IPS или TFT — что лучше? Какой тип экрана лучше выбрать? Какой тип экрана выбрать: IPS или TFT? Дисплей IPS или TFT лучше

Сегодня же углубимся в тему, и рассмотрим конкретнее два типа матриц. Выведем все преимущества и недостатки, а также узнаем, .

НЕМНОГО ТЕРМИНОЛОГИИ:
IPS матрица является неким прототипом TFT . По данной технологии осуществляется сборка жидкокристаллических мониторов и экранов. Такой вид матрицы состоит из пикселей расположенных в виде пластинки тонкопленочных транзисторов. Они в свою очередь находятся параллельно друг другу.

На TFT матрице пиксели находятся близко друг с другом, соединены по спирали, угол наклона составляет 90 0 . Сами пиксели находятся между двумя пластинками, в горизонтальной плоскости.

КОНТРАСТ:
Цветопередача у матрицы типа ips высокая. Четкое изображение, отличные контрастные свойства, есть функция ее регуляции. Что касается матрицы типа tft, о ней такого сказать нельзя. Контраст низкий, цветопередача ужасная. Для того, чтобы лучше понять, насколько отличаются эти две матрицы, стоит просто посмотреть на картинку.
На планшете слева установлена матрица tft, а на правом, как вы уже наверняка догадались – матрица ips.

Судя только по одному критерию, ответ на наш вопрос какой экран ips или tft лучше , возникает сам собой. По мнению многих пользователей, экран с типом матрицы IPS является лучше и надежнее. Из-за высокой цветопередачи глаза при работе за устройством меньше устают. А это является весомым преимуществам, особенно для тех, кто заботится о своем здоровье.

Какой экран ips или tft лучше:
В ходе проведенных исследований, а также мнения пользователей, выяснилось, что:
1. Экран с матрицей IPS имеет хороший угол обзора, в отличии от TFT;
2. Как уже говорилось выше, ips имеет высокие характеристики цветопередачи и высокий уровень контрастности;
3. По сравнению c tft , экраны ips качественнее, и естественно – дороже. Недостатком является высокая энергопотребляемость, из-за чего устройство быстрее разряжается.

Итак, сегодня вы узнали немного о двух распространенных типов матриц. Надеюсь, благодаря статье вы узнали ответ на вопрос о том, какой экран ips или tft лучше .

Для многих жидкокристаллические дисплеи (LCD) ассоциируются, прежде всего, с плоскими мониторами, "крутыми" телевизорами, ноутбуками, видеокамерами и сотовыми телефонами. Некоторые добавят сюда КПК, электронные игры, банковские автоматы. Но существует еще множество областей, где необходимы дисплеи с высокой яркостью, прочной конструкцией, работающие в широком диапазоне температур.

Плоские дисплеи нашли применение там, где критичными параметрами являются минимальные энергопотребление, вес и габариты. Машиностроение, автомобильная промышленность, железнодорожный транспорт, морские буровые установки, горное оборудование, наружные торговые точки, авиационная электроника, морской флот, специальные транспортные средства, системы безопасности, медицинское оборудование, вооружение - вот далеко не полный перечень применений жидкокристаллических дисплеев.

Постоянное развитие технологий в этой области позволило снизить стоимость производства LCD до такого уровня, при котором произошел качественный переход: дорогая экзотика стала обыденным явлением. Важным фактором быстрого распространения ЖК-дисплеев в промышленности стала и простота применения.

В этой статье рассматриваются основные параметры различные типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения (метод "побольше и подешевше" практически всегда оказывается слишком дорогим).

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Технология

В настоящее время при производстве LCD применяются две технологии (рис.1): пассивная матрица (PMLCD-STN) и активная матрица (AMLCD).

Технологии MIM-LCD и Diode-LCD не получили широкого распространения и поэтому не будем на них тратить время.

Рис. 1. Виды технологий жидкокристаллических дисплеев

STN (Super Twisted Nematic)- матрица, состоящая из ЖК-элементов с изменяемой прозрачностью.

TFT (Thin Film Transistor)- активная матрица, в которой каждый пиксел управляется отдельным транзистором.

По сравнению с пассивной матрицей, TFT LCD имеет более высокую контрастность, насыщенность, меньшее время переключения (нет "хвостов" у движущихся объектов).

Управление яркостью в жидкокристаллическом дисплее основано на поляризации света (курс общей физики): свет поляризуется, проходя через поляризационный фильтр (с определенным углом поляризации). При этом наблюдатель видит только снижение яркости света (почти в 2 раза). Если за этим фильтром поставить еще один такой фильтр, то свет будет полностью поглощаться (угол поляризации второго фильтра перпендикулярен углу поляризации первого) или полностью проходить (углы поляризации совпадают). При плавном изменении угла поляризации второго фильтра интенсивность проходящего света будет также плавно изменяться.

Принцип действия и "бутербродная" структура всех TFT LCD примерно одинакова (рис. 2). Свет от лампы подсветки (неоновая или светодиоды) проходит через первый поляризатор и попадает в слой жидких кристаллов, управляемых тонкопленочным транзистором (TFT). Транзистор создает электрическое поле, которое формирует ориентацию жидких кристаллов. Пройдя такую структуру, свет меняет свою поляризацию и будет - или полностью поглощен вторым поляризационным фильтром (черный экран), или не будет поглощаться (белый), или поглощение будет частичным (цвета спектра). Цвет изображения определяют цветовые фильтры (аналогично электронно-лучевым трубкам, каждый пиксел матрицы состоит из трех субпикселов - красного, зеленого и голубого).


Рис. 2. Структура TFT LCD

Пиксел TFT

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Это может быть вертикальная полоса, мозаичная структура или дельта-структура (рис. 3). Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении m x n активная матрица содержит 3m x n транзисторов и субпикселов. Шаг пиксела (с тремя субпикселами) для 15.1" TFT ЖК-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" (1280 x 1024 точки)- 0.28 мм. TFT LCD имеют физическое ограничение, которое определяется максимальной площадью экрана. Не ждите разрешения 1280 x 1024 при диагонали 15" и шаге точки 0.297 мм.


Рис. 3. Структура цветного фильтра

На близком расстоянии точки явственно различимы, но это не беда: при формировании цвета используется свойство человеческого глаза смешивать цвета при угле зрения менее 0,03°. На расстоянии 40 см от ЖК-дисплея при шаге между субпикселами 0,1 мм угол зрения составит 0,014° (цвет каждого субпиксела различит только человек с орлиным зрением).

Типы ЖК-дисплеев

TN (Twist Nematic) TFT или TN+Film TFT - первая технология, появившаяся на рынке ЖК-дисплеев, основное достоинство которой& - дешевизна. Недостатки: черный цвет больше похож на темно-серый, что приводит к низкой контрастности изображения, "мертвые" пиксели (при выходе из строя транзистора) очень яркие и заметные.

IPS (In-Pane Switching) (Hitachi) или Super Fine TFT (NEC, 1995 год). Характеризуется наибольшим углом обзора и высокой точностью цветопередачи. Угол обзора расширен до 170°, остальные функции - как у TN+Film (время отклика порядка 25мс), практически идеальный черный цвет. Преимущества: хорошая контрастность, "мертвый" пиксель - черный.

Super IPS (Hitachi), Advansed SFT (производитель - NEC). Достоинства: яркое контрастное изображение, искажения цвета почти незаметны, увеличены углы обзора (до 170° по вертикали и по горизонтали) и обеспечена исключительная четкость.

UA-IPS (Ultra Advanced IPS), UA-SFT (Ultra Advanced SFT) (NEC). Время реакции достаточно для обеспечения минимальных искажений цвета при просмотре экрана под разными углами, повышенная прозрачность панели и расширение цветовой гаммы при достаточно высоком уровне яркости.

MVA (Multi-Domain Vertical Alignment) (Fujitsu).Основное преимущество - наименьшее время реакции и высокая контрастность. Главный недостаток - высокая стоимость.

PVA (Patterned Vertical Alignment) (Samsung). Микроструктурное вертикальное размещение ЖК.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в "бутерброде" (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

  • пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;
  • отражающий (reflective) применяется в калькуляторах и часах;
  • проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы, как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive) . В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка) (рис. 4).По этой технологии сделаны большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой. Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.


Рис. 4. Конструкция жидкокристаллического дисплея пропускающего типа

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м2, при прямом солнечном свете - 1000 кд/м 2 . Яркости в 300 кд/м 2 можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30% энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света. В ЖК-дисплеях Fujitsu преобразователь заполняется жидкостью с коэффициентом рефракции, равным коэффициенту рефракции сенсорной панели, что значительно сокращает количество отраженного света (но сильно сказывается на стоимости).

Полупрозрачный тип дисплея (transflective) похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется т. н. частично отражающий слой (рис.5). Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.


Рис. 5. Конструкция жидкокристаллического дисплея полупрозрачного типа

Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective) имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки) (рис. 6), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.


Рис. 6. Конструкция жидкокристаллического дисплея отражающего типа

Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Мертвые пиксели. На плоской панели могут не работать несколько пикселей (они всегда одного цвета), которые появляются в процессе производства и восстановлению не подлежат.

Стандарт ISO 13406-2 определяет предельные значения количества дефектных пикселов на миллион. В соответствии с таблицей ЖК-панели делятся на 4 класса.

Таблица 1

Тип 1 - постоянно светящиеся пиксели (белый); Тип 2 - "мертвые" пиксели (черный); Тип 3 - дефектные красные, синие и зеленые субпиксели.

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90(видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора даёт технология MVA).

Время отклика (инерционность)- время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come-up time) и времени на выключение (come-down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране

FPS = 1 с/время отклика.

Яркость - преимущество ЖК-дисплея, которая в среднем в два раза выше показателей ЭЛТ: с увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приведёт к значительному усложнению её конструкции и повысит электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м 2 .

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки чёрного цвета, т.к. лампа подсветки включена постоянно и для получения тёмных тонов используется эффект поляризации. Чёрный цвет зависит от качества перекрытия светового потока подсветки.

ЖК-дисплеи как сенсоры. Снижение стоимости и появление моделей LCD, работающих в жестких условиях эксплуатации, позволило совместить в одном лице (в лице жидкокристаллического дисплея) средство вывода визуальной информации и средство ввода информации (клавиатура). Задача построения такой системы упрощается использованием контроллера последовательного интерфейса, который подключается, с одной стороны, к ЖК-дисплею, а с другой - непосредственно к последовательному порту (СОМ1 - СОМ4) (рис.7). Для управления, декодирования сигналов и подавления "дребезга" (если так можно назвать определение прикосновения) применяется PIC-контроллер (например, IF190 фирмы Data Display), обеспечивающий высокое быстродействие и точность определения точки прикосновения.


Рис. 7. Блок-схема TFT LCD на примере NL6448BC-26-01 дисплея фирмы NEC

Завершим на этом теоретические изыскания и перейдем к реалиям сегодняшнего дня, а точнее - к тому, что имеется сейчас на рынке жидкокристаллических дисплеев. Среди всех изготовителей TFT LCD рассмотрим продукцию NEC, Sharp, Siemens и Samsung. Выбор этих фирм обусловлен

  1. лидерством на рынке ЖК-дисплеев и технологий производства TFT LCD;
  2. доступностью продукции на рынке стран СНГ.

Компания NEC Corporation выпускает жидкокристаллические дисплеи (20% рынка) практически с момента их появления и предлагает не только широкий выбор, но и различные варианты исполнения: стандартный (Standard), специальный (Special) и особый (Specific). Стандартный вариант - компьютеры, офисное оборудование, домашняя электроника, коммуникационные системы и т.п. Специальное исполнение применяется на транспорте (любом: наземном и морском), системах управления движением, системах безопасности, медицинском оборудовании (не связанном с системами жизнеобеспечения). Для систем вооружений, авиации, космического оборудования, систем управления ядерными реакторами, систем жизнеобеспечения и других аналогичных предназначен особый вариант исполнения (понятно, что стоит это недешево).

Перечень выпускаемых ЖК-панелей для промышленного применения (инвертер для лампы подсветки поставляется отдельно) приведен в таблице 2, а блок-схема (на примере 10-дюймового дисплея NL6448BC26-01)- на рис. 8.


Рис. 8. Внешний вид дисплея

Таблица 2. Модели ЖК-панелей фирмы NEC

Модель Размер по диагонали, дюйм Количество пикселей Число цветов Описание
NL8060BC31-17 12,1 800x600 262144 Высокая яркость (350кд/м 2)
NL8060BC31-20 12,1 800x600 262144 Широкий угол обзора
NL10276BC20-04 10,4 1024x768 262144 -
NL8060BC26-17 10,4 800x600 262144 -
NL6448AC33-18A 10,4 640x480 262144 Встроенный инвертор
NL6448AC33-29 10,4 640x480 262144 Высокая яркость, широкий угол обзора, встроенный инвертор
NL6448BC33-46 10,4 640x480 262144 Высокая яркость, широкий угол обзора
NL6448CC33-30W 10,4 640x480 262144 Без подсветки
NL6448BC26-01 8,4 640x480 262144 Высокая яркость (450 кд/м 2)
NL6448BC20-08 6,5 640x480 262144 -
NL10276BC12-02 6,3 1024x768 16, 19M -
NL3224AC35-01 5,5 320x240 Full color
NL3224AC35-06 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор, тонкий
NL3224AC35-10 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-13 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-20 5,5 320x240 262, 144 Высокая яркость (400 кд/м 2)

Сыграла значительную роль в развитии LCD-технологий. Компания Sharp и сейчас находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. В 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы с разрешением 160х120 пикселов. Краткий перечень продукции - в таблице 3.

Таблица 3. Модели ЖК-панелей фирмы Sharp

Выпускает жидкокристаллические дисплеи с активной матрицей на низкотемпературных поликремниевых тонкопленочных транзисторах. Основные характеристики дисплеев с диагональю 10,5" и 15" приведены в таблице 4. Обратите внимание на диапазон рабочих температур и стойкость к ударам.

Таблица 4. Основные характеристики ЖК-дисплеев фирмы Siemens

Примечания:

I - встроенный инвертор l - в соответствии с требованиями стандарта MIL-STD810

Фирма выпускает жидкокристаллические дисплеи под торговой маркой "Wiseview™". Начав с выпуска 2-дюймовой TFT панели для поддержки Интернета и анимации в мобильных телефонах, Samsung теперь производит гамму дисплеев от 1,8" до 10,4" в сегменте малых и средних TFT LCD, причем некоторые модели предназначены для работы при естественном освещении (таблица 5).

Таблица 5. Основные характеристики ЖК-дисплеев Samsung малых и средних размеров

Примечания:

LED - светодиодная; CCFL - флуоресцентная лампа с холодным катодом;

В дисплеях используется технология PVA.

Выводы.

В настоящее время выбор модели жидкокристаллического дисплея определяется требованиями конкретного применения и в значительно меньшей степени - стоимостью LCD.

TFT и IPS матрицы: особенности, преимущества и недостатки

В современном мире мы регулярно сталкиваемся с дисплеями телефонов, планшетов, мониторами ПК и телевизоров. Технологии производства жидкокристаллических матриц не стоят на месте, связи с чем у многих людей возникает вопрос, что лучше выбрать TFT или IPS?

Для того чтобы полностью ответить на этот вопрос, необходимо тщательно разобраться в различиях обеих матриц, выделить их особенности, преимущества и недостатки. Зная все эти тонкости, вы с легкостью сможете подобрать устройство, дисплей которого будет полностью отвечать вашим требованиям. В этом вам поможет наша статья.

TFT матрицы

Thin Film Transistor (TFT) – это система производства жидкокристаллических дисплеев, в основе которой лежит активная матрица из тонкопленочных транзисторов. При подаче напряжения на такую матрицу, кристаллы поворачиваются друг к другу, что приводит к образованию черного цвета. Отключение электричества дает противоположный результат — кристаллы образовывают белый цвет. Изменения подаваемого напряжения позволяет формировать любой цвет на каждом отдельно взятом пикселе.

Главным преимуществом TFT дисплеев является относительно невысокая цена производства, в сравнении с современными аналогами. Кроме того, такие матрицы обладают отличной яркостью и временем отклика. Благодаря чему, искажения при просмотре динамических сцен незаметны. Дисплеи, изготовленные по технологии TFT, чаще всего используются в бюджетных телевизорах и мониторах.

Недостатки TFT дисплеев:

    • низкая цветопередача. Технология имеет ограничение в 6 бит на один канал;
    • спиральное расположение кристаллов негативно сказывается на контрастности изображение;
    • качество изображения заметно снижается при изменении угла обзора;
    • высокая вероятность появления «битых» пикселей;
    • относительно низкое энергопотребление.

Заметнее всего недостатки TFT матриц сказываются при работе с черным цветом. Он может искажаться до серого, или же наоборот, быть чересчур контрастным.

IPS матрицы

Матрица IPS является усовершенствованным продолжением дисплеев, разработанных по технологии TFT. Главным различием между этими матрицами является то, что в TFT жидкие кристаллы расположены по спирали, а в IPS кристаллы лежат в одной плоскости параллельно друг другу. Кроме того, при отсутствии электричества они не поворачиваются, что положительно сказалось на отображении черного цвета.

Преимущества IPS матриц:

  • углы обзора, при которых качество изображения не снижается, увеличены до 178 градусов;
  • улучшенная цветопередача. Количество данных, передаваемых на каждый канал увеличено до 8 бит;
  • существенно улучшенная контрастность;
  • снижено энергопотребление;
  • низкая вероятность появления «битых» или выгоревших пикселей.

Изображение на IPS матрице выглядит более живим и насыщенным, но это не означает, что эта технология лишена недостатков. В сравнении с предшественником у IPS значительно снижена яркость изображения. Также, вследствие изменения управляющих электродов, пострадал такой показатель, как время отклика матрицы. Последним, но не менее значимым недостатком, является относительно высокая цена на устройства, в которых используются IPS дисплеи. Как правило, они на 10-20% дороже аналогичных с TFT матрицей.

Что выбрать: TFT или IPS?

Стоит понимать, что TFT и IPS матрицы, несмотря на существенные различия в качестве изображения, технологии очень похожие. Они обе созданы на основе активных матриц и используют одинаковые по структуре жидкие кристаллы. Многие современные производители отдают свое предпочтение IPS матрицам. Во многом благодаря тому, что они могут составить более достойную конкуренцию плазменным матрицам и имеют весомые перспективы в будущем. Тем не менее TFT матрицы также развиваются. Сейчас на рынке можно встретить TFT-TN и TFT-HD дисплеи. Они практически не уступают в качестве изображения IPS матрицам, но при этом имеет более доступную стоимость. Но на данный момент устройств с такими мониторами не так много.

Если для вас важно качество изображения и вы готовы незначительно доплатить, то устройство с IPS дисплеем является оптимальным выбором.

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

Сначала немного терминологии

TFT-LCD (Thin-Film Transistor Liquid-Crystal Display) - жидкокристаллический дисплей на тонкоплёночных транзисторах. Именно так правильно именовать самые распространенные ныне жидкокристаллические мониторы , основанные на матрице с управляемыми тонкоплёночными транзисторами.

CRT (Cathode-Ray Tube) - катодно-лучевая трубка, это тоже самое, что и знакомое нам «ЭЛТ» (электронно-лучевая трубка).

С чего все началось

Жидкокристаллические мониторы сегодня можно встретить где угодно – в офисах серьезных фирм, в приемной у стоматолога, на столе у государственного чиновника и даже дома у своих знакомых. А ведь еще не так давно такой монитор стоил тысячи долларов и был уделом только весьма обеспеченных людей и очень «крутых» контор.

Хотя, если вдуматься, то история жидкокристаллических дисплеев начитывает более ста лет. Нет, конечно, не самих устройств отображения визуальной информации с компьютера, а их основы – так называемых жидких кристаллов. Открыты они были, как это часто случается в науке, совершенно непреднамеренно.

В 1888 г. австрийский ботаник Friedrich Reinitzer исследовал свойства бензоната холестерола. Он обнаружил, что при нагревании кристалл размягчался и в дальнейшем превращался в настоящую жидкость. Он поделился своим открытием с немецким физиком Otto Lehmann, который и обнаружил некоторые свойства кристаллов, особенно при их освещении. Отсюда и произошло название, данное Otto Lehmann, «жидкий кристалл».

Жидкие кристаллы представляют собой практически полностью прозрачные вещества, обладающие свойствами, присущими как жидкостям, так и твердым телам. Свет, проходя через жидкие кристаллы, приобретает поляризацию в соответствии с ориентацией молекул, что является свойством, присущим твердым веществам - кристаллам. А в 60-х годах XX века было обнаружено, что при приложении к жидким кристаллам электрического напряжения меняется ориентация молекул - типичное свойство жидкости.

Как работает ЖК-монитор?

Свет от лампы подсветки первым делом проходит сквозь поляризующий фильтр, приобретая поляризацию. Дальше свет проходит через полупрозрачные управляющие электроды и доходит до слоя жидких кристаллов. Изменением управляющего напряжения поляризацию светового потока можно менять на величину от 0 до 90 градусов. После слоя жидких кристаллов расположены светофильтры и тут каждая точка окрашивается в нужный цвет – красный, зелёный или синий. Если посмотреть на экран без поляризующего светофильтра – мы не увидим цветовых различий, ведь наши глаза не умеют различать поляризацию света.

Вначале, матрицы, управляющие жидкими кристаллами, были «пассивными». Они могли управлять только всеми тремя базовыми пикселями вместе (красным, синим и зеленым). И лишь спустя какое-то время, технология производства ЖК-мониторов перешла к использованию ЖК-панелей с активной матрицей. В них каждый субпиксель управлялся отдельно. Это позволило увеличить количество оттенков, воспроизводимых монитором в десятки раз – до 16 с лишним миллионов.

Технологии ЖК мониторов

Самая первая технология, по которой делаются активные ЖК-мониторы. Она отработана до тонкостей, поэтому себестоимость матриц получается наиболее низкой. Аббревиатура TN+Film расшифровывается как Twisted Nematic + Film. В обычном состоянии, при отсутствии управляющего напряжения, жидкие кристаллы в TN+Film находятся в скрученной фазе и субпиксель ярко горит. Чем больше приложенное к ячейке напряжение – тем больше распрямляются молекулы жидких кристаллов. При максимальном управляющем напряжении субпиксель будет затемнён до предела. У этой технологии есть несколько недостатков. Во-первых, каждый пиксель никогда не будет до конца темным и черный цвет получится неидеальным. Во-вторых, при сбое управления хоть одним субпикселем, на экране образуется светящаяся неприятная точка, а в-третьих, угол обзора, несмотря на специальную плёнку-покрытие, редко превышает 140-150 градусов.

In-Plane Switching – это технология, разработанная Hitachi и NEC. Отличительная особенность состоит в том, что оба управляющих полупрозрачных электрода расположены в одной плоскости – только на нижней стороне ЖК-ячейки. Жидкие кристаллы располагаются иначе, чем в случае с TN+Film: в расслабленном состоянии они не пропускают свет. Чем больше управляющее напряжение – тем больше кристаллы закручивают поляризацию светового пучка. Кроме этого, IPS-матрицы имеют больший, чем у TN+Film, угол обзора. Но есть у этой технологии и значительный недостаток - большое время отклика субпикселей - до 50 мс.

Запатентованная Fujitsu технология называется Multi-Domain Vertical Alignment. Молекулы жидких кристаллов ориентированы в вертикальном направлении (Vertical Alignment) и при отсутствии управляющего напряжения не меняют поляризации светового потока. В связи с особенностями конструкции (длинные, вертикально ориентированные цепочки кристаллов), при изменении угла обзора может сильно меняться светоотдача субпикселя (а следовательно – цвет результирующего пикселя). Поэтому каждый субпиксель разделён на несколько зон (Multi-Domain), каждая из которых оптимизирована для наилучшей светоотдачи в своём секторе обзора. Таким оригинальным образом была решена проблема сильно ограниченных углов обзора в исходной технологии VA.

MVA-матрицы обладают всеми плюсами технологии IPS (глубокий чёрный цвет фона, тёмный цвет битых пикселей, широкие углы обзора), но при этом имеют лучшую скорость реакции. Но существуют и недостатки – такая панель быстрее меняет резкие цветовые переходы, и гораздо медленнее – плавные. Существует особая разновидность данной технологии - PVA (Patterned Vertical Alignment) от Samsung. На сегодняшний день MVA – это наиболее востребованная рынком технология.

В чем преимущества TFT перед CRT?

Начнем с геометрии. Четкость и правильность изображения на ЖК мониторе гораздо выше, чем у обычного, электорнно-лучевого. У ЖК-мониторов геометрия идеальна за счёт технологии производства матрицы. У ЭЛТ с помощью имеющихся настроек можно добиться хорошей точности геометрических характеристик, но все равно, они будут несколько хуже, чем у ЖК монитора.

Далее взглянем на сведение. Под термином "сведение" подразумевается схождение в одной точке трёх составляющих её компонент - красной, зелёной и синей (RGB). Белая точка на тёмном фоне экрана должна быть именно белой, а не распадаться на три разноцветные. Здесь опять же лидируют ЖК мониторы. Может быть и неверно говорить об идеальном сведении ЖК-мониторов. Просто в данном случае расстояния между субпикселями постоянны и достаточно малы, и главное, вам не нужно думать о настройке сведения у ЖК-матрицы и выбирать хорошо отрегулированный экземпляр (как в случае с ЭЛТ-мониторами). У ЭЛТ-мониторов гораздо труднее обеспечить равномерное, стабильное сведение по всей площади экрана, ведь это аналоговый прибор с тремя электронными пушками, разнесёнными в пространстве. Для получения хорошего сведения служат хитроумные схемы компенсации, подстройки, а также сложные конструкции отклоняющих систем.

Немного о фокусировке. Хорошая фокусировка подразумевает минимальный размер отдельно взятого пикселя и чётко очерченные его края. Если монитор правильно сфокусирован, края мелких объектов будут резкими и чёткими, без излишней расплывчатости. У ЖК-матриц, в силу самого принципа их работы, фокусировка всегда идеальна: каждый пиксель (субпиксель) представляет собой ровный прямоугольник с чётко обозначенными границами. ЭЛТ-монитор может быть настроен до очень хороших показателей фокусировки, но это требует кропотливой юстировки и выбора удачного экземпляра кинескопа вместе с отклоняющей системой.

Но не везде ЖК монитор может быть лучше, чем ЭЛТ соперник. Больной для всех компьютерных дизайнеров вопрос – цветопередача. Правильная цветопередача подразумевает точность соответствия цвета, отображённого на мониторе, исходному цвету. Причём такая точность должна обеспечиваться во всём цветовом диапазоне, доступном монитору. В отличие от ЭЛТ-конкурентов, TFT-LCD могут отображать весьма ограниченное количество цветов, у них в большинстве случаев неудовлетворительная линейность передачи оттенков серого, и, что самое неприятное, цветопередача очень сильно меняется при отклонении наблюдателя вправо или влево

Следующий неутешительный для ЖК мониторов пункт – поддержка различных разрешений. ЖК-мониторы конструктивно не приспособлены к поддержке разных разрешений – для отличных от родного разрешений применяются сложные алгоритмы аппроксимации или интерполяции. Хороший результат достигается только в физическом разрешении матрицы. ЭЛТ-мониторы, наоборот, отлично приспособлены к самым разнообразным графическим режимам, причём с уменьшением разрешения чёткость только возрастает.

Но есть у жидкокристаллических мониторов еще несколько положительных сторон, взглянув на которые, от покупки может удержать только цена этих мониторов. Это и намного меньшие габариты (а значит и удобство в расположении на столе, и простота транспортировки), и заметно меньшее энергопотребление (а значит и экономия средств на электроэнергии), и меньший уровень вредных электромагнитных излучений, и более низкая чувствительность к магнитным полям.

Можно вспомнить и тот факт, что в последнее время характеристики ЖК мониторов значительно улучшились во всех слабых областях. Стали больше доступные для взгляда на монитор углы, контрастнее изображение, четче и реалистичней цветопередача, выше скорость отклика пикселей и, самое главное, доступнее цена.

Один раз завоевав свои позиции на рынке компьютерных мониторов, жидкокристаллические дисплеи не только не собираются с них отступать, но и вовсю занимают новые, отвоевывая свое место на рабочих столах и у корпоративных, и у домашних пользователей.