Каналы передачи данных. Линии связи и каналы передачи данных

Линии и каналы связи

Линия связи и канал связи - это не одно и то же.

Линия связи (ЛС) - это физическая среда, по которой передаются информационные сигналы. В одной линии связи могут быть организованы несколько каналов связи путем временного, частотного кодового и других видов разделения - тогда говорят о логических (виртуальных) каналах. Если канал полностью монополизирует линию связи, то он может называться физическим каналом, и в этом случае совпадает с линией связи. Хотя допустимо, например, говорить об аналоговом или цифровом канале связи, но абсурдно заявлять об аналоговой или цифровой линии связи, раз линия - лишь физическая среда, в которой могут быть образованы каналы связи разного типа. Тем не менее, даже говоря о физической многоканальной линии, ее часто называют каналом связи. ЛС являются обязательным звеном любой системы передачи информации.

Рис. 24.2. Классификация каналов связи

Классификация каналов связи (КС) показана на рис. 24.2. По физической природе ЛС и КС на их основе делятся на:

l механические - используются для передачи материальных носителей информации;

l акустические - переносят звуковой сигнал;

l оптические - передают световой сигнал;

l электрические - передают электрический сигнал.

Электрические и оптические КС могут быть:

l проводными, где для передачи сигналов служат проводниковые линии связи (электрические провода, кабели, световоды и т. д.);

l беспроводными (радиоканалы, инфракрасные каналы и т. д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме представления передаваемой информации КС делятся на:

l аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой либо физической величины;

l цифровые - по цифровым каналам пересылается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

В зависимости от возможных направлений передачи информации различают:

l симплексные КС, позволяющие передавать информацию только в одном направлении;

l полудуплексные КС, обеспечивающие попеременную передачу информации в прямом и в обратном направлениях;

l дуплексные КС, позволяющие вести передачу информации одновременно и в прямом и в обратном направлениях.

Каналы связи могут быть, наконец:

l коммутируемыми;

l некоммутируемыми.

Коммутируемые каналы создаются из отдельных участков (сегментов) только на время передачи по ним информации; по окончании сеанса связи такой канал ликвидируется (разрывается).

Некоммутируемые (выделенные) каналы организуются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

По пропускной способности их можно разделить на:

l низкоскоростные КС, скорость передачи информации в которых составляет от 50 до 200 битов/с; это телеграфные КС, как коммутируемые (абонентский телеграф), так и некоммутируемые;

l среднескоростные КС, например аналоговые (телефонные) КС; скорость передачи в них от 300 до 9600 битов/с, а в новых стандартах v90–v.92 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и до 56 000 битов/с;

l высокоскоростные (широкополосные) КС, обеспечивающие скорость передачи информации выше 56 000 битов/с.

Следует особо отметить, что телефонный КС является более узкополосным, чем телеграфный, но скорость передачи данных по нему выше благодаря обязательному наличию модема, существенно снижающего F c передаваемого сигнала. При простом кодировании максимально достижимая скорость передачи данных по аналоговым каналам не превосходит 9600 бод = 9600 битов/с. Применяемые в настоящее время сложные протоколы кодирования передаваемых данных используют не два, а несколько значений параметра сигнала для отображения элемента данных, и позволяют достичь скорости передачи данных по аналоговым телефонным линиям связи 56 Кбит/с = 9600 бод.

По цифровым КС, организованным на базе телефонных линий, скорость передачи данных благодаря уменьшению F c и увеличению H c оцифрованного сигнала также может быть выше (до 64 Кбит/с), а при мультиплексировании нескольких цифровых каналов в один в таком составном КС скорость передачи способна удваиваться, утраиваться и т. д.; существуют подобные каналы со скоростями в десятки и сотни мегабитов в секунду.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи: группы либо параллельных, либо скрученных («витая пара») проводов.

Для организации широкополосных КС используются различные кабели, в частности:

l неэкранированные с витыми парами из медных проводов (Unshielded Twisted Pair - UTP);

l экранированные с витыми парами из медных проводов (Shielded Twisted Pair - STP);

l волоконно-оптические (Fiber Optic Cable - FOC);

l коаксиальные (Coaxial Cable - CC);

l беспроводные радиоканалы.

Витая пара - это изолированные проводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками. Такой кабель, состоящий обычно из небольшого количества витых пар (иногда даже двух), характеризуется меньшим затуханием сигнала при передаче на высоких частотах и меньшей чувствительностью к электромагнитным наводкам, чем параллельная пара проводов.

UTP-кабели чаще других используются в системах передачи данных, в частности в вычислительных сетях. Выделяют пять категорий витых пар UTP: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая при скоростях передачи, соответственно, до 16, 25 и 155 Мбит/с (а при использовании стандарта технологии Gigabit Ethernet на витой паре, введенного в 1999 году, и до 1000 Мбит/с). При хороших технических характеристиках эти кабели сравнительно недороги, они удобны в работе, не нуждаются в заземлении.

STP-кабели обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе и требуют заземления экрана. Они делятся на типы: Type 1A, Type 2A, Type 3A, Type 5A, Type 9A. Из них Type 3A определяет характеристики неэкранированного телефонного кабеля, а Type 5A - волоконно-оптического кабеля. Наиболее популярен кабель Type 1A стандарта IBM, состоящий из двух пар скрученных проводов, экранированных проводящей оплеткой, которую положено заземлять. Его характеристики примерно соответствуют характеристикам UTP-кабеля категории 5.



Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оплеткой. Коаксиальные кабели для телекоммуникаций делятся на две группы:

l «толстые» коаксиалы;

l «тонкие» коаксиалы.

Толстый коаксиальный кабельимеет наружный диаметр 12,5 мм и достаточно толстый проводник (2,17 мм), обеспечивающий хорошие электрические и механические характеристики. Скорость передачи данных по толстому коаксиальному кабелю достаточно высокая (до 50 Мбит/с), но, учитывая определенное неудобство работы с ним и его значительную стоимость, рекомендовать его для использования в сетях передачи данных можно далеко не всегда. Тонкий коаксиальный кабель имеет наружный диаметр 5–6 мм, он дешевле и удобнее в работе, но тонкий проводник в нем (0,9 мм) обусловливает худшие электрические (передает сигнал с допустимым затуханием на меньшее расстояние) и механические характеристики. Рекомендуемые скорости передачи данных по «тонкому» коаксиалу не превышают 10 Мбит/с.

Основуволоконно-оптического кабеля составляют «внутренние подкабели» - стеклянные или пластиковые волокна диаметром 8–10 (одномодовые - однолучевые) и 50–60 (многомодовые - многолучевые) микрон, окруженные твердым заполнителем и помещенные в защитную оболочку диаметром 125 мкм. В одном кабеле может содержаться от одного до нескольких сотен таких «внутренних подкабелей». Кабель, в свою очередь, окружен заполнителем и покрыт более толстой защитной оболочкой, между которыми которой проложены кевларовые волокна, принимающие на себя обеспечение механической прочности кабеля.

По одномодовому волокну (диаметр их 8–10 мкм) оптический сигнал распространяется, почти не отражаясь от стенок волокна (входит в волокно параллельно его стенкам), чем обеспечивается очень широкая полоса пропускания(до сотен гигагерц на километр). По многомодовому волокну (его диаметр 40–100 мкм) распространяются сразу много волн различной длины, каждая из которых входит в волокно под своим углом и, соответственно, отражается от стенок волокна в разных местах (полоса пропускания многомодового волокна 500–800 Мгц на километр).

Источником распространяемого по оптоволоконному кабелю светового луча является преобразователь электрических сигналов в оптические, например, светодиод или полупроводниковый лазер. Кодирование информации осуществляется изменением интенсивности светового луча. Физической основой передачи светового луча по волокну является принцип полного внутреннего отражения луча от стенок волокна, обеспечивающий минимальное затухание сигнала, наивысшую защиту от внешних электромагнитных полей и высокую скорость передачи. По оптоволоконному кабелю, имеющему большое число волокон, можно передавать огромное количество сообщений. На другом конце кабеля принимающий прибор преобразует световые сигналы в электрические. Скорость передачи данных по оптоволоконному кабелю очень высока и достигает величины 1000 Мбит/с, но он очень дорог и используется обычно лишь для прокладки ответственных магистральных каналов связи. Такой кабель связывает столицы и крупные города большинства стран мира, а по дну Атлантического океана проложен кабель между Европой и Америкой. Оптоволоконный кабель соединяет Санкт-Петербург с Москвой, прибалтийскими и скандинавскими странами, кроме того, он проложен в тоннелях метро и проникает во все районы Санкт-Петербурга. В вычислительных сетях, и в частности, в сети Интернет оптоволоконный кабельиспользуется на наиболее ответственных их участках. Возможности оптоволоконных каналов поистине безграничны: по одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сот тысяч телефонных каналов, несколько тысяч видеотелефонных каналов и около тысячи телевизионных каналов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Система передачи данных (СПД) по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных. Часто такую СПД называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемо-передающей аппаратуры). Высокоскоростной радиодоступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/с и выше. В ближайшем будущем ожидаются радиоканалы со скоростями 20–50 Мбит/с. В табл. 24.1 представлены названия радиоволн и соответствующие им частотные участки.

Таблица 24.1. Диапазоны радиоволн

Для коммерческих телекоммуникационных систем чаще всего выделяются частотные диапазоны 902–928 МГц и 2,4–2,48 ГГц (в некоторых странах, например США, при малых уровнях мощности излучения - до 1 Вт - разрешено использовать эти диапазоны без государственного лицензирования).

Беспроводные каналы связиобладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и оперативность связи. передачу видеосигнала.

Телефонные линии связи являются наиболее разветвленными и широко используемыми. По ним осуществляется передача звуковых (тональных) и факсимильных сообщений, они являются основой построения информационно-справочных систем, систем электронной почты и вычислительных сетей.

По телефонным линиям могут быть организованы и аналоговые, и цифровые каналы передачи информации. Рассмотрим этот вопрос, ввиду его высокой актуальности, несколько подробнее.

«Простая старая телефонная система», в англоязычной аббревиатуре POTS (Primitive Old Telephone System), состоит из двух частей: магистральной системы связи и сети доступа абонентов к ней. Самый обычный вариант доступа абонентов к магистральной системе - через абонентский аналоговый канал связи. Большинство телефонных аппаратов подключаются к автоматической телефонной станции (АТС), являющейся уже элементом магистральной системы.

Телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 КГц, в диапазоне от 300 Гц до 3,3 КГц. При снятии телефонной трубки формируется сигнал off-hook, сообщающий АТС о вызове, и, если телефонная станция не занята, набирается нужный телефонный номер, который передается в АТС в виде последовательности импульсов (при импульсном наборе) или в виде комбинации сигналов звуковой частоты (при тональном наборе). Завершается разговор сигналом on-hook, формируемым при опускании трубки. Такой тип процедуры вызова называется in band, поскольку передача сигналов вызова производится по тому же каналу, что и передача речи.

Каналы связи

Д ля передачи данных образуют среду их распространения – совокупность линий или каналов передачи данных и приёмо-передающего оборудования. Линии или каналы связи являются общим, связующим звеном любой системы передачи данных и с точки зрения организации связи делятся на лини и каналы. Линия связи – это физические провода или кабели, соединяющие пункты (узлы) связи между собой, а абонентов – с ближайшими узлами.

Каналы связи образуется различным образом.

Они могут быть как физическими проводными каналами – образуемыми кабелями связи, так и волновыми каналами – формируемыми для организации в какой-либо среде (например, эфире) различных видов радиосвязи с помощью антенн и выделенной полосы частот. При этом электрические и оптические каналы связи (образуемые соответствующими сигналами) подразделяются на: проводные и беспроводные (радио-, инфракрасные и другие) каналы. Таким образом, оптический, как и электрический сигнал может распространяться, по проводам, в эфире и других средах.

В телефонной сети после набора номера, канал образуется на время соединения, например, двух абонентов и проведения между ними сеанса голосовой связи. В проводных системах передачи данных канал формируется путём применения оборудования уплотнения, позволяющего одновременно продолжительно или кратковременно передавать по линии связи данные большого (тысяч) количества источников. Такие линии состоят из одной или нескольких пар проводов (кабелей) и обеспечивают передачу данных на различные расстояния. Термин «канал » в радиосвязи означает среду передачи данных, организованную для одного или нескольких, одновременно проводимых сеансов связи. Во втором случае, например, может использоваться частотное разделение каналов.

Также, как и средства связи, линии или каналы связи делятся на: аналоговые, цифровые, а также аналогово-цифровые.

Цифровые коммуникации (каналы связи) надёжнее, чем аналоговые. Они обеспечивают высокое качество передачи информации, позволяют внедрять механизмы, гарантирующие целостность каналов, защиту данных и применение других сервисов. Для передачи аналоговой информации по цифровому каналу, она преобразуется в цифровую форму.

В конце 1980-х годов появилась цифровая сеть с интеграцией услуг (Integrated Serviced Digital Network – ISDN ). Предполагается, что она станет глобальной цифровой магистралью, соединяющей офисные и домашние компьютеры, обеспечивая им высокоскоростную передачу данных (до 2 Мбит/с и более). Стандартными четырёхпроводными абонентскими устройствами ISDN могут быть: телефон, факсимильный аппарат, устройства передачи данных, оборудование телеконференций и другие. Конкуренцию им могут составить современные технологии, применяемые в сетях кабельного телевидения.

По пропускной способности каналы связи делятся на:

● низкоскоростные (телеграфные, скорость передачи информации от 50 до 200 бод/с). Напомним, что 1 бод = 1 бит/сек,

● среднескоростные (аналоговые телефонные, от 300–9600 до 56000 бит/с для ЭВМ),

● высокоскоростные или широкополосные (скорость передачи информации свыше 56000 бит/с). Так как, 1 байт равен 8 битам, можно легко осуществить пересчёт, например, 56000 бит/с = 7 Кб/с.

В зависимости от возможностей организации направлений передачи информации каналы связи делятся на:

¨ симплексные , позволяющие осуществлять передачу информации только в одном направлении;

¨ полудуплексные , обеспечивающие попеременную передачу информации в прямом и обратном направлениях;

¨ дуплексные или полнодуплексные, допускающие передачу информации одновременно в прямом и обратном направлениях.

Проводные каналы связи представляют группу параллельных или скрученных (витая пара) медных проводов, коаксиальные кабели и волоконно-оптические линии связи (ВОЛС). В проводных каналах используют следующие виды кабелей:

1. Витая пара (скорость передачи данных – 1 Мбит/сек).

2. Коаксиальный кабель (типа TV, тонкий и толстый) – скорость передачи данных – 15 Мбит/сек.

3. Оптоволоконный кабель (скорость передачи данных – 400 Мбит/сек).

1. Витая пара (англ. « twisted pair ») – изолированные проводники, попарно свитые между собой для уменьшения наводок между проводниками и парами. Выделяют пять категорий витых пар. Первая и вторая категории используются при низкоскоростной передаче данных, причём первая – стандартный телефонный абонентский провод. Третью, четвёртую и пятую категории применяют при скоростях передачи до 16, 25 и 155 Мбит/с соответственно, причём третья (Token Ring ) и четвёртая (Ethernet ) для частоты до 10 МГц, а пятая – до 100 МГц. Наибольшее распространение получила третья категория. Ориентируясь на перспективные решения, связанные с потребностью увеличивать пропускную способность сети, следует использовать оборудование пятой категории, обеспечивающее передачу данных по обычным телефонным линиям и ЛВС со скоростью до 1 Мбит/с.

Такие провода содержат две или четыре пары и могут иметь экран из алюминиевой фольги. В последнем случае они называются – экранированная витая пара (англ. « shielded twisted pair », STP ). Неэкранированный провода называют UTP (англ. « unshielded twisted pair »).

2. Коаксиальный кабель – (Рис. 14-1) медный проводник (или алюминиевый провод, покрытый медью) внутри цилиндрической экранирующей защитной оболочки, свитой из тонких медных проводников, изолированной от проводника диэлектриком (заполняющим пространство между ними). От стандартного телевизионного кабеля он отличается волновым сопротивлением. У первого 75 Ом, а у второго – 50 Ом. По такому кабелю скорость передачи данных достигает 300 Мбит/с. Различают тонкий (Ø 0,2 дюйма/5 мм) и толстый (Ø 0,4 дюйма/10 мм) коаксиальный кабель. В ЛВС обычно применяют тонкий кабель, так как его легче прокладывать и монтировать. Значительная стоимость и сложность прокладки ограничивают его использование в сетях передачи данных.

Сети кабельного телевидения (CATV ) строились с использованием коаксиального кабеля, аналоговый сигнал по которому передавался на расстояние до нескольких десятков км. Типичная сеть кабельного TV имеет древовидную структуру, где головной узел получает сигналы со спутника связи или по ВОЛС. Ныне появляются такие сети, в которых используются коаксиальный и волоконно-оптический кабель, позволяющий обслуживать большие территории и передавать бóльшие объёмы информации, обеспечивая высокое качество сигналов даже без применения повторителей. Такие сети называются гибридными (HFC ).

При симметричной архитектуре прямой и обратный сигналы передаются по одному кабелю в различных диапазонах частот с разными скоростями (обратный медленнее).

В любом случае скорость загрузки данных в таких сетях многократно выше (до 1000 раз), чем в стандартных телефонных линиях. Данные, загружаемые по телефонной линии в течение 20 мин., могут быть загружены в кабельной сети за 1–2 с.

В организациях с собственными кабельными сетями предпочтительнее использовать симметричные схемы, так как в этом случае скорость прямой и обратной передачи одинакова и составляет примерно 10 Мбит/с. Ныне выпускаются модемы, способные передавать информацию со скоростью до 30 Мбит/с и более.

Количество проводов, используемых для домашних ПК и электроники, постоянно растёт. По оценке специалистов в 150-метровой квартире прокладывается до 3 км различных кабелей. В 1990-е годы решить эту проблему предложила британская компания United Utilities , разработав технологию Digital Power Line (DPL). Она предложила использовать обычные силовые электрические сети в качестве сетей или среды высокоскоростной передаче данных, осуществив передачу голоса и пакетов данных по простым электрическим сетям напряжением 120/220 В.

Наибольших успехов в данной области добилась израильская компания Main.net, разработавшая технологию Powerline Communications (PLC), обеспечивающую передачу данных и голоса (VoIP) со скоростью от 2 до 10 Мбит/с. При этом высокоскоростной поток данных разбивался на несколько низкоскоростных, передававшихся на отдельных поднесущих частотах с последующим их объединением в один сигнал (частотное разделение сигнала).

PLC-технология подходит для низкоскоростной передачи данных (домашняя автоматика, бытовые устройства и т.п.), доступа в Интернет со скоростью менее 1 Мбит/с, для приложений, требующих высокоскоростного соединения (видео по запросу, видеоконференц-связи и т.п.). При этом питающие здание электрические кабели служат «последней милей», а электропроводка внутри здания – «последним дюймом» для передачи данных.

При небольшом расстоянии между промежуточной приемопередающей точкой (трансформаторной подстанцией) и зданием скорость передачи доходи до 4,5 Мбит/с. PLC-технология может использоваться при создании локальной сети в небольшом офисе или жилом доме, так как минимальная скорость передачи позволяет покрывать расстояние до 200–300 м. Такая технология обеспечивает реализацию услуг дистанционного мониторинга, охраны жилища, управления его режимами, ресурсами и т.п., составляющих концепцию интеллектуального дома. Ожидается, что с её помощью станет возможным организовать прямой доступ в Интернет .

3. Оптоволоконный кабель состоит из кварцевого сердечника диаметром 10 мкм (микрон), окружённого отражающей защитной оболочкой с внешним диаметром 125–200 мкм (Рис. 14-2). Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. Кодирование информации производится изменением интенсивности светового потока. При передаче информации отражённый от стенок волокна луч приходит на приёмный конец с минимальным затуханием. Такой кабель обеспечивает полную защиту от воздействия внешних электромагнитных полей и высокую скорость передачи данных (до 1000 Мбит/с). Он позволяет одновременно организовать работу нескольких сотен тысяч телефонных, нескольких тысяч видеотелефонных и около тысячи телевизионных каналов. Волоконно-оптические кабели сложны для несанкционированного подключения, пожаробезопасны, но достаточно дороги и требуют устройств преобразования световых сигналов в электрические (лазеры) и наоборот. Такие кабели используются, как правило, при прокладке магистральных линий связи (ВОЛС). Уникальные свойства кабеля позволяют использовать его для организации сетей Интернет.

Каналы связи бывают коммутируемые (создаются лишь на время проведения сеанса передачи информации, например, телефонные) и некоммутируемые (выделяются абоненту на продолжительный период времени и не зависят от времени передачи данных – выделенные).

Типы каналов передачи данных и их характеристики

Применяемые в вычислительных сетях каналы передачи данных классифицируются по ряду признаков.

Во-первых , по форме представления информации в виде электрических сигналов каналы подразделяют на цифровые и аналоговые.

Во-вторых , по физической природе среды передачи данных различают каналы связи проводные (обычно медные), оптические (как правило, волоконно-оптические), беспроводные (инфракрасные и радиоканалы).

В третьих , по способу разделения среды между сообщениями выделяют упомянутые выше каналы с временным (TDM) и частотным (FDM) разделением.

Одной из основных характеристик канала является его пропускная способность (скорость передачи информации), определяемая полосой пропускания канала и способом кодирования данных в виде электрических сигналов. Информационная скорость измеряется количеством бит информации, переданных в единицу времени. Наряду с информационной оперируют бодовой (модуляционной ) скоростью, которая измеряется в бодах , то есть числом изменений дискретного сигнала в единицу времени. Именно бодовая скорость определяется полосой пропускания линии. Если одно изменение значения дискретного сигнала соответствует нескольким битам, то информационная скорость превышает бодовую.

Действительно, если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций сигнала равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составляет 4800 бит/с.
С ростом длины линии связи увеличивается затухание сигнала и, следовательно, уменьшаются полоса пропускания и информационная скорость.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона. Предполагается, что одно изменение значения сигнала приходится на log 2 k бит, где k – число возможных дискретных значений сигнала. Так как скорость V = log 2 k / t , где t - длительность переходных процессов, приблизительно равная 3Т В, а Т В = 1 / (2pF), то:

V = 2F log 2 k, бит/с,

где k ≤ 1+A (A – отношение сигнал/помеха).

Проводные линии связи в вычислительных сетях представлены коаксиальными кабелями и витыми парами проводов.

Используются следующие коаксиальные кабели – «толстый» диаметром 12,5 мм и “тонкий” диаметром 6,25 мм. «Толстый» кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже «тонкого».

Существуют экранированные STP (Shielded Twist Pair) и неэкранированные UTP (Unshielded Twist Pair) пары проводов. Чаще используются неэкранированные пары, имеющие несколько категорий (типов).

Более совершенными являются неэкранированные витые пары категорий 5 и 6. Пару категории 5 применяют при частотах до 100 МГц. В ней проводник выполнен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. Длины соединений в высокоскоростных ЛВС на UTP обычно не превышают 100 м.

Примерами пар категорий 6 и 7 могут служить кабели, выпускаемые фирмой PIC. В них размещается по 4 пары проводов, каждая со своим цветом полиэтиленовой изоляции. В кабеле категории 6 оболочка имеет диаметр 5 мм, а медные проводники имеют диаметр 0,5 мм. Затухание в этом кабеле на частоте 100 МГц составляет около 22 дБ. В кабеле категории 7 каждая пара дополнительно заключена в экранирующую алюминиевую фольгу, диаметр оболочки увеличен до 8 мм, затухание на 100 МГц составляет около 20 дБ, на 600 МГц – 50 дБ.

Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к «земле»), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

Волоконно-оптические линии связи (ВОЛС) имеют значительное преимущество перед проводными линиями. Они незаменимы при передаче информации на большие расстояния, а также в высокоскоростных магистральных каналах корпоративных и территориальных сетей.

Конструктивно ВОЛС представляет собой кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой с внешним диаметром 125...200 мкм. Типичные характеристики ВОЛС – работа на волнах 0,83...1,55 мкм, затухание 0,7 дБ/км, полоса частот до 2 ГГц.

Предельные расстояния D для передачи данных по ВОЛС
(без ретрансляции) зависят от длины волны излучения l : при l = 850 нм
D = 5 км, а при l = 300 нм – D = 50 км. Однако с уменьшением длины волны излучения значительно возрастает стоимость аппаратуры.

Примером среды передачи данных между мейнфреймами, рабочими станциями, пулами периферийных устройств может служить среда Fiber Channel на ВОЛС, обеспечивающая скорости от 133 до 1062 Мбит/с на расстояниях до 10 км. Для сравнения – по стандартному интерфейсу SCSI скорость составляет 160 Мбит/с при расстояниях не более десятков метров между рабочей станцией и дисководом.

К числу новых стандартов для высокоскоростных магистралей передачи данных относится стандарт цифровой синхронной иерархии SDH (Synchronous Digital Hierachy). В сетях SDH в качестве линий передачи данных используют ВОЛС. Стандарт устанавливает структуру фреймов, на которые разбивается поток передаваемых данных. Эта структура названа транспортным модулем.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Для того чтобы компьютеры могли связаться между собой в сеть, они должны быть соединены между собой с помощью некоторой физической передающей среды. Основными типами передающих сред, используемых в компьютерных сетях, являются:

    аналоговые телефонные каналы общего пользования;

    цифровые каналы;

    узкополосные и широкополосные кабельные каналы;

    радиоканалы и спутниковые каналы связи;

    оптоволоконные каналы связи.

Аналоговые каналы связи первыми начали применяться для передачи данных в компьютерных сетях и позволили использовать уже существовавшие тогда развитые телефонные сети общего пользования. Передача данных по аналоговым каналам может выполняться двумя способами. При первом способе телефонные каналы (одна или две пары проводов) через телефонные станции физически соединяют два устройства, реализующие коммуникационные функции с подключенными к ним компьютерами. Такие соединения называют выделенными линиями или непосредственными соединениями. Второй способ - это установление соединения с помощью набора телефонного номера (с использованием коммутируемых линий).

Качество передачи данных по выделенным каналам, как правило, выше, и соединение постоянное. Кроме того, для каждого выделенного канала необходимо свое коммуникационное устройство (хотя есть и многоканальные коммуникационные устройства), а при коммутируемой связи можно использовать для связи с другими узлами одно коммуникационное устройство.

Параллельно с использованием аналоговых телефонных сетей для межкомпьютерного взаимодействия начали развиваться и методы передачи данных в дискретной (цифровой) форме по ненагруженным телефонным каналам (к которым не подведено электрическое напряжение, используемое в телефонной сети) - цифровым каналам.

Следует отметить, что наряду с дискретными данными по цифровому каналу можно передавать и аналоговую информацию (голосовую, видео-, факсимильную и т. д.), преобразованную в цифровую форму.

Наиболее высокие скорости на небольших расстояниях могут быть получены при использовании особым образом скрученной пары проводов (для того, чтобы избежать взаимодействия между соседними проводами), так называемой витой паре (ТР - Twisted Pair).

Кабельные каналы, или коаксиальные пары, представляют собой два цилиндрических проводника на одной оси, разделенных диэлектрическим покрытием. Один тип коаксиального кабеля (с сопротивлением 50 Ом), используется главным образом для передачи узкополосных цифровых сигналов, другой тип кабеля (с сопротивлением 75 Ом) - для передачи широкополосных аналоговых и цифровых сигналов. Узкополосные и широкополосные кабели, непосредственно связывающие между собой коммуникационные оборудования, позволяют обмениваться данными на высоких скоростях (до нескольких мегабит/с) в аналоговой или цифровой форме. Следует отметить, что на небольших расстояниях (особенно в локальных сетях) кабельные каналы все больше вытесняются каналами на витых парах, а на большихрасстояниях - оптоволоконными каналами связи.

Использование в компьютерных сетях в качестве передающей среды радиоволн различной частоты является экономически эффективным либо для связи на больших и сверхбольших расстояниях (с использованием спутников), либо для связи с труднодоступными, подвижными или временно используемыми объектами.

Обмен данными по радиоканалам может вестись с помощью как аналоговых, так и цифровых методов передачи. Цифровые методы получают в последнее время преимущественное развитие, т. к. позволяют объединить наземные участки цифровых сетей и спутниковых каналов или радиоканалов в единой сети. Новым импульсом в развитии радиосетей стало появление сотовой телефонной связи, позволяющей осуществлять голосовую связь и обмен данными с помощью радиотелефонов или специальных устройств обмена данными.

Помимо обмена данными в радиодиапазоне, последнее время для связи на небольшие расстояния (обычно в пределах комнаты) используется и инфракрасное излучение.

В оптоволоконных каналах связи используется известное из физики явление полного внутреннего отражения света, что позволяет передавать потоки света внутри оптоволоконного кабеляна большие расстояния практически без потерь. В качестве источников света в оптоволоконном кабеле используются светоиспускаюшие диоды (LED-light-emittingdiode) или лазерныедиоды, а в качестве приемников - фотоэлементы.

Оптоволоконные каналы связи, несмотря на их более высокую стоимость по сравнению с другими видами связи, получают все большее распространение, причем для связи не только на небольших расстояниях, но и на внутригородских и междугородных участках.

Технические средства коммуникаций составляют кабели, коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.