Как определить скорость передачи данных. Скорость интернета - что это такое и в чем измеряется, как увеличить скорость интернет соединения

Все неоднократно раз слышали про сети второго, третьего и четвертого поколения мобильной связи. Некоторые, возможно, уже читали и про сети будущего - пятого поколения. Но вопросы - что означает G, E, 3G, H, 3G+, 4G или LTE на экране смартфона и что среди этого быстрее до сих пор волнуют многих людей. Ответим на них.

Данные значки означают тип подключения вашего смартфона, планшета или модема к мобильной сети.

1. G (GPRS - General Packet Radio Services): самый медленный и давно устаревший вариант подключения пакетной передачи данных. Первый стандарт мобильного интернета, выполненный путем надстройки над GSM (после CSD-соединения до 9,6 кбит/с). Максимальная скорость GPRS-канала - 171,2 кбит/с. При этом реальная, как правило, на порядок ниже и интернет здесь не всегда работоспособен в принципе.

2. E (EDGE или EGPRS - Enhanced Data rates for GSM Evolution): более быстрая надстройка над 2G и 2,5G. Технология цифровой передачи данных. Скорость EDGE выше GPRS примерно в 3 раза: до 474,6 кбит/с. Однако она также относится ко второму поколению беспроводной связи и уже устарела. Реальная скорость EDGE обычно держится в районе 150-200 кбит/с и напрямую зависит от местонахождения абонента - то есть загруженности базовой станции в конкретном районе.

3. 3 G (Third Generation - третье поколение). Здесь по сети возможна не только передача данных, но и «голоса». Качество передачи речи в сетях 3G (если оба собеседника находятся в радиусе их действия) может быть на порядок выше, чем в 2G (GSM). Скорость интернета в 3G также значительно более высокая, а его качество, как правило, уже вполне достаточное для комфортной работы на мобильных устройствах и даже стационарных компьютерах через USB-модемы. При этом на скорость передачи данных может влиять ваше текущее положение, в т.ч. находитесь ли вы на одном месте или движетесь в транспорте:

  • Находитесь без движения: обычно до 2 Мбит/с
  • Движетесь со скоростью до 3 км/ч: до 384 кбит/с
  • Движетесь со скорость до 120 км/ч: до 144 кбит/с.

4. 3,5 G, 3 G+, H, H+ (HSPDA - High-Speed Downlink Packet Access): следующая надстройка высокоскоростной пакетной передачи данных - уже над 3G. В данном случае скорость передачи данных вплотную приближается к 4G и в режиме H она составляет до 42 Мбит/с. В реальной жизни мобильный интернет в таком режиме в среднем работает у мобильных операторов на скоростях 3-12 Мбит/с (иногда выше). Для не разбирающихся: это весьма быстро и вполне достаточно, чтобы при стабильном соединении смотреть онлайн-видео в не слишком высоком качестве (разрешении) или качать тяжелые файлы.

Также в 3G появилась функция видеозвонка:

5. 4G, LTE (Long-Term Evolution - долговременное развитие, четвертое поколение мобильного интернета). Данная технология используется только для передачи данных (не для «голоса»). Максимальная download-скорость здесь - до 326 Мбит/с, upload - 172,8 Мбит/с. Реальные значения опять же на порядок ниже заявленных, но все равно они составляют десятки мегабит в секунду (на практике часто сопоставимо с режимом H; в условиях загруженности Москвы обычно 10-50 Мбит/с). При этом более быстрый PING и сама технология делают 4G наиболее предпочтительным стандартом для мобильного интернета в модемах. Смартфоны и планшеты в сетях 4G (LTE) держат заряд батареи дольше, нежели в 3G.

6. LTE-A (LTE Advanced - модернизация LTE). Пиковая скорость передачи данных здесь - до 1 Гбит/с. В реальности интернет способен работать на скоростях до 300 Мбит/с (в 5 раз быстрее обычного LTE).

7. VoLTE (Voice over LTE - голос по LTE, как дополнительное развитие технологии): технология передачи голосовых вызовов по сетям LTE на базе IP Multimedia Subsystem (IMS). Скорость соединения - до 5 раз быстрее по сравнению с 2G/3G, а качество самого разговора и передачи речи - еще выше и чище.

8. 5 G (пятое поколение сотовой связи на базе IMT-2020). Стандарт будущего, пока находится на стадии разработки и тестирования. Скорость передачи данных в коммерческом варианте сетей обещается выше LTE до 30 раз: максимально передача данных сможет осуществляться до 10 Гбит/с.

Разумеется, воспользоваться любой из вышеперечисленных технологий вы сможете в случае ее поддержки вашим оборудованием. Также ее работа зависит от возможностей самого мобильного оператора в конкретной точке местонахождения абонента и его тарифного плана.

Любой сигнал можно рассматривать как функцию времени, или как функцию частоты. В первом случае эта функция показывает, как меняются впоследствии параметры сигнала, например, напряжение или ток. Если эта функция имеет непрерывный характер, то говорят о непрерывном сигнале. Если эта функция имеет дискретный вид, то говорят о дискретном сигнале.

Частотное представление функции основано на том факте, что любая функция может быть представлена в виде ряда Фурье

(1),
где - частота, an,bn – амплитуды n-ой гармоники.

Характеристику канала, который определяет спектр частот, которые физическая среда, из которой сделана линия связи, которая образует канал, пропускает без существенного снижения мощности сигнала, называют полосой пропускания .

Максимальную скорость, из которой канал способен передавать данные, называют пропускной способностью канала или битовой скоростью.

В 1924 Найквист открыл взаимосвязь между пропускной здатностью канала и шириной его полосы пропускания.

Теорема Найквиста

где – максимальная скорость передачи H - ширина полосы пропускания канала, выраженная в Гц, М - количество уровней сигнала, которые используются при передаче. Например, из этой формулы видно, что канал с полосой 3 кГц не может передавать двухуровневые сигналы быстрее 6000 бит/сек.

Эта теорема также показывает, что, например, бессмысленно сканировать линию чаще, чем удвоена ширина полосы пропускания. Действительно, все частоты выше этой отсутствуют в сигнале, а потому вся информация, необходимая для возобновления сигнала будет собрана при таком сканировании.

Однако, теорема Найквиста не учитывает шум в канале, который измеряется как отношение мощности полезного сигнала к мощности шума: S/N . Эта величина измеряется в децибелах: 10log10(S/N) dB . Например, если отношение S/N равняется 10, то говорят о шуме в 10 dB если отношение равняется 100, то - 20 dB .

На случай канала с шумом есть теорема Шенона, по которой максимальная скорость передачи данные по каналу с шумом равняется:
H log2 (1+S/N) бит/сек, где S/N - соотношение сигнал-шум в канале.

Здесь уже не важно количество уровней в сигнале. Эта формула устанавливает теоретический предел, который редко достигается на практике. Например, по каналу с полосой пропускания в 3000 Гц и уровнем шума 30 dB (это характеристики телефонной линии) нельзя передать данные быстрее, чем со скоростью 30 000 бит/сек.

Методы доступа и их классификация

Метод доступа (accessmethod ) – это набор правил, которые регламентируют способ получения в пользование (“восторгу”) среды передачи. Метод доступа определяет, каким образом узлы получают возможность передавать данные.
Выделяют следующие классы методов доступа:

  1. селективные методы
  2. состязательные методы (методы случайного доступа)
  3. методы, основанные на резервировании времени
  4. кольцевые методы.

Все методы доступа, кроме состязательных, образуют группу методов детерминированного доступа. При использовании селективных методов для того, чтобы узел мог передавать данные, он должен получить разрешение. Метод называется опросом (polling ), если разрешения передаются всем узлам по очереди специальным сетевым оборудованием. Метод называется передачей маркера (token passing ), если каждый узел по завершении передачи передает разрешение следующему.

Методы случайного доступа (random access methods ) основаны на “соревновании” узлов за получение доступа к среде передачи. Случайный доступ может быть реализован разными способами: базовым асинхронным, с тактовой синхронизацией моментов передачи кадров, с прослушиванием канала перед началом передачи (“слушай, прежде чем говорить”), с прослушиванием канала во время передачи (“слушай, пока говоришь”). Могут быть использованы одновременно несколько способов из перечисленных.
Методы, основанные на резервировании времени , сводятся к выделению интервалов времени (слотов), которые распределяются между узлами. Узел получает канал в свое распоряжение на всю длительность выделенных ему слотов. Существуют варианты методов, которые учитывают приоритеты - узлы из больше высоким приоритетам получают большее количество слотов.
Кольцевые методы используются в ЛВМ с кольцевой топологией. Кольцевой метод вставки регистров заключается в подключении параллельно к кольцу одного или нескольких буферных регистров. Данные для передачи записываются в регистр, после чего узел ожидает межкадрового промежутка. Потом содержимое регистра передается в канал. Если во время передачи поступает кадр, он записывается в буфер и передается после своих данных.

Различают клиент-серверные и одноранговые методы доступа.

Клиент-серверные методы доступа допускают наличие в сети центрального узла, который управляет всеми другими. Такие методы распадаются на две группы: с опросом и без опроса.

Среди методов доступа с опросом наиболее часто используемый “опрос с остановкой и ожиданием” и “непрерывный автоматический запрос на повторение” (ARQ). Во всяком случае первичный узел последовательно передает узлам разрешение на передачу данных. Если узел имеет данные для передачи, он выдает их в среду передачи, если нет - или выдает короткий пакет данных типа “данных нет”, или просто ничего не передает.

При использовании одноранговых методов доступа все узлы равноправные. Мультиплексна передача со временным делением - наиболее простая одноранговая система без приоритетов, что использует твердое расписание работы узлов. Каждому узлу выделяется интервал времени, в течение которого узел может передавать данные, причем интервалы распределяются поровну между всеми узлами.

Аналоговые каналы передачи данные.

Под каналом передачи данные (КПД) понимается совокупность среды передачи (среды распространения сигнала) и технических средств передачи между канальными интерфейсами. В зависимости от формы информации, которая может передавать канал, различают аналоговые и цифровые каналы.

Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или другие характеристики которого (например, амплитуда или частота) несут переданную информацию. Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

Серьезный интерес к вопросу скорости интернет соединения обычно возникает после или блога в процессе их Обусловлено это необходимостью узнать и, как правило, повысить скорость загрузки сайта, зависящей, помимо других факторов, в большой степени именно от скорости интернета. В данной статье коротко рассмотрим, что такое входящая скорость, исходящая скорость, а главное, разберемся с единицами измерения скорости передачи данных , понятие о которых у многих начинающих пользователей весьма расплывчатое. Кроме того, приведем простые методы измерения скорости интернет соединения посредством наиболее распространенных онлайн сервисов.

Что же такое, скорость интернет соединения? Под скоростью интернет соединения понимают объём передаваемой информации в единицу времени. Различают входящую скорость (скорость получения) – скорость передачи данных из интернета к нам на компьютер; исходящую скорость (скорость передачи) – скорость передачи данных от нашего компьютера в интернет.

Основные единицы измерения скорости интернета

Базовой единицей измерения количества передаваемой информации является бит (bit ). В качестве единицы времени принята секунда. Значит, скорость передачи будет измеряться бит/сек. Обычно оперируют единицами«килобит в секунду» (Кбит/сек), «мегабит в секунду» (Мбит/сек), «гигабит в секунду» (Гбит/сек).

1 Гбит/сек = 1000 Мбит/сек = 1 000 000 Кбит/сек = 1 000 000 000 бит/сек.

На английском языке базовая единица для измерения скорости передачи информации, используемая в вычислительной технике — бит в секунду или бит/с будет bits per second или bps.

Килобиты в секунду и, в большинстве случаев, Мегабиты в секунду (Кбит/с; Кб/с; Kb/s; Kbps, Мбит/с; Мб/с; Мb/s; Мbps - буква «б» маленькая ) используются в технических спецификациях и договорах на оказание услуг интернет провайдерами.Именно в приведенных единицах определяется скорость интернет соединения в нашем тарифном плане. Обычно, эта обещанная провайдером скорость, называется заявленной скоростью.

И так, количество передаваемой информации измеряется в битах. Размер же передаваемого или располагающегося на жестком диске компьютера файла, измеряется в байтах (Килобайтах, Мегабайтах, Гигабайтах).Байт (byte) – это также единица количества информации. Один байт равен восьми битам (1 Байт = 8 бит).

Чтобы было проще понимать различие между битом и байтом, можно сказать другими словами. Информация в сети передается «бит за битом», поэтому и скорость передачи измеряется в бит в секунду. Объем же хранимых данных измеряется в байтах. Поэтому и скорость закачки определенного объема измеряется в байтах в секунду.

Скорость передаваемого файла, использующаяся многими пользовательскими программами (программы-загрузчики, интернет браузеры, файлообменники) измеряется в Килобайтах, Мегабайтахи Гигабайтах в секунду.

Другими словами, при подключении к интернету, в тарифных планах указана скорость передачи данных в Мегабитах в секунду. А прискачивании файлов из интернета показывается скорость в Мегабайтах в секунду.

1 ГБайт = 1024 МБайта = 1 048 576 КБайта = 1 073 741 824 Байта;

1 МБайт = 1024 КБайта;

1 КБайт = 1024 Байта.

На английском языке базовая единица для измерения скорости передачи информации — Байт в секунду или Байт/с будет byte per second или Byte/s.

Килобайты в секунду обозначаются, как КБайт/с, КБ/с, KB/s или KBps.

Мегабайты в секунду - МБайт/с, МБ/с, МB/s или МBps.

Килобайты и Мегабайты в секунду всегда пишутся с большой буквой «Б», как в латинской транскрипции, так и в русском варианте написания: МБайт/с, МБ/с, МB/s, МBps.

Как определить, сколько мегабит в мегабайте и наоборот?!

1 МБайт/с = 8Мбит/с.

Например, если скорость передачи данных, отображаемая браузером, равна 2 МБ/с (2 Мегабайта в секунду), то в Мегабитах это будет в восемь раз больше - 16 Мбит/с (16 Мегабит в секунду).

16 Мегабит в секунду = 16 / 8 = 2,0 Мегабайт в секунду.

Т.е, чтобы получить величину скорости в «Мегабайтах в секунду», нужно значение в «Мегабитах в секунду» разделить на восемь и наоборот.

Кроме скорости передачи данных, важным измеряемым параметром является время реакции нашего компьютера, обозначаемое Ping. Другими словами, пинг – это время ответа нашего компьютера на посланный запрос. Чем меньше ping, тем меньше, например, время ожидания, необходимое для открытия интернет страницы. Понятно, что чем меньше пинг, тем лучше. При измерении пинга определяется время, затрачиваемое для прохождения пакета от сервера измеряющего онлайн сервиса к нашему компьютеру и обратно.

Определение скорости интернет соединения

Для определения скорости интернет соединения существует несколько методов. Одни более точные, другие менее точные. В нашем же случае, для практических нужд, считаю, достаточно использования некоторых наиболее распространенных и неплохо себя зарекомендовавших онлайн сервисов. Почти все они, кроме проверки скорости интернета содержат многие другие функции, среди которых наше местоположение, провайдер, время реакции нашего компьютера (пинг) и др.

При желании можно много экспериментировать, сопоставляя результаты измерений различных сервисов и выбирая понравившиеся. Меня, например, устраивают такие сервисы, как известный Яндекс интернетометр, а также еще два – SPEED . IO и SPEEDTEST . NET .

Страница измерения скорости интернетавЯндекс интернетометре открывается по адресу ipinf.ru/speedtest.php (рисунок 1). Для повышения точности измерения выбираем меткой на карте свое местоположение и нажимаем левой кнопкой мыши. Процесс измерения начинается. Результаты измеренных входящей (download ) и исходящей (upload ) скоростей отражаются во всплывающей таблице и слева в панели.

Рисунок 1. Страница измерения скорости интернета в Яндекс интернетометре

Сервисами SPEED.IO и SPEEDTEST.NET, процесс измерения в которых анимируется в панели приборов, подобной автомобильной (рисунки 2, 3), пользоваться просто приятно.

Рисунок 2. Измерение скорости интернет соединения в сервисе SPEED.IO

Рисунок 3. Измерение скорости интернет соединения в сервисе SPEEDTEST.NET

Пользование приведенными сервисами интуитивно понятно и обычно не вызывает никаких затруднений. Опять же определяются входящая (download), исходящая (upload) скорости, ping . Speed.io измеряет текущую скорость интернета до ближайшего от нас сервера компании.

Кроме того в сервисе SPEEDTEST.NET можно протестировать качество сети, сравнить свои предыдущие результаты измерений с настоящими, узнать результаты других пользователей, сравнить свои результаты с обещанной провайдером скоростью.

Наряду с указанными, широко используются сервисы: CY - PR . com , SPEED . YOIP

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Пропускная способность интернет-канала или, проще говоря, , представляет собой максимальное число данных, принятых персональным компьютером либо переданных в Сеть за определенную единицу времени.

Чаще всего можно встретить измерение скорости передачи данных в килобитах/секунду (Кб/сек; Кбит/сек) либо в мегабитах (Мб/сек; Мбит/сек). Размер файлов, как правило, всегда указывается в байтах, Кбайтах, Мбайтах и Гбайтах.

Поскольку 1 байт – это 8 бит, на практике это будет означать, что если скорость вашего интернет-соединения равна 100 Мбит/сек, то компьютер за секунду может принять либо передать не более 12.5 Mb информации (100/8=12.5).Проще это можно объяснить, таким образом, если вы хотите скачать видео, объем которого 1.5 Gb, то у вас на это уйдет всего 2 минуты.

Естественно вышеперечисленные расчеты сделаны в идеальных лабораторных условиях. К примеру, реальность может быть совсем иная:

Здесь мы видим три числа:

  1. Ping – это число означает время за которое передаются Сетевые пакеты. Чем меньше значение этого числа, тем лучше качество интернет-соединения (желательно, чтобы значение было меньше 100ms).
  2. Далее идет скорость получения информации (входящая). Вот эту именно цифру и предлагают при подключении интернет-провайдеры (вот именно за это число "Мегабиты" вам и приходится платить свои кровно заработанные доллары/гривны/рубли и т.д.).
  3. Остается третье число, означающее скорость передачи информации (исходящая). Оно естественно будет меньше скорости получения данных, вот об этом провайдеры обычно умалчивают (хотя, по сути, большая исходящая скорость требуется редко).

От чего зависит скорость интернет соединения

  • Скорость интернет соединения зависит от тарифного плана, который устанавливает провайдер.
  • На скорость также влияет технология канала передачи информации и загруженность Сети другими пользователями. Если общая пропускная возможность канала будет ограничена, то чем больше пользователей находится в Сети и чем больше они скачивают информации, тем больше падает скорость, поскольку остается меньше "свободного места".
  • Также имеется зависимость от , к которым вы обращаетесь. К примеру, если на момент загрузки сервер может отдавать пользователю данные, со скоростью менее 10 Мбит/сек, то даже если у вас подключен максимальный тарифный план, большего вы не добьетесь.

Факторы, которые также влияют на скорость интернета:

  • При проверке, скорость сервера, к которому вы обращаетесь.
  • Настройка и скорость Wi-Fi роутера, если вы подключены через него к локальной Сети.
  • В момент проверки все работающие на компьютере программы и приложения.
  • Брандмауэры и антивирусы, которые работают в фоновом режиме.
  • Настройки вашей операционной системы и самого компьютера.

Как увеличить скорость интернета

Если на вашем компьютере присутствует вредоносное или нежелательным ПО, то это может повлиять на снижение скорости интернет-соединения. Троянские программы, вирусы, черви и т.д. которые попали в компьютер, могут забирать для своих нужд часть пропускной возможности канала. Для их обезвреживания необходимо использовать антивирусные приложения.

Если вы используете Wi-Fi, который не защищен паролем, то к нему обычно подсоединяются другие пользователи, которые не прочь использовать халявный трафик. Обязательно установите пароль для подключения к Wi-Fi.

Снижают скорость и параллельно работающие программы. К примеру, одновременная менеджеров закачки, интернет-мессенджеров, автоматического обновления операционки приводит к увеличению нагрузки процессора и поэтому скорость интернет-соединения снижается.

Вот эти действия, в некоторых случаях, помогают увеличить скорость интернета:

Если у вас подключено высокое интернет-соединение, а скорость оставляет желать лучшего – увеличьте пропускную скорость порта. Сделать это достаточно просто. Зайдите в "Панель управления" далее в «Система» и в раздел "Оборудование", после этого кликните по "Диспетчеру устройств". Находите «Порты (COM либо LPT)», затем разворачиваете их содержимое и отыскиваете "Последовательный порт (СОМ 1)".

После этого кликаете правой кнопкой мышки и открываете "Свойства". После этого откроется окошко, в котором нужно перейти в графу "Параметры порта". Отыскиваете параметр "Скорость" (бит в секунду) и кликаете на цифру 115200 – далее О.К! Поздравляем! Теперь у вас пропускная скорость порта увеличена. Поскольку по молчанию установлена скорость – 9600 бит/сек.

Для увеличения скорости также можно попробовать отключить планировщик пакетов QoS: Запускаем утилиту gpedit.msc (Пуск - Выполнить или Поиск - gpedit.msc). Далее: Конфигурация компьютера - Административные шаблоны - Сеть - Планировщик пакетов QoS - Ограничить резервируемую пропускную способность - Включить - выставить 0%. Нажимаем "Применить" и перезагружаем компьютер.