Принцип действия генератора. Как устроен и работает генератор автомобиля

После открытия явления электромагнитной индукции М. Фарадеем в 1831 году были изобретены разнообразные электрические машины. Электрогенераторы среди них являются основой всех современных электросетей. Они являются источниками электроэнергии и первыми определяют её количество и качество. Прежде чем появляется возможность использования электричества потребителями необходимо не один раз выполнить преобразование напряжения для уменьшения потерь определяемых передачей электроэнергии.

По этой причине наиболее эффективными уже долгое время являются электросети с переменным напряжением и током. Их частота в разных странах выбирается либо 50, либо 60 Герц, потому что эти значения опять-таки наиболее экономически оправданы на нынешнем этапе развития науки и техники. В самом начале любой электрической сети находится один или несколько синхронных генераторов переменного тока.

Принцип работы

Чтобы в проводнике появился электроток, силовые линии магнитного поля должны быть подвижными относительно этого проводника. С этой целью в генераторе переменного тока подвижный вращающийся магнит, который своим магнитным полем пересекает неподвижные проводники. Он расположен на вале, вращаемом внешним источником механической энергии.

Вал с магнитом называется ротором или индуктором. Конструктивно ротор может быть выполнен как с постоянным магнитом из специального магнитного материала, так и с электромагнитом. Такая электрическая машина называется синхронной, поскольку магнитное поле в ней вращается вместе с ротором.

Для получения наиболее эффективного магнитного поля наибольшее распространение получила конструкция с ротором, изготовленным из специальных сплавов в виде сердечника охваченного витками обмотки, по которой течёт постоянный ток. Обмотка называется как «обмотка возбуждения». Источник тока возбуждения может быть как внешним, так и встроенным в ротор. Внешний источник подключается к двум неподвижным щёткам.

Последние расположены на основании, относительно которого вращается ротор, и образуют скользящие контакты с двумя соответствующими кольцами, расположенными на роторе. Встроенный источник является отдельной обмоткой с выпрямителем переменного тока. Его преимущество состоит в том, что скользящие контакты исключены из такой конструкции. Роторы могут конструктивно отличаться. Они делаются явнополюсными, неявнополюсными, снабжаются демпферными обмотками.

Для того чтобы получить необходимое значение частоты тока и напряжение надо за единицу времени получить определённое число пересечений силовых линий магнитного поля с проводником. С целью наиболее эффективного взаимодействия магнитного поля и проводника он выполнен в виде витков обмотки расположенных на сердечнике из специального сплава. Таких сердечников делается столько, сколько потребуется в соответствии с решаемой технической задачей.

Они располагаются вокруг ротора и называются статором. Каждый сердечник статора состоит из двух частей, между которыми с некоторым зазором расположен ротор. Эти две части образуют так называемую пару полюсов электрогенератора. При вращении противоположные магнитные полюсы ротора перемещаются мимо противоположных частей сердечника статора.

Пары полюсов располагаются на основании относительно которого перемещается ротор. Конструктивно это основание выполнено в виде корпуса генератора переменного тока. Статор, щётки, кольца и ротор скрыты внутри корпуса. Из него выступает вал и клеммы щёток. При вращении вала внешней силой например турбиной статор является источником Э.Д.С. Частота напряжения и тока в статоре зависят от того сколько раз за единицу времени магнитный полюс ротора перемещается мимо сердечников статора.

Конструктивные разновидности

Поэтому влиять на частоту напряжения и тока можно либо скоростью вращения ротора, либо числом пар полюсов, либо и тем и другим вместе. При замедлении скорости вращения ротора для сохранения частоты напряжения и тока следует увеличивать число пар полюсов. Этим отличаются генераторы тепловых электростанций от генераторов гидроэлектростанций и ветряков.

Паровая турбина вращается быстро, а гидротурбина – медленно. Но при этом частота напряжения и тока, которые вырабатывают оба этих генератора одинаковые. Однако у генератора гидроэлектростанции число пар полюсов в несколько раз больше, и они чаще всего делаются с явнополюсными роторами. Генераторы на тепловых электростанциях по причине больших скоростей вращения в 1500 и 3000 об/мин делаются с неявнополюсными роторами. Число пар полюсов зависит и от количества фаз. Одной фазе соответствует одна пара полюсов статора. Поэтому трёхфазные варианты содержат три пары полюсов, как минимум.

  • Пространственное расположение пар полюсов в многофазных генераторах определяет фазовый сдвиг напряжений и токов в фазных обмотках.

Пространственное расположение генераторов в рабочем состоянии по положению оси вращения ротора может быть как горизонтальным, так и вертикальным. Работа с паровой или газовой турбиной по причине больших центробежных нагрузок предусматривает только горизонтальное расположение, минимально возможный диаметр и максимально возможную длину генератора. Пример такой электрической машины показан на изображении ниже:

На гидроэлектростанциях в зависимости от напора воды могут использоваться как горизонтальные, так и вертикальные конструкции этих электрических машин. Существуют специальные конструкции явнополюсных генераторов относительно небольших мощностей порядка десяти киловатт. В них индуктор (которым обычно является ротор) неподвижен, а якорь (которым обычно является статор) вращается. Вырабатываемая электроэнергия через кольца и щётки поступает в нагрузку.

Ещё одной разновидностью источника электрической энергии является асинхронный генератор переменного тока. Он имеет наиболее простую конструкцию и высокую надёжность. Но его энергетические характеристики, стабильность частоты напряжения и тока невелики по сравнению с синхронными машинами. Это ограничивает область использования асинхронных генераторов. Они применяются лишь там, где необходима простота, надёжность и наименьшие расходы.

Генератор - это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на виды, которые мы рассмотрим далее.

Генератор постоянного тока

Для того чтобы понять принцип работы генератора постоянного тока, нужно выяснить его основные характеристики, а именно зависимости главных величин, которые и определяют работу устройства в применяемой схеме возбуждения.

Основной величиной является напряжение, на которое влияет скорость вращения генератора, токовозбуждения и нагрузки.

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле. Это приспособление состоит из неподвижного магнита и проволочной рамки. Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке. За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор - током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор - постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Поэтому фирмы очень часто для защиты своей конфиденциальной информации используют генератор, устройство и принцип работы которого заключается в настройке аппарата на заданную частоту, если она известна, либо на определенный диапазон. Затем создается универсальная помеха в виде шумового сигнала. Для этого в самом аппарате находится генератор шума нужной мощности.

Также существуют и генераторы, которые находятся в шумовом диапазоне, благодаря которым можно замаскировать полезный звуковой сигнал. В этот комплект входит блок, который и формирует шум, а также его усиления и акустические излучатели. Основным недостатком использования таких устройств являются помехи, которые появляются при проведении переговоров. Для того чтобы аппарат справлялся полностью со своей работой, переговоры стоит проводить всего лишь в течение 15 минут.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами - силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Независимо от производителя таких генераторов, все они нормализуют напряжение изменением тока возбуждения одинаково. При возрастании либо уменьшении напряжения начинает увеличиваться либо уменьшаться ток возбуждения и проводить напряжение в необходимые пределы.

В повседневной жизни использование генераторов очень помогает человеку в решении множества возникающих вопросов.

Генератор тока — это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях.

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея- электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Содержание:

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение. К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось - электрической цепью. А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию. Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество. Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится - генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) - все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия - это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение - вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он - колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то - два проводочка. А в случае с трамваями вообще один. Второй - сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных - учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф - наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, - этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Трамвайные линии, как известно, поначалу унаследовали эту традицию - питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора - выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами - генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока - это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная - статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально - начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле - ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор - это точно пригнанные друг к другу массивные части. Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат. «сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов - при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита - а от него токопроводящая пыль) - начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Однофазные и многофазные

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части - ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками. Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f вращения ротора. Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта - наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита - около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или - U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек. Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга. Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 - 120⁰ и напряжение U3 - 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов - три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно - в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз». Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции - к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии. Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты - занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника - это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника - и генератор тока возбуждения, и генератор-устройство, дающее конечный результат - напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций - все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.

Когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.

Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.

Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.

Возьмем проводник в виде изогнутой петли, которую в дальнейшем будем называть рамкой (рис. 1), и поместим ее в магнитное поле, создаваемое полюсами магнита. Если такой рамке сообщить вращательное движение относительно оси 00, то стороны ее, обращенные к полюсам, будут пересекать магнитные силовые линии и в них будет индуктироваться ЭДС.

Рис. 1. Индуктирование ЭДС в пелеобразном проводнике (рамке), вращающемся в магнитном поле

Присоединив к рамке при помощи мягких проводников электрическую лампочку, мы этим самым замкнем цепь, и лампочка загорится. Горение лампочки будет продолжаться до тех пор, пока рамка будет вращаться в магнитном поле. Подобное устройство представляет собой простейший генератор, преобразующий механическую энергию, затрачиваемую на вращение рамки, в электрическую энергию.

Такой простейший генератор имеет довольно существенный недостаток. Через небольшой промежуток времени мягкие проводника, соединяющие лампочку с вращающейся рамкой, скрутятся и разорвутся. Для того чтобы избежать подобных разрывов в цепи, концы рамки (рис.2) присоединяются к двум медные кольцам 1 и 2, вращающимся вместе с рамкой.

Эти кольца получили название контактных колец. Отведение электрического тока с контактных колец во внешнюю цепь (к лампочке) осуществляется упругими пластинками 3 и 4, прилегающими к кольцам. Эти пластинки называются щетками.

Рис. 2. Направление индуктированной ЭДС (и тока) в проводниках А и Б рамки, вращающейся в магнитном поле: 1 и 2 - контактные кольца, 3 и 4 - щетки.

При таком соединении вращающейся рамки с внешней цепью разрыва соединительных проводов не произойдет, и генератор будет работать нормально.

Рассмотрим теперь направление индуктирующейся в проводниках рамки ЭДС или, что то же самое, направление индуктированного в рамке тока при замкнутой внешней цепи.

При направлении вращения рамки, которое показано на рис. 2, в левом проводнике АА ЭДС будет индуктироваться в направлении от нас за плоскость чертежа, а в правом ВВ - из-за плоскости чертежа на нас.

Так как обе половины проводника рамки соединены между собой последовательно, то индуктированные ЭДС в них будут складываться, и на щетке 4 будет положительный полюс генератора, а на щетке 3 отрицательный.

Проследим за изменением индуктированной ЭДС за полный оборот рамки. Если рамка, вращаясь в направлении часовой стрелки, повернется на 90° от положения, изображенного на рис. 2, то половинки ее проводника в этот момент будут двигаться вдоль магнитных силовых линий, и индуктирование ЭДС в них прекратится.

Дальнейший поворот рамки еще на 90° приведет к тому, что проводники рамки снова будут пересекать силовые линии магнитного поля (рис. 3), но проводник АА будет при этом по отношению к силовым линиям двигаться не снизу вверх, а сверху вниз, проводник же ВВ, наоборот, будет пересекать силовые линии, двигаясь снизу вверх.

Рис. 3. Изменение направления индуктированной э. д. с. (и тока) при повороте рамки на 180° по отношению к положению, приведенному на рис. 2.

При новом положении рамки направление индуктированной ЭДС в проводниках АЛ и ВВ изменится на обратное. Это следует из того, что самое направление, в котором каждый из этих проводников пересекает в этом случае магнитные силовые линии, изменилось. В результате полярность щеток генератора также изменится: щетка 3 станет теперь положительной, а щетка 4 отрицательной.

Таким образом, за один полный оборот рамки индуктированная ЭДС дважды меняла свое направление, причем величина ее за это же время также дважды достигала наибольших значений (когда проводники рамки проходили под полюсами) и дважды равнялась нулю (в моменты движения проводников вдоль магнитных силовых линий).

Вполне понятно, что изменяющаяся по направлению и величине ЭДС вызовет в замкнутой внешней цепи изменяющийся по направлению и величине электрический ток.

Так, например, если к зажимам данного простейшего генератора присоединить электрическую лампочку, то за первую половину оборота рамки электрический ток через лампочку будет идти в одном направлении, а за вторую.половину оборота - в другом.

Рис. 4. Кривая изменения индуктированного тока за один оборот рамки

Представление о характере изменения тока при повороте рамки на 360°, т. е. за один полный оборот, дает кривая на рис. 4. Электрический ток, непрерывно изменяющийся по величине и направлению, носит название .