Линейное программирование. Симплекс-метод. Решить задачу линейного программирования симплекс методом

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

+
- x 1 + x 2 - S 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4



Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не меньше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.


+
- x 1 + x 2 - S 1 + R 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4

x 1 = 0 x 2 = 0 S 1 = 0
S 2 = 15 S 3 = 4 R 1 = 1
=> W = 1

Шаг №1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
-1 1 -1 0 0 1 1 1: 1 = 1
1 3 0 1 0 0 15 15: 3 = 5
-2 1 0 0 1 0 4 4: 1 = 4
1 -1 1 0 0 0 W - 1
-1 1 -1 0 0 1 1
4 0 3 1 0 -3 12
-1 0 1 0 1 -1 3
0 0 0 0 0 1 W - 0


+
- x 1 + x 2 - S 1 = 1
4 x 1 3 S 1 + S 2 = 12
- x 1 + S 1 + S 3 = 3



Шаг №1
x 1 x 2 S 1 S 2 S 3 св. член Θ
-1 1 -1 0 0 1
4 0 3 1 0 12 12: 4 = 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
-1 1 -1 0 0 1
1 0 3/4 1/4 0 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
0 1 -1/4 1/4 0 4
1 0 3/4 1/4 0 3
0 0 7/4 1/4 1 6
0 0 -2 -1 0 F - 13

S 1 = 0 S 2 = 0
x 1 = 3 x 2 = 4 S 3 = 6
=> F - 13 = 0 => F = 13
Среди коэффициентов выделенной строки нет положительных. Следовательно, найдено наибольшее значение функции F.

Симплексный метод − это метод упорядоченного перебора опорных планов (упорядоченность обеспечивается монотонным изменением значения целевой функции при переходе к очередному плану). При этом необходимо соблюдать принцип: каждый следующий шаг должен улучшить или, в крайнем случае, не ухудшить значение целевой функции.

Для решения ЗЛП симплекс-методом ее приводят к каноническому виду, т.е. из ограничений – неравенств надо сделать ограничения – равенства. Для этого в каждое ограничение вводится дополнительная неотрицательная балансовая переменная со знаком «+», если знак неравенства «£», и со знаком «–», ели знак неравенства «³».

В целевой функции эти дополнительные переменные входят с нулевыми коэффициентами, т.е. запись целевой функции не изменится. Каждую переменную, на которую не наложено условие неотрицательности, можно представить в виде разности двух неотрицательных переменных: .

Если ограничения задачи отображают наличие и расход ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в канонической форме, равно объему неиспользованного ресурса.

Для решения задачи симплекс-методом будем использовать укороченные симплексные таблицы системы линейных уравнений и метод модифицированного жорданова исключения .

1. Составляем первый опорный план

Задача остается прежней. Приведем стандартную форму системы неравенств (1) в каноническую форму системы уравнений путем введения дополнительных балансовых переменных x 3 , x 4 , x 5 , x 6 .

или

В экономическом смысле значения дополнительных переменных x 3 , x 4 , x 5 определяют остатки сырья после реализации продукции.

Матрица полученной системы уравнений имеет вид:

Видно, что в матрице A базисным минором 4-го порядка является определитель, составленный из единичных коэффициентов при дополнительных переменных x 3 , x 4 , x 5 , x 6 , так как он отличен от нуля и равен 1. Это означает, что векторы-столбцы при этих переменных является линейно независимыми, т.е. образуют базис , а соответствующие им переменные x 3 , x 4 , x 5 , x 6 являются базисными (основными). Переменные x 1 , x 2 будут называться свободными (неосновными).

Если свободным переменным x 1 и x 2 задавать различные значения, то, решая систему относительно базисных переменных, получим бесконечное множество частных решений. Если свободным переменным задавать только нулевые значения, то из бесконечного множества частных решений выделяют базисные решения – опорные планы.

Чтобы выяснить, могут ли переменные быть базисными, необходимо вычислить определитель, состоящий из коэффициентов при этих переменных. Если данный определитель не равен нулю, то эти переменные могут быть базисными.


Количество базисных решений и соответствующее ему число групп базисных переменных может быть не более, чем , где n –общее число переменных, r – число базисных переменных, r m n .

Для нашей задачи r = 4; n = 6. Тогда , т.е. возможны 15 групп из 4-х базисных переменных (или 15 базисных решений).

Разрешим систему уравнений относительно базисных переменных x 3 , x 4 , x 5 , x 6:

Полагая, что свободные переменные x 1 = 0, x 2 = 0, получим значения базисных переменных: x 3 = 312; x 4 = 15; x 5 = 24; x 6 = –10, т.е. базисное решение будет = (0; 0; 312; 15; 24; –10).

Данное базисное решение является недопустимым , т.к. x 6 = –10 ≤ 0, а по условию ограничений x 6 ≥ 0. Поэтому вместо переменной x 6 в качестве базисной надо взять другую переменную из числа свободных x 1 или x 2 .

Дальнейшее решение будем выполнять, используя укороченные симплексные таблицы, заполнив строки первой таблицы коэффициентами системы следующим образом (табл. 1):

Таблица 1

F –строка называется индексной . Она заполняется коэффициентами целевой функции, взятыми с противоположными знаками, так как уравнение функции можно представить в виде F = 0 – (– 4x 1 – 3x 2).

В столбце свободных членов b i есть отрицательный элемент b 4 = –10, т.е. решение системы является недопустимым. Чтобы получить допустимое решение (опорный план), элемент b 4 надо сделать неотрицательным.

Выбираем x 6 -строку с отрицательным свободным членом. В этой строке есть отрицательные элементы. Выбираем любой из них, например, «–1» в x 1 -столбце, и x 1 -столбец принимаем в качестве разрешающего столбца (он определит, что переменная x 1 перейдет из свободных в базисные).

Делим свободные члены b i на соответствующие элементы a is разрешающего столбца, получаем оценочные отношения Θ i = = {24, 15, 12, 10}. Из них выбираем наименьшее положительное (minΘ i =10), которое будет соответствовать разрешающей строке . Разрешающая строка определяет переменную x j , которая на следующем шаге выступает из базиса и станет свободной. Поэтому x 6 -строка является разрешающей строкой, а элемент «–1» – разрешающим элементом . Обводим его кружком. Переменные x 1 и x 6 меняются местами.

Оценочные отношения Θ i в каждой строке определяются по правилам:

1) Θ i = , если b i и a is имеют разные знаки;

2) Θ i = ∞, если b i = 0 и a is < 0;

3) Θ i = ∞, если a is = 0;

4) Θ i = 0, если b i = 0 и a is > 0;

5) Θ i = , если b i и a is имеют одинаковые знаки.

Совершаем шаг модифицированного жорданова исключения (ШМЖИ) с разрешающим элементом и составляем новую таблицу (табл. 2) по следующему правилу:

1) на месте разрешающего элемента (РЭ) устанавливается величина, ему обратная, т.е. ;

2) элементы разрешающей строки делятся на РЭ;

3) элементы разрешающего столбца делятся на РЭ и знак меняется;

4) остальные элементы находятся по правилу прямоугольника:

Из табл. 2 видно, что свободные члены в b i -столбце являются неотрицательными, следовательно, получено первоначальное допустимое решение – первый опорный план = (10; 0; 182; 5; 4; 0). При этом значение функции F () = 40. Геометрически это соответствует вершине F (10; 0) многоугольника решений (рис. 1).

Таблица 2

2. Проверяем план на оптимальность. Опорный план не оптимальный, так как в F -строке имеется отрицательный коэффициент «–4». Улучшаем план.

3. Нахождение нового опорного плана

Выбираем разрешающий элемент по правилу:

Выбираем наименьший отрицательный коэффициент в F -строке «–4», который и определяет разрешающий столбец – x 6 ; переменную x 6 переводим в базисные;

Находим отношения Θ i , среди них выбираем наименьшее положительное, которое соответствует разрешающей строке:

min Θ i = min {14, 5, 2, ∞} = 2, следовательно, x 5 -строка – разрешающая, переменную x 5 переводим в свободные (переменные x 5 и x 6 меняются местами).

На пересечении разрешающих строки и столбца стоит разрешающий элемент «2»;

Выполняем шаг ШМЖИ, строим табл. 3 по вышеприведенному правилу и получаем новый опорный план = (12; 0; 156; 3; 0; 2).

Таблица 3

4. Проверка нового опорного плана на оптимальность

Опорный план также не является оптимальным, так как в F -строке имеется отрицательный коэффициент «–1». Значение функции F () = 48, что геометрически соответствует вершине E (12; 0) многоугольника решений (рис. 1). Улучшаем план.

5. Нахождение нового опорного плана

x 2 -столбец – разрешающий, так как в F -строке наименьший отрицательный коэффициент «–1» находится в x 2 -столбце (Δ 2 = –1). Находим наименьшее Θ i : min Θ i = min {≈ 9, 6, ∞, 24} = 6, следовательно, x 4 -строка – разрешающая. Разрешающий элемент «1/2». Меняем местами переменные x 2 и x 4 . Выполняем шаг ШМЖИ, строим табл. 4, получаем новый опорный план = (9; 6; 51; 0; 0; 5).

6. Проверка опорного плана на оптимальность

В F -строке все коэффициенты неотрицательны, следовательно, опорный план является оптимальным. Геометрически соответствует точке D (9;6) (см. рис. 1). Оптимальный план дает максимальное значение целевой функции у.е.

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач симплекс-методом. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами: -система ограничений должна быть системой уравнений с базисом; -свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод . Составим первую симплекс-таблицу (Итерация 0) для решения задачи на симплекс-метод , т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

симплекс-метод итерация 0

Отношение

Для улучшения решения перейдем к следующей итерации симплекс-метода , получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации симплекс-метода. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации симплекс-метода это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации симплекс-метода. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации симплекс-метода переменная x 2 заменит в базисе s 1 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0, цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z-строки имеем:

Старая z-строка (-4 -6 0 0 0 0) -(-6)*Новая разрешающая строка -(0 -6 0 0 -6 -120) =Новая z-строка (-4 0 0 0 6 120).

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

симплекс-метод итерация 1

Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

симплекс-метод итерация 2

Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

симплекс-метод итерация 3

Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Понравилось? Добавьте в закладки

Решение задач симплекс-методом: примеры онлайн

Задача 1. Компания производит полки для ванных комнат двух размеров - А и В. Агенты по продаже считают, что в неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м2 материала, а для полки типа В - 3 м2 материала. Компания может получить до 1200 м2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин машинного времени, а для изготовления одной полки типа В - 30 мин; машину можно использовать 160 час в неделю. Если прибыль от продажи полок типа А составляет 3 денежных единицы, а от полок типа В - 4 ден. ед., то сколько полок каждого типа следует выпускать в неделю?

Задача 2. Решить задачу линейного программирования симплекс-методом.

Задача 3. Предприятие производит 3 вида продукции: А1, А2, А3, используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.

  1. Сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли?
  2. Определить статус каждого вида сырья и его удельную ценность.
  3. Определить максимальный интервал изменения запасов каждого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится.
  4. Определить количество выпускаемой продукции и прибыль от выпуска при увеличении запаса одного из дефицитных видов сырья до максимально возможной (в пределах данной номенклатуры выпуска) величины.
  5. Определить интервалы изменения прибыли от единицы продукции каждого вида, при которых полученный оптимальный план не изменится.

Задача 4. Решить задачу линейного программирования симплексным методом:

Задача 5. Решить задачу линейного программирования симплекс-методом:

Задача 6. Решить задачу симплекс-методом, рассматривая в качестве начального опорного плана, план, приведенный в условии:

Задача 7. Решить задачу модифицированным симплекс-методом.
Для производства двух видов изделий А и Б используется три типа технологического оборудования. На производство единицы изделия А оборудование первого типа используется а1=4 часов, оборудование второго типа а2=8 часов, а оборудование третьего типа а3=9 часов. На производство единицы изделия Б оборудование первого типа используется б1=7 часов, оборудование второго типа б2=3 часов, а оборудование третьего типа б3=5 часов.
На изготовление этих изделий оборудование первого типа может работать не более чем t1=49 часов, оборудование второго типа не более чем t2=51 часов, оборудование третьего типа не более чем t3=45 часов.
Прибыль от реализации единицы готового изделия А составляет АЛЬФА=6 рублей, а изделия Б – БЕТТА=5 рублей.
Составить план производства изделий А и Б, обеспечивающий максимальную прибыль от их реализации.

Задача 8. Найти оптимальное решение двойственным симплекс-методом