Ионный канал. Определение. Молекулярная конструкция. Селективный фильтр. Механизм транспорта иона через ионный канал. Ионные каналы клеточных мембран Ионный канал определение классификация конструкция

Последнее обновление: 28/10/2013

Вторая статья из серии «Основы физиологии человека и животных». Речь пойдёт о механизме формирования потенциала действия - основы любого движения.

Возбудимые клетки (которыми являются в той или иной степени все клетки организма животного) в покое имеют избыток отрицательного заряда, формирующий . Если клетка подвергается внешнему раздражению, она переходит в возбуждённое состояние и генерирует другой потенциал - потенциал действия.

Реализует этот процесс система ионных каналов в мембране клетки, регулирующая концентрации электрически заряженных частиц - ионов. Все каналы, независимо от специализации, управляются определёнными силами. Это может быть изменение потенциала на клеточной мембране - в случае потенциал-зависимых каналов, повышение концентрации определённых активных веществ - для лиганд-зависимых или растяжение мембраны - для механически управляемых каналов.

Каналы - это специфические белки, встроенные в мембрану. Каждый тип каналов пропускает определённые ионы. Это система пассивного транспорта: ионы проходят через них благодаря диффузии, а каналы просто контролируют концентрацию проходящих частиц, регулируют для них проницаемость мембраны.

В формировании потенциала действия, как и потенциала покоя, принимают участие главным образом ионы натрия и калия.

Натриевые каналы имеют достаточно простое строение: это белок из трёх разных субъединиц, которые образуют структуру, похожую на пору - то есть трубку с внутренним просветом. Канал может находиться в трёх состояниях: закрытом, открытом и инактивированном (закрыт и невозбудим). Это обеспечивается локализацией отрицательных и положительных зарядов в самом белке; эти заряды притягиваются к противоположным, существующим на мембране, и таким образом канал при изменении состояния мембраны открывается и закрывается. Когда он открыт, ионы натрия могут беспрепятственно проникать через него в клетку по градиенту концентрации. Это очень короткий момент времени - буквально доли миллисекунды.

Калиевые каналы устроены ещё проще: это отдельные субъединицы, имеющие в разрезе трапециевидную форму; они расположены почти вплотную друг к другу, но между ними всегда остаётся зазор. Калиевые каналы не закрываются до конца, в состоянии покоя калий свободно уходит из цитоплазмы (по градиенту концентрации).

И натриевые, и калиевые каналы являются потенциал-зависимыми - они работают в зависимости от изменений электрического потенциала мембраны.

При формировании потенциала действия происходит резкая кратковременная перезарядка мембраны. Это обеспечивается несколькими последовательными процессами.

Сначала под воздействием внешнего раздражения (например, электрического тока) мембрана деполяризуется - то есть заряды с разных её сторон меняются на противоположные (внутри клетки заряд переходит в положительный, снаружи - в отрицательный). Это является сигналом к открытию натриевых каналов, которых на поверхности одной мембраны огромное число - может быть до 12 тысяч. Момент, в который начинают открываться каналы, носит название критического уровня деполяризации. Ток, который даёт эту критическую деполяризацию, назван пороговым.

Интересно, что повышение силы тока после достижения пороговой величины не меняет характеристик получающегося в итоге потенциала действия. Значение для открытия каналов имеет не амплитуда тока, а полученное мембраной количество энергии - «количество электричества». Эта закономерность получила название «всё или ничего» - либо есть полноценный ответ на раздражение при его величине от пороговой и выше, либо ответа нет вообще, если раздражение пороговой величины не достигло. При этом значение пороговой величины определяется длительностью подаваемого раздражения.

Действителен этот закон, правда, только в рамках отдельной клетки. Если брать, например, нерв, составленный большим количеством разных аксонов, амплитуда тоже будет иметь значение, потому что ответ на раздражение мы увидим только тогда, когда каналы активируются во всех клетках - то есть при большем суммарном значении порогового тока.

После открытия каналов натрий начинает поступать в клетку, и его ток значительно превышает ток выходящего по градиенту калия. Это значит, что проницаемость мембраны для натрия становится больше, чем для калия. В определённый момент открываются почти все натриевые каналы. Это происходит лавинообразно: от той точки, в которую пришёл стимул, в обе стороны. Таким образом, концентрация натрия в клетке резко повышается.

После этого концентрации ионов должны вернуться к исходным. Это обеспечивает такое общее свойство каналов, как рефрактерность: канал, который сработал, некоторое время после этого неактивен и не может возбудиться под действием раздражающего стимула.

Натриевые каналы в момент максимального ответа на раздражение становятся рефрактерны, проницаемость для натрия резко падает. Калиевые каналы, напротив, начинают активно работать, и ток калия из клетки возрастает. Таким образом из клетки уходит избыток положительно заряженных ионов и восстанавливается изначальный потенциал покоя. Этот период времени, пока не восстановятся натриевые каналы и исходный потенциал (это может занимать около миллисекунды), клетка не способна возбудиться.

Поскольку способность клеток к возбуждению обеспечивает работу организма как целого и возможность центрального контроля всех клеток организма, яды, блокирующие каналы, являются одними из самых опасных для человека и многих животных.

Один из самых страшных блокаторов каналов - тетродотоксин, вещество, вырабатываемое рыбой фугу. Для него значение LD50 (50% Level of Death - доза, от которой умрут 50 человек из ста) равно 10 миллиграмм на килограмм веса, то есть примерно в тысячу раз меньше, чем для цианида. Его молекулы связываются прочной связью с белком натриевого канала, когда он в закрытом состоянии, и полностью блокируют возможность возникновения потенциала действия. Похожие токсины вырабатывают некоторые водоросли. Яд скорпиона, напротив, держит все каналы в постоянно открытом состоянии.

Ну ладно скорпион, а вот зачем такое страшное оружие водорослям - загадка.


Есть что сказать? Оставть комментарий!.

Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.

Строение и функции клеточных мембран.

1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2. Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3. Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4. Высвобождение нейромедиаторов в синаптических окончаниях.

Современными методами электронной микроскопии была определена толщина клеточных мембран (6-12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.


Электрические характеристики мембран:

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающихщих на клеточных мембранах.

Проводимость (g) - величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.

Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны.

Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.

Строение и функции ионных каналов . Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал.

Все ионные каналы подразделяются на следующие группы:

  1. По избирательности:

a) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов.

b) Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

  1. По характеру пропускаемых ионов:

a) калиевые

b) натриевые

c) кальцевые

d) хлорные

  1. По скорости инактивации, т.е. закрывания:

a) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

b) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

a) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.

b) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1.Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП.(Рис).

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (h) ворот:

1.Закрытом, когда активационные закрыты, а инактивационные открыты.

2.Активированном, и те и другие ворота открыты.

3.Инактивированном, активационные ворота открыты, а инактивационные закрыты

Функции ионных каналов:

1. Калиевый (в покое) – генерация потенциала покоя

2. Натриевый – генерация потенциала действия

3. Кальциевый - генерация медленных действий

4. Калиевый (задержанное выпрямление) – обеспечение реполяризации

5. Калиевый кальций-активируемый – ограничение деполяризации, обусловленной током Са+2

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется.

Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp». Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов.

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы. Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца. Электрогенез кардиомиоцитов рассматривается в главе 7. Электрофизиологические характеристики клеточных мембран исследуют с помощью специальных методов.

  • Свойства ионных каналов

    Селективность - это избирательная повышенная проницаемость ИК для определённых ионов. Для других ионов проницаемость понижена. Такая избирательность определяется селективным фильтром - самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Например, катион-селективные каналы обычно имеют в области своего селективного фильтра отрицательно заряженные остатки аминокислот в составе белковой молекулы, которые притягивают положительные катионы и отталкивают отрицательные анионы, не пропуская их через пору.

  • Управляемая проницаемость - это способность ИК открываться или закрываться при определённых управляющих воздействиях на канал. Закрытый канал имеет пониженную проницаемость, а открытый - повышенную. По этому свойству ИК можно классифицировать в зависимости от способов их открытия: например, потенциал-активируемые, лиганд-активируемые и т.д.

    Инактивация - это способность ИК через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать. Быстрая инактивация - это особый процесс со своим особым механизмом, отличающийся от медленного закрытия канала (медленной инактивации). Закрытие (медленная инактивация) канала происходит за счёт процессов, противоположных процессам, обеспечившим его открытие, т.е. за счёт изменения конформации канального белка. А вот, например, у потенциал-активируемых каналов быстрая инактивация происходит с помощью специальной молекулярной "пробки-затычки", напоминающей пробку на цепочке, которую обычно используют в ваннах. Эта пробка представляет собой аминокислотную (полипептидную) петлю с утолщением на конце в виде трёх аминокислот, которым и затыкается внутреннее устье канала со стороны цитоплазмы. Именно поэтому потенциал-зависимые ИК для натрия, обеспечивающие развитие потенциала действия и движение нервного импульса, могут пропускать в клетку ионы натрия только в течение нескольких миллисекунд, а затем они автоматически закрываются своими молекулярными пробками, несмотря на то, что открывающая их деполяризация продолжает действовать. Другим механизмом инактивации ИК может служить модификация дополнительными субъединицами внутриклеточного устья канала.

    Блокировка - это способность ИК под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. В таком состоянии канал просто перестаёт давать ответы на управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками. Антагонисты - это вещества, препятствующие активирующему действию других веществ на ИК. Такие вещества способны хорошо связываться с рецепторным участком ИК, но не способны изменить состояние канала, вызвать его ответную реакцию. Получается блокада рецептора и вместе с ним - блокада ИК. Следует помнить, что антагонисты не обязательно вызывают полную блокаду рецептора и его ИК, они могут действовать более слабо и лишь ингибировать (угнетать) работу канала, но не прекращать её полностью Агонисты-антагонисты - это вещества, которые обладают слабым стимулирующим влиянием на рецептор, но при этом блокируют действие естественных эндогенных управляющих веществ. Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты. Литики - это те же блокаторы, термин более старый и используется как синоним для блокатора: холинолитик, адренолитик и т.д.

    Пластичность - это способность ИК изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность - это фосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами. К канальным белкам присоединяются фосфорные остатки от АТФ или ГТФ - и канал меняет свои свойства. Накпример, фиксируется в постоянно закрытом состоянии, или, наоборот, в открытом.

    Биологические мембраны – это функционально активные структуры клеток, ограничивающие цитоплазму и большинство внутриклеточных структур; образуют единую внутриклеточную систему канальцев, складок и замкнутых полостей.

    Структурная основа мембраны – двойной слой фосфолипидов, в который встроены мембранные белки. Толщина клеточных мембран 6-12 нм. Молекулы липидов амфотерны. Своими гидрофильными частями они обращены в сторону водной среды (межклеточная жидкость и цитоплазма), гидрофобные части молекул направлены внутрь фосфолипидного бислоя. Такая структура идеально подходит для раздела внеклеточной и внутриклеточной фаз.

    Белки, интегрированные в двойной слой фосфолипидов своими полярными участками, образуют гидрофильную поверхность в водной фазе. Они выполняют различные функции: рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

    Большинство наших знаний об устройстве ионного канала, является результатом функциональной реконструкции. Каждый канал имеет устье, селективный фильтр, ворота и механизм управления воротами.

    Часть каналов являются электроуправляемыми, т.е. управляются за счет разности потенциалов на мембране (потенциал-зависимые ионные каналы). Для этого рядом с каналом имеется электрический сенсор, который в зависимости от величины мембранного потенциала либо открывает ворота каналов, либо держит их закрытыми.

    Второй вариант ионных каналов – рецептороуправляемые. Ворота управляются за счет рецептора, расположенного на поверхности мембраны (открываются при взаимодействии медиатора с рецептором). В некоторых рецептороуправляемых каналах между рецептором и воротным механизмом имеется промежуточная стадия (посредник типа цАМФ, протеинкиназы и т.д.)

    Ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

    Селективность – или избирательность канала обеспечивается его особой белковой структурой, геометрией канала.

    Например, диаметр иона натрия – 0,19 нм, вместе с гидратной оболочкой он становится около 0,3 нм. Устье натриевого канала 0,3 – 0,5 нм. Чтобы пройти через канал (особенно через селективный фильтр), ион натрия или другой ион должен освободиться от гидратной оболочки и только в «голом» виде может пройти через канал. Слишком большой ион не может войти в устье, слишком маленький не способен отдать гидратную оболочку в селективном фильтре, поэтому не может выскочить из канала.

    Натриевые каналы (рис. 6) имеют ворота 2-х типов – активационные (m-ворота) и инактивационные (h-ворота). В условиях покоя активационные ворота закрыты, но готовы в любую минуту открыться, а инактивационные – открыты. При снижении МП (деполяризация до 60 мВ) активационные ворота открываются и впускают ионы натрия в клетку, но вскоре начинают закрываться инактивационные ворота (происходит инактивация натриевых каналов). Некоторое время спустя закрываются активационные ворота, открываются инактивационные, и канал готов к новому циклу. Канал блокируется тетродотоксином, местными анестетиками (новокаин и др.).

    Рис. 6. Работа натриевых каналов и «воротных» механизмов.

    А – в покое m-ворота закрыты; Б – при возбуждении m-ворота открыты; В – закрытие h-ворот (инактивация) при деполяризации.

    Калиевые каналы тоже достаточно селективны – в основном пропускают ионы калия. Блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо. Зато имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-калльцийзависимых каналов ускоряет реполяризацию (восстановление МП покоя).

    Кальциевые каналы. Входящий кальциевый ток недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Кальций выступает в роли вторичного

    посредника (мессенджера). Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, напр., входящим натриевым током. Инактивация кальциевых каналов происходит при повышении внутриклеточной концентрации свободного кальция. Однако белки цитоплазмы связывают кальций, что позволяет некоторое время поддерживать стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Блокируются кальциевые каналы ионами марганца, никеля, кадмия (2-хвалентные ионы), а также лекарственными веществами (верапамил).

    Различают пассивный (без затрат энергии) и активный (энергозависимый) транспорт ионов через мембраны.

    Пассивный идет за счет простой и облегченной диффузии.

    Простая диффузия идет в соответствии с законом Фика – по химическому, электрохимическому или осмотическому градиенту. Напр., в клетке натрия 14 ммоль, а в среде 140 ммоль, в этом случае пассивный поток должен быть направлен в клетку.

    Для пассивной простой диффузии вещество должно быть жирорастворимым. Гидрофильные вещества в фосфолипидном бислое мембраны пройти не могут.

    Облегченная диффузия происходит или при наличии специализированных каналов или с участием переносчиков, которые специфически связываются с переносимой молекулой, а затем способствуют ее переносу по градиенту концентрации.

    Активный транспорт ионов насосами клеточных мембран обеспечивает поддержание ионных градиентов по обе стороны мембраны. Энергия затрачивается на перенос данного вещества против градиента его концентрации.

    Доказано участие в активном транспорте ионов специализированных ферментных систем – АТФ-аз, которые осуществляют гидролиз АТФ. Различают:

    Натрий–калиевая–АТФ–аза («натриевый насос») обнаружена в мембранах клеток всех животных, растений и микроорганизмов. Это мембранный белок, имеющий два центра связывания ионов. Один из них (натриевый) расположен на внутренней поверхности клеточной мембраны, второй (калиевый) – на ее внешней поверхности. Специфическим ингибитором фермента является сердечный гликозид – строфантин (уабаин), блокирующий работу натриевого насоса. Гидролиз одной молекулы АТФ сопровождается выведением из клетки трех ионов натрия и закачиванием в клетку двух ионов калия. При увеличении количества ионов калия во внеклеточной среде или ионов натрия внутри клетки работа насоса усиливается.

    Кальциевая–АТФ-аза («кальциевый насос») наиболее широко распространена в мембранах саркоплазматического ретикулума мышечных клеток.

    Протонная–АТФ-аза («протонный насос») – в мембранах митохондрий.

  • 2 Принцип структурности. У каждого рефлекса есть свой морфологический субстрат, своя рефлекторная дуга.
  • 26. Рефлексы…
  • I. Безусловные рефлексы
  • II. Условные рефлексы
  • 29. Вегетативная нервная система…
  • Влияние отделов вегетативной нервной системы на органы
  • Вегетативные рефлексы
  • 32. Гуморальная регуляция функций…
  • Местная регуляция (1 уровень регуляции)
  • Региональная (органная) регуляция (2 уровень регуляции)
  • 1. Неспецифические метаболиты,
  • 2. Специфические метаболиты (тканевые гормоны). Система тканевых гормонов
  • 33. Гуморальная регуляция функций. Межсистемный уровень…
  • 1. Истинные гормоны.
  • 2. Парагормоны.
  • 1. Водорастворимые
  • Взаимодействие гормонов и парагормонов с клетками-мишенями
  • Различия нервной и гуморальной регуляции
  • 35. Гипоталамо-гипофизарная система…
  • 36. Передняя, задняя и промежуточная доли гипофиза…
  • 37. Щитовидная железа…
  • 38. Физиология надпочечников…
  • 1) Минералокортикоиды 2) глюкокортикоиды 3) половые гормоны
  • Гормоны мозгового вещества надпочечников
  • 39. Эндокринная функция поджелудочной железы…
  • Действие инсулина на белковый обмен
  • Влияние инсулина на жировой обмен
  • Регуляция инкреции инсулина
  • Эффекты глюкагона
  • Инсулиновый рецептор
  • 40. Женские половые железы…
  • 41. Мужские половые железы…
  • 42. Эндокринная функция эпифиза, тимуса, почек и сердца…
  • 43. Понятие о крови…
  • Состав плазмы крови
  • Электролитный состав плазмы/ммоль/л/
  • 44. Общая характеристика форменных элементов крови и их роль в организме. Гемопоэз, механизм и регуляция образования форменных элементов крови. Лейкоциты…
  • Клинико-физиологическая оценка содержания лейкоцитов
  • Анализ Лейкоцитарной формулы:
  • 45. Виды иммунитета…
  • Врожденный иммунитет Неспецифические механизмы защиты
  • 1. Вещества, обладающие антибактериальной и ан­тивирусной активностью (лизоцим, интерфероны).
  • 2. Система комплимента: система белков, разру­шающая целостность мембран клеток.
  • 3. Гранулоциты.
  • 1. Хемотаксис.
  • 2. Прикрепление чужеродного объекта к фагоциту.
  • 3. Поглощение.
  • 4. Лизис.
  • Главный комплекс гистосовместимости
  • 46. Эритроциты…
  • Эритрон
  • Эритрокинетика
  • Клинико-физиологическая оценка эритроцитов
  • Гемоглобин
  • Соединения гемоглобина:
  • Виды гемолиза
  • Осмотическая резистентность эритроцитов
  • Скорость оседания эритроцитов
  • 47. Понятие о системах групп крови…
  • 48. Понятие о гемостазе…
  • 1. Сосудистый компонент:
  • Тромбоциты
  • Функции тромбоцитов:
  • 49. Процесс свертывания крови… Гемокоагуляция (собственно свертывание крови)
  • 50. Противосвертывающие факторы…
  • Фибринолиз
  • 51. Физиологические свойства сердечной мышцы…
  • Особенности возбуждения сердечной мышцы
  • 52. Сердце, его гемодинамические функции...
  • Давление в полостях сердца в различные фазы сердечного цикла (мм рт. Ст.).
  • 53. Оценка нагнетательной (насосной) функции сердца… Сердечный цикл
  • 3. Фаза дополнительного наполнения желудочков - 0,1 сек.
  • 54. Механические проявления сердечной деятельности…
  • 55. Звуковые проявления сердечной деятельности…
  • 1. Тоны. 2. Шумы.
  • I тон соответствует зубцу r на экг.
  • 56. Электрические проявления сердечной деятельности…
  • Холтеровское /суточное/ мониторирование экг.
  • 57. Функциональная классификация кровеносных сосудов…
  • 2. Кровеносные сосуды
  • В системе кровообращения можно выделить три области
  • 2. Область транскапиллярного обмена
  • Общая характеристика движения крови по сосудам
  • 58. Сосудистый тонус…
  • 1. Сосудорасширяющие:
  • 1. Импульсы от рефлексогенных зон:
  • 2. Кортикальные влияния.
  • 59. Системная гемодинамика…
  • 60. Методы оценки основных показателей гемодинамики…
  • 1. Ультразвуковая допплерография (уздг) позво­ляет:
  • 2. Метод электромагнитной флоурометрии (расходометрия).
  • 3. Определение времени кругооборота крови.
  • 62. Регуляция системной гемодинамики…
  • 63. Микроциркуляция…
  • 64. Особенности гемодинамики в различных сосудистых ре­гионах. Легочное кровообращение…
  • 2. Важнейшие из гуморальных регуляторов
  • 65. Особенности гемодинамики в различных сосудистых ре­гионах. Почечный кровоток… Кровообращение в почках
  • Кровообращение скелетных мышц
  • Регуляция Гуморальная регуляция
  • Дистантная регуляция
  • Особенности кровообращения в нижних конечностях
  • 66. Лимфатическая система…
  • 67. Регуляция работы сердца…
  • 1.Основные рефлексогенные зоны сосудистого русла:
  • 2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечно­сосудистой системы:
  • 1. Ацетилхолин.
  • 2. Адреналин.
  • 68. Дыхание…
  • Взаимодействие грудной клетки и легких
  • При вдохе преодолевается ряд сил:
  • 69. Биомеханика спокойного вдоха и выдоха… Биомеханика спокойного вдоха
  • Биомеханика спокойного выдоха
  • Биомеханика форсированного вдоха
  • Биомеханика форсированного выдоха
  • 70. Клинико-физиологическая оценка внешнего дыхания. Ле­гочные объемы…
  • Легочные объёмы и ёмкости
  • Методы измерения легочных объемов
  • 3. Определение остаточного объема
  • 71. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели...
  • 72. Газообмен в легких и тканях…
  • 73. Транспорт газов кровью…
  • 74. Регуляция дыхания…
  • 75. Механизмы перестройки внешнего дыхания…
  • 2.4. Раздражение рецепторов скелетных мышц.
  • 5.Участие коры головного мозга в регуляции дыхания.
  • 76. Пищеварение и его значение…
  • 77. Виды моторики пищеварительного тракта…
  • 1. Тонус гладкой мускулатуры пищеварительной трубки.
  • 2. Перистальтика гладкой мускулатуры пищеварительной трубки.
  • 3. Ритмическая сегментация гладкой мускулатуры пищева­рительной трубки.
  • 4. Маятникообразные движения гладкой мускулатуры пи­щеварительной трубки.
  • 5. Антиперистальтика гладкой мускулатуры пищевари­тельной трубки.
  • 6. Закрытие и открытие сфинктеров пищеварительной трубки.
  • 78. Пищеварение в полости рта…
  • Регуляция слюноотделения
  • 79. Пищеварении в желудке… Секреция в желудке
  • Моторная функция желудка
  • В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения
  • Механизм перехода пищи из желудка в 12-перстную кишку
  • 80. Пищеварение в 12-перстной кишке…
  • Сок поджелудочной железы
  • Карбогидразы поджелудочного сока
  • Регуляция секреции поджелудочной железы
  • 81. Роль печени в пищеварении… Желчь
  • Моторная функция желчных путей
  • 82. Состав и свойства кишечного сока… Сок тонкой кишки
  • Сок толстой кишки
  • Регуляция секреции в тонком кишечнике
  • Моторная функция тонкой кишки
  • Пристеночное (мембранное) пищеварение
  • 83. Всасывание…
  • 84. Принципы регуляции деятельности пищеварительной сис­темы…
  • 85. Пластическая и энергетическая роль углеводов, жиров и белков…
  • 86. Энергообмен…
  • Основной обмен
  • Рабочий обмен
  • 1. Прямая калориметрия.
  • 87. Тепловой обмен…
  • Температура тела человека
  • Терморегуляция
  • 1) Центральные
  • 2) Эффекторные
  • 88. Гомеостатические функции почек…
  • 89. Выделительная функция почек. Механизмы образования первичной мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клубочковая фильтрация.
  • 90. Выделительная функция почек. Образование конечной (вторичной) мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клинико-физиологическая оценка деятельности почек
  • 2.Определение удельного веса мочи. Удельный вес (или плотность) мочи колеблется в пределах от 1,014 до 1, 025.
  • 4.Определение мочевины, мочевой кислоты, общего азота и креатинина.
  • 91. Регуляция функции почек…
  • 1. Нервная. 2. Гуморальная (наиболее выраженная).
  • 92. Водный баланс…
  • 2.За счет оптимального распределения воды между водными пространствами и секторами организма.
  • 94. Ретикулярная формация…
  • Гипоталямус
  • Передний мозг
  • 95. Кора больших полушарий…
  • 2. Раздражение отдельных зон коры больших полушарий.
  • 3. Регистрация биопотенциалов отдельных нейронов и суммарной их активности.
  • Таламолобная система представлена 9, 10, 11, 12, 13, 14 полями. Основная роль сводится к инициации базовых механизмов формирования функциональных систем целенаправленных поведенческих актов. Она:
  • Обеспечивает взаимоувязку доминирующей мотивации с возбуждениями, поступившими в кору от сенсорных систем;
  • Обеспечивает прогнозирование ожидаемого результата действия;
  • Обеспечивает сравнение достигнутых конечных результатов действия с ожидаемым результатом (прогнозом).
  • 96. Межполушарные взаимоотношения…
  • Функциональная асимметрия Выделяют следующие виды межполушарной функциональной асимметрии мозга: 1) психическую, 2) сенсорную, 3) моторную. Проявляться это будет в следующем:
  • Парность в деятельности коры больших полушарий
  • 97. Анализаторы…
  • Общие свойства анализаторов
  • 4. Дифференцировка анализатора по вертикали и горизонтали:
  • 2. Проводниковый отдел.
  • 98. Зрительный анализатор…
  • 1) Ядрах верхних бугров четверохолмья,
  • 100. Биологическое значение боли…
  • Нейрохимические механизмы ноцицепции
  • Антиноцицептивная (обезболивающая) система мозга
  • Нейрохимические механизмы антиноцицептивной системы
  • Взаимоотношения ноцицептивной и антиноцицептивной систем
  • 101. Условные рефлексы…
  • Биологический смысл условного рефлекса
  • Периоды образования условного рефлекса
  • 102. Корковое торможение…
  • Условный тормоз
  • Сон и бодрствование
  • 103. I и II сигнальные системы…
  • 1. Художественный тип - мыслит образами – преобладает чувственное /образное/ восприятие мира.
  • 2.Мыслительный тип - характерно абстрактное мышление
  • 104. Потребности и мотивации…
  • Потребность сохранения вида
  • 105. Эмоции…
  • Теории формирования эмоций
  • Положительные эмоции
  • 106. Память…
  • Процессы памяти включают 4 стадии
  • 1.Восприятие, запечатление и запоминание.
  • Теории памяти
  • 12. Ионные каналы…

    Ионный канал состоит из нескольких субъединиц, их ко­личество в отдельном ионном канале составляет от 3 до 12 субъединиц. По своей организации субъединицы, входящие в канал, могут быть гомологичными (однотипными), ряд кана­лов сформирован разнотипными субъединицами.

    Каждая из субъединиц состоит из нескольких (три и бо­лее) трансмембранных сегментов (неполярные части, закру­ченные в α-спирали), из вне- и внутриклеточных петель и концевых участков доменов (представлены полярными облас­тями молекул, формирующих домен и выступающих за преде­лы билипидного слоя мембраны).

    Каждый из трансмембранных сегментов, вне- и внутрик­леточных петель и концевых участков доменов выполняет свою функцию.

    Так, трансмембранный сегмент 2, организованный в виде α-спирали, определяет селективность канала.

    Концевые участки домена выступают в качестве сенсоров к вне- и внутриклеточным лигандам, а один из трансмембран­ных сегментов играет роль потенциалзависимого сенсора.

    Третьи трансмембранные сегменты в субъединице от­ветственны за работу воротной системы каналов и т.д.

    Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду.

    Специфичность ионных каналов.

    Большая часть из них относятся к селективным, т.е. кана­лам, пропускающим только один вид ионов (натриевые кана­лы, калиевые каналы, кальциевые каналы, анионные каналы).

    Селективность канала.

    Селективность канала определяется наличием избира­тельного фильтра.

    Его роль выполняет начальный участок канала, который имеет определенный заряд, конфигурацию и размер (диа­метр), что позволяет пройти в канал только определенному виду ионов.

    Некоторые из ионных каналов неселективные, например, каналы "утечки". Это такие каналы мембраны, по которым в состоянии покоя по градиенту концентрации из клетки выхо­дят ионы К + , однако по этим каналам в клетку в состоянии по­коя по градиенту концентрации входит и небольшое количество ионовNa + .

    Сенсор ионного канала.

    Сенсор ионного канала - чувствительная часть канала, ко­торая воспринимает сигналы, природа которых может быть различна.

    На этой основе выделяют:

      потенциалзависимые ионные каналы;

      рецепторуправляемые ионные каналы;

      лигандуправляемые (лигандзависимые);

      механоуправляемые (механозависимые).

    Каналы, имеющие сенсор, называются управляемыми. У некоторых каналов сенсор отсутствует. Такие каналы называ­ют неуправляемыми.

    Воротная система ионного канала.

    У канала есть ворота, которые закрыты в состоянии покоя и открываются при воздействии сигнала. У некоторых каналов выделяют два вида ворот: активационные (m-ворота) и инактивационные (h-ворота).

    Выделяют три состояния ионных каналов:

      состояние покоя, когда ворота закрыты и канал недо­ступен для ионов;

      состояние активации, когда воротная система открыта и ионы перемещается через мембрану по каналу;

      состояние инактивации, когда канал закрыт и не отве­чает на стимулы.

    Скорость проведения (проводимость).

    Бывают быстрые и медленные каналы. Каналы “ утечки ” - медленные, натриевые каналы в нейронах - быстрые.

    В мембране любой клетки имеется большой набор разно­образных (по скорости) ионных каналов, от активации кото­рых зависит функциональное состояние клеток.

    Потенциалуправляемые каналы.

    Потенциалуправляемый канал состоит из:

      поры, заполненной водой;

    • селективного фильтра;

      активационных и инактивационных ворот;

      сенсора напряжения.

    Диаметр канала значительно больше диаметра иона, в зоне селективного фильтра он сужается до атомарных размеров, это и обеспечивает выполнение данным участком канала функции селективного фильтра.

    Открытие и закрытие воротного механизма возникает при изменении мембранного потенциала, причем открываются во­рота при одном значении мембранного потенциала, а закрыва­ются при другом уровне потенциала мембраны.

    Считается, что изменение электрического поля мембраны воспринимается специальным участком стенки канала, кото­рый получил название сенсор напряжения.

    Изменение его состояния, обусловленное изменением уровня мембранного потенциала, вызывает конформацию бел­ковых молекул, формирующих канал, и, как следствие, ведет к открытию или закрытию ворот ионного канала.

    Каналы (натриевые, кальциевые, калиевые) имеет четыре гомологичных домена - субъединицы (I,II,III,IV). Домен (на примере натриевых каналов) состоит из шести трансмембран­ных сегментов, организованных в виде а-спиралей, каждый из которых играет свою роль.

    Так, трансмембранный сегмент 5 играет роль поры, транс­мембранный сегмент 4 сенсора, реагирующего на изменение потенциала мембраны, другие трансмембранные сегменты от­ветственны за активацию и инактивацию воротной системы канала. До конца роль отдельных трансмембранных сегментов и субъединиц не изучена.

    Натриевые каналы (внутренний диаметр 0,55 нм) имеют­ся в клетках возбудимых тканей. Плотность на 1 мкм 2 в раз­личных тканях не одинакова.

    Так, в немиелиновых нервных волокнах она составляет 50-200 каналов, а в миелиновых нервных волокнах (перехваты Ранвье) - 13000 на 1 мкм 2 площади мембраны. В состоянии по­коя они закрыты. Мембранный потенциал составляет 70-80 мВ.

    Воздействие раздражителя изменяет мембранный потен­циал и активирует потенциалзависимый натриевый канал.

    Он активируется при смещении потенциала мембраны от уровня потенциала покоя в направлении критического уровня деполяризации.

    Сильный натриевый ток обеспечивает смещение потенци­ала мембраны до критического уровня деполяризации (КУД).

    Изменение мембранного потенциала до -50-40 мВ, т.е. до уровня критического уровня деполяризации, вызывает откры­тие других потенциалзависимых № + -каналов, через которые осуществляется входящий натриевый ток, формирующий "пик" потенциала действия.

    Ионы натрия по градиенту концентрации и химическому градиенту по каналу перемещаются в клетку, формируя так называемый входящий натриевый ток, что приводит к даль­нейшему быстрому развитию процесса деполяризации.

    Мембранный потенциал изменяет знак на противополож­ный +10-20 мв. Положительный мембранный потенциал вы­зывает закрытие натриевых каналов, их инактивацию.

    Потенциалзависимые № + -каналы играют ведущую роль в формировании потенциала действия, т.е. процесса возбужде­ния в клетке.

    Ионы кальция затрудняют открытие потенциалзависимых натриевых каналов, изменяя параметры реагирования.

    К + -каналы

    Калиевые каналы (внутренний диаметр 0,30 нм) имеются в цитоплазматических мембранах, обнаружено значительное количество каналов "утечки" калия из клетки.

    В состоянии покоя они открыты. Через них в состоянии покоя происходит "утечка" калия из клетки по градиенту кон­центрации и электрохимическому градиенту.

    Этот процесс обозначается как выходящий калиевый ток, который приводит к формированию потенциала покоя мемб­раны (-70-80 мВ). Эти калиевые каналы можно лишь условно отнести к потенциалзависимым.

    При изменении мембранного потенциала в процессе депо­ляризации происходит инактивация калиевого тока.

    При реполяризации через потенциалзависимые каналы формируется входящий К + ток, который получил название К + ток задержанного выпрямления.

    Еще один тип потенциалзависимых К + -каналов. По ним возникает быстрый выходящий калиевый ток в подпороговой области мембранного потенциала (положительный следовой потенциал). Инактивация канала происходит за счет следовой гиперполяризации.

    Другой тип потенциалзависимых калиевых каналов акти­вируется только после предварительной гиперполяризации, он формирует быстрый транзиторный калиевый ток, который быстро инактивируется.

    Ионы кальция облегчают открытие потенциалзависимых калиевых каналов, изменяя параметры реагирования.

    Са + -каналы.

    Потенциалуправляемые каналы вносят существенный вклад как в регуляцию входа кальция в цитоплазму, так и в электрогенез.

    Белки, образующие кальциевые каналы, состоят из пяти субъединиц (al,a2,b,g,d).

    Главная субъединица alформирует собственно канал и содержит места связывания для различных модуляторов каль­циевых каналов.

    Было обнаружено несколько структурно различных alсубъединиц кальциевых каналов в нервных клетках млекопи­тающих (обозначенных как А, В, С,Dи Е).

    Функционально кальциевые каналы различных типов от­личаются друг от друга активацией, кинетикой, проводимос­тью одиночного канала и фармакологией.

    В клетках описано до шести типов потенциалуправляемых кальциевых каналов (Т - ,L - ,N - ,P - ,Q - ,R - каналы).

    Активность потенциалуправляемых каналов плазмалеммы регулируется различными внутриклеточными вторич­ными посредниками и мембранно-связанными G-белками.

    Кальциевые потенциалзависимые каналы обнаружены в большом количестве в цитоплазматических мембранах нейро­нов, миоцитах гладких, поперечно-полосатых и сердечных мышц и в мембранах эндоплазматического ретикулума.

    Са 2+ -каналы СПР являются олигомерными протеинами, встроенными в мембрану СПР.

    Са 2+ -управляемые Са 2+ -каналы СПР.

    Эти кальциевые каналы были впервые выделены из ске­летных и сердечных мышц.

    Оказалось, что Са 2+ -каналы СПР в этих мышечных тканях имеют молекулярные различия и кодируются различными ге­нами.

    Са 2+ -каналы СПР в сердечных мышцах непосредственно связаны с высокопороговыми Са 2+ -каналами плазмалеммы (L-тип) через кальцийсвязывающие белки, образуя, таким обра­зом, функционально активную структуру - "триаду".

    В скелетных мышцах деполяризация плазмалеммы прямо активирует освобождение Са 2+ из эндоплазматического ретикулума благодаря тому, что Са 2+ -каналы плазмалеммы служат потенциалчувствительными передатчиками активирующего сигнала непосредственно Са 2+ -каналам СПР через связываю­щие белки.

    Таким образом, Са 2+ -депо скелетных мышц обладают ме­ханизмом освобождения Са 2+ , вызываемым деполяризацией (RyRl-тип).

    В отличие от скелетных мышц, эндоплазматические Са 2+ -каналы кардиомиоцитов не связаны с плазмалеммой, и для стимуляции освобождения Са 2+ из депо требуется увели­чение концентрации цитозольного кальция (RyR2-тип).

    Кроме этих двух типов Са 2+ -активируемых Са 2ч -каналов, недавно был идентифицирован третий тип Са 2+ -каналов СПР (RyR3-тип), который еще изучен не достаточно.

    Для всех кальциевых каналов характерна медленная акти­вация и медленная инактивация по сравнению с натриевыми каналами.

    При деполяризации мышечной клетки (выпячивания цитоплазматических мембран - Т-трубочки подходят к мембра­нам эндоплазматического ретикулума) происходит потенциалзависимое открытие кальциевых каналов мембран саркоплазматического ретикулума.

    Так как, с одной стороны, концентрация кальция в СПР велика (депо кальция), а концентрация кальция в цитоплазме низка, а с другой - площадь мембраны СПР и плотность каль­циевых каналов в ней велики, то уровень кальция в цитоплаз­ме увеличивается в 100 раз.

    Такое увеличение концентрации кальция инициирует процесс сокращения миофибрилл.

    Кальциевые каналы в кардиомиоцитах находятся в цитоплазматической мембране и относятся к кальциевым каналам L-типа.

    Активируются при потенциале мембраны +20-40 мВ, фор­мируют входящий кальциевый ток. Длительно находятся в ак­тивированном состоянии, формируют "плато" потенциала действия кардиомиоцита.

    Анионные каналы.

    Наибольшее количество в мембране клетки каналов для хлора. В клетке меньше ионов хлора по сравнению с межкле­точным окружением. Поэтому при открытии каналов хлор входит в клетку по градиенту концентрации и электрохими­ческому градиенту.

    Количество каналов для НСО 3 не столь велико, объем транспорта этого аниона через каналы существенно меньше.

    Ионные обменники.

    В мембране имеются ионные обменники (белки-перенос­чики), которые осуществляют облегченную диффузию ионов, т.е. ускоренное сопряженное перемещение ионов через биомембрану по градиенту концентрации, такие процессы явля­ются АТФ-независимыми.

    Наиболее известны Na + -H + ,K + -H + ,Ca 2+ -H + обменники, а также обменники, обеспечивающие обмен катионов на ани­оныNa + -HCO- 3 , 2CI-Са 2+ и обменники, обеспечивающие обмен катиона на катион (Na + -Са 2+) или аниона на анион (Сl- НСOз).

    Рецепторуправляемые ионные каналы.

    Лигандуправляемые (лигандзависимые) ионные каналы.

    Лигандуправляемые ионные каналы являются подвидом рецепторуправляемых каналов и всегда совмещены с рецепто­ром к биологически активному веществу (БАВ).

    Рецепторы рассматриваемых каналов относятся к ионотропному типу мембранных рецепторов, при взаимодействии которых с БАВ (лиганды) возникают быстропротекающие ре­акции.

    Лигандуправляемый ионный канал состоит из:

      поры, заполненной водой;

      селективного фильтра;

      активационных ворот;

      центра связывания лиганда (рецептор). Высокоэнергетически активное БАВ обладает высоким

    сродством (аффинитетом) к определенному виду рецепторов. При активации ионных каналов происходит перемещение оп­ределенных ионов по градиенту концентрации и электрохими­ческому градиенту.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лиганда с наружной поверхности мембраны.

    В этом случае в качестве лиганда выступают гормоны и парагормоны, ионы.

    Так, при активации N-холинорецепторов активируются натриевые каналы.

    Кальциевую проницаемость инициируют нейрональные ацетилхолинуправляемые, глютаматуправляемые (NMDAи АМРА / каинаттипы) рецепторы и пурино-рецепторы.

    ГАМК А -рецепторы сопряжены с ионными хлорными каналами, с хлорными каналами сопряжены и глицино­вые рецепторы.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лигандов с внутренней поверхности мембраны.

    В этом случае в качестве лиганда выступают протеинкиназы, активированные вторыми посредниками, или сами вторые посредники.

    Так, протеинкиназы А, С, G, фосфорилируя белки катионных каналов, изменяют их проницаемость.

    Механоуправляемые ионные каналы.

    Механоуправляемые ионные каналы изменяют свою про­водимость для ионов либо за счет изменения натяжения билипидного слоя, либо через цитоскелет клетки. Множество механоуправляемых каналов сопряжено с механорецепторами, они существуют в слуховых клетках, мышечных верете­нах, сосудистом эндотелии.

    Все механоуправляемые каналы делятся на две группы:

      активирующиеся при растяжении клеток (SAC);

      инактивирующиеся при растяжении клеток (SIC).

    У механоуправляемых каналов имеются все основные ка­нальные признаки:

      пора, заполненная водой;

      воротный механизм;

      сенсор, реагирующий на растяжение.

    При активации канала по нему происходит перемещение ионов по градиенту концентрации.

    Натрий, калиевая АТФаза.

    Натрий, калиевая АТФаза (натрий-калиевый насос, на­трий-калиевая помпа).

    Состоит из четырех трансмембранных доменов: из двух α-субъединиц и двух β-субъединиц. α-субъединица является большим доменом, а β-субъединица - малым. В ходе транс­порта ионов фосфорилируются большие субъединицы и через них перемещаются ионы.

    Натрий, калиевая АТФаза играет важнейшую роль в под­держании гомеостаза натрия и калия во внутри- и внеклеточ­ной среде:

      поддерживает высокий уровень К + и низкий уровеньNa + в клетке;

      участвует в формировании мембранного потенциала покоя, в генерации потенциала действия;

      обеспечивает Na + сопряженный транспорт большинства органических веществ через мембрану (вторично-активный транспорт);

      существенно влияет на гомеостаз Н 2 О.

    Натрий, каливая АТФаза вносит наиболее важный вклад в формирование ионной асимметрии во вне- и внутриклеточных пространствах.

    Поэтапная работа натрий, калиевого насоса обеспечивает неэквивалентный обмен калия и натрия через мембрану.

    Са + -АТФаза (насос).

    Существуют два семейства Са 2+ -насосов, ответственных за устранение ионов Са 2+ из цитоплазмы: Са 2+ -насосы плазмалеммы и Са 2+ -насосы эндоплазматического ретикулума.

    Хотя они относятся к одному семейству белков (так назы­ваемому Р-классу АТФаз), эти насосы обнаруживают некото­рые различия в строении, функциональной активности и фармакологии.

    Находится в большом количестве в цитоплазматической мембраны. В цитоплазме клетки в покое концентрация каль­ция составляет 10-7 моль/л, а вне клетки значительно больше -10-3 моль/л.

    Такая значительная разница концентраций поддерживает­ся за счет работы цитоплазматической Са ++ -АТФазы.

    Активность Са 2+ -насоса плазмалеммы контролируется не­посредственно Са 2+ : увеличение концентрации свободного кальция в цитозоле активирует Са 2+ -насос.

    В покое диффузия через кальциевые ионные каналы поч­ти не происходит.

    Са-АТФаза транспортирует Са из клетки во внеклеточную среду против его концентрационного градиента. По градиенту Са + поступает в клетку благодаря диффузии через ионные каналы.

    В мембране эндоплазматического ретикулума также со­держится большое количество Са ++ -АТФазы.

    Кальциевый насос эндоплазматического ретикулума (SERCA) обеспечивает удаление кальция из цитозоля в эндоплазматический ретикулум - "депо" кальция за счет первично активного транспорта.

    В депо кальций связывается с кальцийсвязывающими белками (кальсеквестрином, кальретикулином и др.).

    В настоящее время описано по крайней мере три различ­ных изоформы SERCA-насосов.

    SERCA1-подтип сосредоточен исключительно в быстрых скелетных мышцах,SERCA2-насосы широко распространены в других тканях. ЗначимостьSERCA3 -насосов менее ясна.

    Белки SERCA2-нacocoв разделяются на две различные изоформы:SERCA2a, характерные для кардиомиоцитов и гладких мышц, иSERCA2b, характерные для тканей мозга.

    Увеличение Са 2+ в цитозоле активирует захват ионов кальция в эндоплазматический ретикулум, в то время как уве­личение свободного кальция внутри эндоплазматического ретикулума ингибирует насосыSERCA.

    Н+ К+ -АТФаза (насос).

    При помощи этого насоса (в результате гидролиза одной молекулы АТФ) в обкладочных (париетальных) клетках слизистой желудка происходит транспорт двух ионов калия из внеклеточного пространства в клетку и двух ионов Н+ из цитозоля во внеклеточное пространство при гидролизе одной молекулы. Этот механизм лежит в основе образования соляной кислоты в желудке.

    Ионный насос класс F .

    Митохондриальная АТФаза. Катализирует конечный этап синтеза АТФ. Крипты митохондрий содержат АТФ-синтазу, сопрягающую окисление в цикле Кребса и фосфорилирование АДФ до АТФ.

    Ионный насос класса V .

    Лизосомальные Н + -АТФазы (лизосомальные протонные насосы) - протонные насосы, обеспечивающие транспорт Н + из цитозоля в ряд органелл-лизосомы, аппарат Гольджи, сек­реторные везикулы. В результате понижается значение рН, на­пример, в лизосомах до 5,0 что оптимизирует деятельность этих структур.

    Особенности ионного транспорта

    1. Значительный и асимметричный трансмембранный! градиент для Na + и К + в покое.

    Натрия вне клетки (145 ммоль/л) в 10 раз больше, чем в клетке (14 ммоль/л).

    Калия в клетке (140 ммоль/л) примерно в 30 раз больше, чем вне клетки (4 ммоль/л).

    Эта особенность распределения ионов натрия и калия:

      гомеостатируется работой Na + /K + -нacoca;

      формирует в покое выходящий калиевый ток (канал утечки);

      формирует потенциал покоя;

      работа любых калиевых каналов (потенциалзависимых, кальцийзависимых, лигандзависимых) направлена на формирование выходящего калиевого тока.

    Это либо возвращает состояние мембраны к исходному уровню (активация потенциалзависимых каналов в фазу реполяризации), либо гиперполяризует мембрану (кальцийзависимые, лигандзависимые каналы, в том числе и активируемые системами вторых посредников).

    Следует иметь в виду, что:

      перемещение калия через мембрану осуществляется путем пассивного транспорта;

      формирование возбуждения (потенциала действия) всегда обусловлено входящим натриевым током;

      активация любых натриевых каналов всегда вызывает входящий натриевый ток;

      перемещение натрия через мембрану осуществляется почти всегда путем пассивного транспорта;

      в эпителиальных клетках, образующих в тканях стенку разных трубок, полостей (тонкий кишечник, канальца нефрона и др.), во внешней мембране всегда имеется большое количество натриевых каналов, обеспечиваю­щих при активации входящий натриевый ток, а в базальной мембране - большое число натрий, калиевых насосов, выкачивающих натрий из клетки. Такое асим­метричное распределение этих транспортных систем для натрия обеспечивает его трансклеточный перенос, т.е. из просвета кишечника, почечных канальцев во внутреннюю среду организма;

      пассивный транспорт натрия в клетку по электрохими­ческому градиенту ведет к накоплению энергии, кото­рая используется для вторично активного транспорта многих веществ.

    2. Низкий уровень кальция в цитозоле клетки.

    В клетке в покое содержание кальция (50 нмоль/л) в 5000 раз ниже, чем вне клетки (2,5 ммоль/л).

    Такой низкий уровень кальция в цитозоле не случаен, так как кальций в концентрациях в 10-100 раз больше исходной выступает в качестве второго внутриклеточного посредника в реализации сигнала.

    В таких условиях возможно быстрое увеличение кальция в цитозоле за счет активации кальциевых каналов (облегчен­ная диффузия), которые в большом количестве имеются в цитоплазматической мембране и в мембране эндоплазматического ретикулума (эндоплазматический ретикулум - "депо" кальция в клетке).

    Формирование потоков кальция, происходящее за счет открытия каналов, обеспечивает физиологически значимое повышение концентрации кальция в цитозоле.

    Низкий уровень кальция в цитозоле клетки поддержива­ется Са 2+ -АТФазой,Nа + /Са 2+ -обменниками, кальцийсвязывающими белками цитозоля.

    Кроме быстрого связывания цитозольного Са 2+ внутрик­леточными Са 2+ -связывающими белками, ионы кальция, по­падающие в цитозоль, могут аккумулироваться аппаратом Гольджи или клеточным ядром, захватываться митохондриальными Са 2+ -депо.

    3. Низкий уровень хлора в клетке.

    В клетке в покое содержание хлора (8 ммоль/л) более чем в 10 раз ниже, чем вне клетки (110 ммоль/л).

    Такое состояние поддерживается работой К + /Сl- -транспортер.

    Изменение функционального состояния клетки связано (или обусловлено) с изменением проницаемости мембраны для хлора. При активации протенциал- и лигандуправляемых хлорных каналов ион через канал путем пассивного транспор­та входит в цитозоль.

    Кроме того, вход хлора в цитозоль формируется за счет № + /К + /2СГ-котранспортера и СГ-НСО 3 -обменник.

    Вход хлора в клетку увеличивает полярность мембраны вплоть до гиперполяризации.

    Особенности ионного транспорта играют основополагаю­щую роль в формировании биоэлектрических явлений в орга­нах и тканях, которые кодируют информацию, определяют функциональное состояние этих структур, их переход из одно­го функционального состояния в другое.