 1%% и $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} &= 6\int\frac{(z-1)^3}{z} \mathrm{d}t = \\ &= 6\int z^2 dz -18 \int z \mathrm{d}z + 18\int \mathrm{d}z -6\int\frac{\mathrm{d}z}{z} = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt{x} + 1\right)^3 - 9 \left(\sqrt{x} + 1\right)^2 + \\ &+~ 18 \left(\sqrt{x} + 1\right) - 6 \ln\left|\sqrt{x} + 1\right| + C \end{array} $$

Интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%% являются частным случаем дробно линейных иррациональностей, т.е. интегралов вида %%\displaystyle\int R\left(x, \sqrt[n]{\dfrac{ax+b}{cd+d}}\right) \mathrm{d}x%%, где %%ad - bc \neq 0%%, которые допускают рационализацию путем замены переменной %%t = \sqrt[n]{\dfrac{ax+b}{cd+d}}%%, тогда %%x = \dfrac{dt^n - b}{a - ct^n}%%. Тогда $$ \mathrm{d}x = \frac{n t^{n-1}(ad - bc)}{\left(a - ct^n\right)^2}\mathrm{d}t. $$

Пример 2

Найти %%\displaystyle\int \sqrt{\dfrac{1 -x}{1 + x}}\dfrac{\mathrm{d}x}{x + 1}%%.

Примем %%t = \sqrt{\dfrac{1 -x}{1 + x}}%%, тогда %%x = \dfrac{1 - t^2}{1 + t^2}%%, $$ \begin{array}{l} \mathrm{d}x = -\frac{4t\mathrm{d}t}{\left(1 + t^2\right)^2}, \\ 1 + x = \frac{2}{1 + t^2}, \\ \frac{1}{x + 1} = \frac{1 + t^2}{2}. \end{array} $$ Следовательно, $$ \begin{array}{l} \int \sqrt{\dfrac{1 -x}{1 + x}}\frac{\mathrm{d}x}{x + 1} = \\ = \frac{t(1 + t^2)}{2}\left(-\frac{4t \mathrm{d}t}{\left(1 + t^2\right)^2}\right) = \\ = -2\int \frac{t^2\mathrm{d}t}{1 + t^2} = \\ = -2\int \mathrm{d}t + 2\int \frac{\mathrm{d}t}{1 + t^2} = \\ = -2t + \text{arctg}~t + C = \\ = -2\sqrt{\dfrac{1 -x}{1 + x}} + \text{arctg}~\sqrt{\dfrac{1 -x}{1 + x}} + C. \end{array} $$

Рассмотрим интегралы вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%%. В простейших случаях такие интегралы сводятся к табличным, если после выделения полного квадрата сделать замену переменных.

Пример 3

Найти интеграл %%\displaystyle\int \dfrac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}}%%.

Учитывая, что %%x^2 + 4x + 5 = (x+2)^2 + 1%%, примем %%t = x + 2, \mathrm{d}x = \mathrm{d}t%%, тогда $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}} &= \int \frac{\mathrm{d}t}{\sqrt{t^2 + 1}} = \\ &= \ln\left|t + \sqrt{t^2 + 1}\right| + C = \\ &= \ln\left|x + 2 + \sqrt{x^2 + 4x + 5}\right| + C. \end{array} $$

В более сложных случаях для нахождения интегралов вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%% используются

Определение 1

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Замечание

Определение 2 можно записать следующим образом:

\[\int f(x)dx =F(x)+C.\]

Не от всякой иррациональной функции можно выразить интеграл через элементарные функции. Однако большинство таких интегралов с помощью подстановок можно привести к интегралам от рациональных функций, которые можно выразить интеграл через элементарные функции.

    $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $;

    $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $;

    $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $.

I

При нахождении интеграла вида $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

При данной подстановке каждая дробная степень переменной $x$ выражается через целую степень переменной $t$. В результате чего подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 1

Выполнить интегрирование:

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} .\]

Решение:

$k=4$ - общий знаменатель дробей $\frac{1}{2} ,\, \, \frac{3}{4} $.

\ \[\begin{array}{l} {\int \frac{x^{1/2} dx}{x^{3/4} +1} =4\int \frac{t^{2} }{t^{3} +1} \cdot t^{3} dt =4\int \frac{t^{5} }{t^{3} +1} dt =4\int \left(t^{2} -\frac{t^{2} }{t^{3} +1} \right)dt =4\int t^{2} dt -4\int \frac{t^{2} }{t^{3} +1} dt =\frac{4}{3} \cdot t^{3} -} \\ {-\frac{4}{3} \cdot \ln |t^{3} +1|+C} \end{array}\]

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} =\frac{4}{3} \cdot \left+C\]

II

При нахождении интеграла вида $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

где $k$ - общий знаменатель дробей $\frac{m}{n} ,...,\frac{r}{s} $.

В результате данной подстановки подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 2

Выполнить интегрирование:

\[\int \frac{\sqrt{x+4} }{x} dx .\]

Решение:

Сделаем следующую подстановку:

\ \[\int \frac{\sqrt{x+4} }{x} dx =\int \frac{t^{2} }{t^{2} -4} dt =2\int \left(1+\frac{4}{t^{2} -4} \right)dt =2\int dt +8\int \frac{dt}{t^{2} -4} =2t+2\ln \left|\frac{t-2}{t+2} \right|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{\sqrt{x+4} }{x} dx =2\sqrt{x+4} +2\ln \left|\frac{\sqrt{x+4} -2}{\sqrt{x+4} +2} \right|+C.\]

III

При нахождении интеграла вида $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $ выполняется так называемая подстановка Эйлера (используется одна из трех возможных подстановок).

Первая подстановка Эйлера

Для случая $a>

Взяв перед $\sqrt{a} $ знак «+», получим

Пример 3

Выполнить интегрирование:

\[\int \frac{dx}{\sqrt{x^{2} +c} } .\]

Решение:

Сделаем следующую подстановку (случай $a=1>0$):

\[\sqrt{x^{2} +c} =-x+t,\, \, x=\frac{t^{2} -c}{2t} ,\, \, dx=\frac{t^{2} +c}{2t^{2} } dt,\, \, \sqrt{x^{2} +c} =-\frac{t^{2} -c}{2t} +t=\frac{t^{2} +c}{2t} .\] \[\int \frac{dx}{\sqrt{x^{2} +c} } =\int \frac{\frac{t^{2} +c}{2t^{2} } dt}{\frac{t^{2} +c}{2t} } =\int \frac{dt}{t} =\ln |t|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{dx}{\sqrt{x^{2} +c} } =\ln |\sqrt{x^{2} +c} +x|+C.\]

Вторая подстановка Эйлера

Для случая $c>0$ необходимо выполнить следующую подстановку:

Взяв перед $\sqrt{c} $ знак «+», получим

Пример 4

Выполнить интегрирование:

\[\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx .\]

Решение:

Сделаем следующую подстановку:

\[\sqrt{1+x+x^{2} } =xt+1.\]

\ \[\sqrt{1+x+x^{2} } =xt+1=\frac{t^{2} -t+1}{1-t^{2} } \] \

$\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =\int \frac{(-2t^{2} +t)^{2} (1-t)^{2} (1-t^{2})(2t^{2} -2t+2)}{(1-t^{2})^{2} (2t-1)^{2} (t^{2} -t+1)(1-t^{2})^{2} } dt =\int \frac{t^{2} }{1-t^{2} } dt =-2t+\ln \left|\frac{1+t}{1-t} \right|+C$Сделав обратную замену, получим окончательный результат:

\[\begin{array}{l} {\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +\ln \left|\frac{x+\sqrt{1+x+x^{2} } -1}{x-\sqrt{1+x+x^{2} } +1} \right|+C=-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +} \\ {+\ln \left|2x+2\sqrt{1+x+x^{2} } +1\right|+C} \end{array}\]

Третья подстановка Эйлера