Принцип работы 3d сканера. Внешний вид, рабочие органы

Chery Automobile Co. Ltd - молодая автомобильная компания из Китая. Годом основания история Чери называет 1997-ой, место локации - город Уху китайской провинции Аньхой, там же располагается штаб-квартира автопроизводителя, исследовательский институт и крупный автосборочный завод. Основным акционером государственной компании Chery Automobile Co. выступает правительство провинции Аньхой (КНР).
В 1997 году у европейского отделения Форда предприятием Чери было закуплено оборудование для производства автомобилей всего на 25 млн. долларов США.

Обзоры автомобилей Chery - новинки Чери :

В 1999 году после покупки лицензии на модель Toledo у компании Seat китайская Chery приступает к выпуску своего первого автомобиля Chery Amulet.
Два года компания Чери не могла получить лицензию позволяющую продавать свои авто на всей территории Китая, в течении этого периода Chery Amulet закупались для служб такси и администрации провинции Аньхой.
Следующая веха в истории компании Chery: в 2001 году 20% акций компании Chery Automobile переходят к холдингу SAIC (Шанхай), который владеет лицензией на торговлю авто в Китае. Автомобили Чери начинают продаваться по всему Китаю и экспортироваться в Сирию.
Chery Automobile Co. Ltd является первой компанией из Китая, автомобили которой начали продаваться на экспорт.

В 2002 году китайская компания Chery стала первым автопроизводителем, которому удалось пройти тесты на безопасность в Auto Side Impact Test (Китайский Национальный Центр авто-тестов), а так же получить свидетельство ISO/TS 16949 TUV в Германии.
В 2003 году при заводе открывается Автомобильный научно-исследовательский институт для проектирования и разработки собственных автомобилей. В Иране налажена крупноузловая сборка китайских автомобилей Chery. Появляется модель Chery QQ, сильно напоминающая свои вешним видом Daewoo Tico, и седан Chery Eastar, копирующий Daewoo Legenza.
Непростым моментом в истории Чери явился выход в 2004 году SAIC из состава акционеров, но китайскому производителю удалось оставить лицензию на продажу авто в Китае и сохранить за собой право экспорта. На заводе устанавливается современное покрасочное оборудование системы DURR. Выпуск авто по итогам года составляет более 185000 экземпляров.

В 2005 году компания начинает техническое сотрудничество с британской компанией Lotus Engineering и японской Mitsubishi Automotive Engineering. К разработке дизайна новинок Чери привлекаются специалисты из Bertone и Pininfarina (Италия), Cavax (Япония). Китайская компания начинает производить моторы Acteco (Euro 4) разработанные инженерами австрийской компании AVL List. Ассортимент двигателей состоит из 18 дизельных и бензиновых агрегатов объемом от 0,8 до 4 литров.
В этом же году история Chery обогатилась выпуском очередного клона, на этот раз кроссовера Toyota RAV4 - Chery Tiggo, выпускаемого также в России под именем Vortex Tingo.
В 2006 году производство автомобилей Чери развернуто в России, Украине и Индонезии. Новые модели : седан Chery Elara (в России TagAZ Vortex Estina),
минивэн Chery CrossEastar (CheryB14), компактный седан Chery Jaggi (Chery QQ6), минивен Chery Karry.

В 2007 году появляется оригинальный хэтчбек Chery Kimo.
В 2008 году череду новинок Chery пополнила модель A13, известная и под другими именами: Chery Bonus, Chery Very или ЗАЗ Forza. Также авто с итальянским дизайном Chery M11 с кузовом седан или хэтчбек.
В 2010 году начат выпуск компактного кроссовера Chery Beat, в России имя этой новинки Chery - IndiS.

Chery Automobile Co., Ltd производит автомобили под четырьмя суб-брендами: Chery, Rely, Karry і Riich.
В 2011 году Chery Automobile было произведено около 650 тысяч автомобилей, четвертая часть из которых проданы на экспорт. На сегодня компания Чери занимает седьмое место в Китае среди автопроизводителей. В настоящее время помимо Китая автомобили Chery производятся на четырнадцати заводах в разных частях света.

В марте 2012 года произошло очередное знаковое событие в истории Chery Automobile Co. Ltd и Jaguar Land Rover подписали соглашение о сборке автомобилей Jaguar и Land Rover на территории Китая, а также о совместном создании новой автомобильной марки, разработке и производстве моторов и коробок передач. Первые результаты этой сделки можно ожидать в 2013 году. Сумма общих инвестиций в строительство завода и исследовательского центра составляет 2,78 миллиарда долларов. Похоже, новейшие авто технологии сами идут в Китай.


Здравствуйте, дорогие посетители сайта!

Этим постом я открываю серию статей о 3d сканерах и 3d сканировании. В данной статье мы разберемся с тем, какие методы сканирования существуют, чем они отличаются и где используются. Для начала давайте поймем, что такое вообще 3d сканирование. Представьте, что есть деталь с большим количеством сложных поверхностей, которую обычным штангенциркулем не измеришь, либо придется долго и мучительно повозиться, чтобы получить результаты требуемой точности. А потом по этим данным еще получить математическую модель. Вот тут-то и приходит на помощь 3D сканер . Он позволяет в разы сократить получение математической модели, пригодной для сравнения с эталонной моделью. Применение сканирования на этом не заканчивается. 3d сканирование также используется для получения точных моделей сложнопрофильных объектов, которые в дальнейшем могут быть использованы для получения прототипов изделия, построения новых изделий на базе существующих. Также применяются в киноиндустрии, в медицине, в музейном деле, в промышленном дизайне и в индустрии развлечений, например, при создании компьютерных игр. С помощью трехмерного сканирования можно оцифровывать культурное наследие, археологические объекты, предметы искусства. Кроме того широкое применение трехмерное сканирование нашло в медицинском протезировании, в цифровом архивировании и так далее. Теперь давайте разберемся, какие методы 3d сканирования существуют. На данный момент есть следующие методы сканирования:

  1. Контактный метод.
  2. Беcконтактные методы:
    • Активный метод.
    • Пассивный метод.

Области применения этих методов:

  • Инженерный анализ
  • Контроль качества и инспекция
  • Разработка упаковки
  • Цифровое архивирование
  • Промышленный дизайн
  • Развлечения и игры
  • Рынок аксессуаров
  • Репродуцирование и изготовление на заказ
  • Медицина и ортопедия

Остановимся на каждом методе поподробнее.

Контактный метод

Основным принципом данного метода является обводка сканируемого объекта специальным механическим приспособлением, которое является сенсором и называется щуп. Перед началом сканирования на объект наносится сетка, размер ячеек которой в областях высокой кривизны поверхности должен быть минимальным, а в местах малой кривизны — наибольшим. Там, где линии сетки пересекаются, образуются точки. Посредством щупа производится замер координат этих точек, которые потом вводятся в компьютер. Этот способ используется при ручной обводке поверхности объекта. Современным развитием данного метода стало использование для сканирования специального устройства. В этом случае нет необходимости в ручной обводке и нанесении сетки. Щуп движется по поверхности объекта и в компьютер заносятся координаты о его положении. На базе этих координат строится трехмерная модель сканируемого объекта.

Преимущества контактного 3D сканирования :

  • простота процесса,
  • независимость от условий освещения,
  • высокоточное сканирование ребристых поверхностей и призматических деталей,
  • компактный объём полученных файлов.

Недостатки:

  • невозможность захвата текстуры сканируемого объекта,
  • сложность или невозможность сканирования объектов больших размеров.

Бесконтактные методы:

Активный метод

Активный метод основывается на регистрации отраженных лучей от объекта сканирования. Источником таких лучей является с
ам 3d сканер . Сканер может облучать объект следующими видами лучей:

  • направленные световые,
  • лазерные,
  • ультразвук,
  • рентгеновские.

Принцип данного метода основывается на измерении расстояния от сканера до точек объекта сканирования. Данными точками могут являться светоотражающие самоклеющиеся маркеры. Также широко используется сканирование оптическими системами, использующими модулированную или структурированную подсветку. В случае модулированной подсветки объект освещается световыми импульсами, изменяющимися определенным образом. Камера считывает отражения и по искажениям получает облик сканируемого объекта. При структурированной подсветке объект освещается определенным “узором” (сеткой), по искажениям которой камера формирует 3d модель. Эти данные либо сохраняются в памяти сканера, а потом передаются на компьютер, либо сразу отправляются в компьютер, где происходит их обработка и построение трехмерной модели. Т.к. 3d сканер в один момент времени видит только часть объекта, в процессе сканирования необходимо перемещать объект сканирования, либо двигать сам сканер. Таким образом в итоге мы получаем модель, сшивая полученные куски объекта. В большинстве случаев отсканированный кусок объекта отображается сразу на экране компьютера. Это позволяет сразу проконтролировать, насколько хорошо выбран угол сканирования и понять, за сколько итераций можно отсканировать объект. Выбирая правильные углы сканирования, можно добиться сокращения сканирования за счет уменьшения количества сканируемых кусков объекта.

Преимущества активного метода 3d сканирования:

  • низкая стоимость сканирования,
  • возможность применения вне помещения,
  • использование при различной освещенности,
  • не требуется наносить сетку на объект,
  • сканирование производится по бесконтактной технологии,
  • есть возможность сканировать объекты недоступные для других методов сканирования.

Недостатки:

  • сложность или невозможность сканирования прозрачных и зеркальных поверхностей,
  • сканирование мелкоразмерных изделий требует использование более точной оптики, а соответсвенно более дорогих 3d сканеров .

Пассивный метод

Пассивный метод использует уже имеющийся окружающий свет. Отраженмие этого света от объекта и анализируется 3d сканером . По сути этот метод сканирования представляет собой либо съемку объекта обычными видеокамерами при разной освещенности и восстановление их в 3d, либо съемка силуэта объекта на высококонтрастном фоне при помощи стереоскопических или “силуэтных” видеокамер.

Подведем итог. Каждый метод по-своему хорош и привлекателен. Выбор между этими методами стоит осуществлять исходя из финансовых соображений, сложности объекта сканирования и точности, которую вы хотите получить в результате.

3D-сканер – это устройство, с помощью которого можно создавать точные трехмерные модели реальных объектов.

Преимущества этой технологии:

  • высокая степень детализации;
  • информация о поверхности, форме и цвете объекта в цифровом виде.

Он преобразует объект в его цифровое изображение подобно тому, как простой 2D сканер преобразует изображение на листе бумаги в изображение на компьютере.

Применение 3D-сканеров

3D-сканеры используются во многих областях промышленности, науки, медицины и искусства. В частности, они успешно решают задачи реверс-инженеринга, контроля формы объектов, сохранения культурного наследия, используются в музейном деле, в медицине и дизайне. Таким образом, они необходимы во всех случаях, когда требуется зарегистрировать форму объекта с высокой точностью и за короткое время. Трехмерные сканеры позволяют упростить и улучшить ручной труд, а порой даже выполнить задачи, которые казались невозможными.

Эти устройства полезны в промышленности для бесконтактного контроля поверхностей сложной геометрической формы, а также для проектирования систем. Они используются:

  • для оценки износов оснастки и создания упаковки, точно повторяющей форму изделия;
  • в медицине с помощью 3D-сканеров ставят диагнозы, планируют операции и даже делают анатомическую обувь;
  • в ортодонтии, где необходимо точное, качественное сканирование объектов небольшого размера.;
  • дизайнеры используют 3D-сканеры для получения формы объекта, и её доработки;
  • в музейном деле и археологии они применяются для детального сканирования, точного восстановления и реконструкции скульптур и памятников архитектуры;
  • сканирование людей (получение цветной 3D-модели человека) уже сегодня используется для киноиндустрии и анимации.

Возможности 3D-сканеров

Как правило, 3D-сканер представляет собой небольшое электронное устройство, ручное (весом до 2 кг) или стационарное, которое использует в качестве подсветки лазер или лампу вспышку.

Точность получаемых моделей объектов варьируется от десятков до сотен микрометров. Возможно сканирование с передачей цвета или только формы поверхности. Эти устройства не только упрощают процесс создания трехмерных моделей – они печатают с максимальной точностью по отношению к исходному оригиналу.

Цена 3D сканеров зависит от технологии, применяемой для сканирования. Сегодня это доступный инструмент, которым пользуются даже небольшие компании.

Классификация 3D-сканеров

3D-сканеры делятся на два типа по методу сканирования:

  • Контактные. При таком сканировании происходит непосредственный контакт сканера с исследуемым объектом;
  • Бесконтактные.

Бесконтактные устройства в свою очередь подразделяются на две отдельные категории:

  • Пассивные сканеры;
  • Активные сканеры.

Пассивные сканеры сами ничего не излучают на объект, а видят отраженное фоновое излучение. Большинство сканеров такого типа реагируют на видимый свет - окружающее излучение.

Активные сканеры излучают на объект направленные волны и используют их отражение для анализа. Излучения бывают разными:

  • Естественного света;
  • Лазерных лучей;
  • Инфракрасного излучения;
  • Рентгеновских лучей;
  • Ультразвука.

Технологии сканирования

Для создания 3D-сканеров используются различные технологии. У каждой из них есть свои ограничения, преимущества и недостатки. Сегодня основными направлениями являются оптическая и лазерная технологии.

Сканирование по оптической технологии осуществляется путем проецирования на объект линий, образующих уникальный узор. Информация о форме поверхности объекта содержится в искажениях формы проецируемого изображения.

В сканировании по лазерной технологии используется лазер, безопасный для зрения. Чтобы привязать 3D-сканер с лазерной подсветкой к объекту сканирования, нередко применяются специальные светоотражающие маркеры, закрепленные рядом с объектом сканирования или прямо на нем, в определённых точках.

Ограничения в сканируемых объектах присутствуют в обоих этих технологиях.

Лазерные сканеры по большей части не применимы для сканирования подвижных объектов, так как этот процесс отнимает слишком много времени. К тому же необходимо нанести специальные светоотражающие метки. Преимущество данной технологии – в высокой точности 3D-модели, но она предназначена для статичных объектов.

Оптические 3D-сканеры не очень хороши при сканировании блестящих, зеркальных или прозрачных поверхностях. Зато у них большая скорость сканирования, что устраняет проблему искажения получаемой модели при движении объекта, и не нужно наносить отражающие метки. Поэтому оптические сканеры можно использовать даже для сканирования человеческих лиц.

3D принтеры уже перестали казаться тем чудом техники, которым являлись еще совсем недавно, чего нельзя сказать про 3D сканеры. Эти устройства пока еще не получили столь широкого применения, но они становятся все более востребованными в самых разных сферах производства.

Назначение 3D сканера

Как и обычный, трехмерный сканер предназначается для ввода информации о каком-либо реальном объекте в компьютер. Разница лишь в том, что в случае с уже привычным офисным сканером оператор имеет дело с плоским предметом на бумаге, трехмерный же позволяет «запечатлеть» объемный образ.

Нельзя сказать, что технология трехмерного сканирования была нова. Она применялась довольно давно, однако в силу своей сложности и дороговизны была доступна лишь «избранным» - правительственным и научным организациям, учреждениям государственного масштаба. С появлением бытовых 3D сканеров , многие модели из которых предлагает на выбор компания REC, данная технология стала без преувеличения доступна всем. То, что прежде выполнялось за долгие часы, а то и дни, сейчас можно сделать за считанные минуты.

Принцип работы трехмерного сканирования

В основе трехмерного сканирования лежит сбор информации об объекте путем его изучения лучом сверхточного лазера или специальной лампы. В последнем случае точность сканирования значительно выше. Однако в любом случае работа сканера основывается на измерении расстояния от источника излучения до самого объекта и до каждой отдельной его части.

Измерение осуществляется с многих точек, в результате собирается информация о координатах каждой точки объекта, затем эти данные поступают на компьютер, при помощи специального программного обеспечения обрабатываются - и на основе загруженных данных и выполненных расчетов вырисовывается конечное изображение трехмерной модели реального объекта.

Интересно, что с помощью этой технологии можно получить информацию не только о форме объекта, но и, например, о его цвете. С этой моделью в дальнейшем оператор может поступить по своему усмотрению: выгрузить в другой 3D редактор, изменить что-либо в исходнике, наложить текстуру и т. д. Нередко полученную в результате трехмерного сканирования модель распечатывают в качестве прототипа на 3D принтере.

Области применения трехмерного сканирования

Области применения трехмерного сканирования чрезвычайно широки:

  • дизайн. На основе полученной модели можно создавать новые прототипы. Распечатанную модель используют в качестве образца для серийного изготовления или для последующей доработки;
  • медицина. Распечатанные на трехмерном принтере части человеческого тела - уже не фантастика. Кроме того, отсканировав больной орган, врач может облегчить себе задачу по постановке диагноза;
  • архитектура. Отсканированные элементы архитектуры могут применяться при создании других моделей зданий;
  • создание игр. Для того чтобы создать персонаж компьютерной игры, его нередко вылепляют из пластилина, а затем сканируют и в дальнейшем работают уже с отсканированной компьютерной моделью;
  • строительная промышленность использует отсканированные модели мостов, колонн и других сооружений для их доработки, изучения свойств и создания на их основе новых объектов;
  • научная деятельность. Ученым становится легче изучить отсканированный объект в трехмерном виде, тогда как оригинал может находиться в музее или на раскопках в другой части света.
  • И это еще далеко не полный перечень всех областей, где применяется технология 3D сканирования.

    В различных областях деятельности человека завоевывает свое место не только технологии 3D печати, но и такие интересные приборы, как 3D-сканеры. С помощью такого устройства можно выполнять сканирование различных физических предметов, получая их трехмерные цифровые модели, характеризующиеся высокой точностью. Полученные модели с электронными данными о форме конкретного предмета могут быть задействованы в строительной сфере, медицине и игровой индустрии. На то, что ранее требовалось часы или даже дни, в настоящий момент посредством 3D-сканера необходимы лишь считанные секунды.

    Принцип работы и преимущества

    3D-сканер исследует физический предмет и воссоздает его точную цифровую модель. Современные 3D-сканеры могут выглядеть как ручной прибор небольшого размера, либо быть стационарным устройством, использующим в качестве подсветки лазер или специальную лампу, чтобы увеличить точность измерений. Принцип работы определяется используемой технологией, однако в любом случае данное устройство имеет дело с определением расстояния до сканируемого предмета.

    Сканер исследует расстояние до объекта, задействуя две встроенные камеры и подсветку. С помощью этих «глаз» прибор измеряет расстояние до объекта в разных точках, а затем сопоставляет полученные от камер картинки. Все измеренияз аписываются, после чего проводится анализ и на экран уже выводится готовая цифровая модель. Сканирование может осуществляться и лазерным лучом, который перемещается над поверхностью предмета и измеряет расстояние в конкретной точке. Таким способом записываются координаты всех измеряемых точек, что открывает возможность для создания трехмерной компьютерной модели.

    Пользователь может оперировать самим процессом сканирования, устанавливая разрешение и соответствующие области, где требуется более высокая детализация. Современные 3D-сканеры уже научились обеспечивать точность получаемых трехмерных моделей вплоть до нескольких десятков или даже сотен микрометров. Причем имеется возможность сканировать объект с передачей не только его формы, но и цвета. В результате, существенно упрощается процесс создания трехмерных макетов – они создаются не только в короткие сроки, но и с очень высокой детализацией. Кроме того, полученное трехмерное изображение всегда можно открыть в редакторе и осуществить дополнительное редактирование по своему усмотрению.

    Разные модели сканеров характеризуются различными параметрами и возможностями, но все они находят применение в тех случаях, когда нужно максимально быстро и точно зарегистрировать форму предмета. Преимущество подобных приборов на практике обеспечивается не только существенным упрощением процесса получения 3Dмакетов и, как следствие, экономией времени, но и возможностью работы со сложными деталями и элементами.

    Классификация

    Все приборы подобного рода делятся на две большие группы:

    — Контактные сканеры

    Такие приборы используют, как ни трудно догадаться, контактный способ сканирования, то есть они исследуют сканируемый предмет буквально на ощупь, записывая соответствующие координаты. Для этого в их конструкции предусмотрено наличие специального высокочувствительного щупа. Контактные сканеры обладают такими несомненными плюсами, как высокая детализация, независимость от световых условий, возможность сканирования призматической части объекта. В то же время они довольно медленные в работе и во время сканирования возникает риск повреждения каких-либо хрупких предметов.

    — Бесконтактные сканеры


    3D сканер Sense

    Здесь применяется бесконтактный способ сканирования. Такие приборы бывают активными и пассивными. Активные устройства сами излучают специальные волны, после чего обнаруживают их отражение и анализируют для получения компьютерной модели. В качестве такого излучения может использоваться рентген, ультразвук или световые потоки. Например, рентгеновские лучи и ультразвук используются в сканерах, используемых в медицинских целях. Пассивные приборы не формируют никакого излучения, а лишь обнаруживают отраженное от объекта окружающее излучение. Например, свет. В целом, бесконтактные сканеры отличаются экономичностью, привлекательной технологией сканирования и возможностью использования вне помещений с различной степенью освещенности.

    Технологии сканирования

    К текущему моменту наибольшее распространение получили две технологии 3D-сканирования:

    — Лазерная


    Лазерный сканер REVscan из серии ручных самопозиционирующихся сканеров Handyscan 3D

    В данном случае устройства основаны на действии лазера. При использовании таких приборов на сканируемый объект, в определенных его точках наносятся особые светоотражающие маркеры, что позволяет обеспечить более высокую точность сканирования. Преимущество лазерных устройств состоит как раз в очень высокой точности создаваемых моделей. Однако лазерные приборы используются для сканирования исключительно статичных объектов и фактическине могут быть задействованы для получения моделей подвижных предметов (в этом случае процесс сканирования отнимает очень много времени). Благодаря тому, что лазерные сканеры дают возможность воссоздать невероятно точную модель, они применяются в разнообразных промышленных сферах, в частности, в машиностроении.

    — Оптическая

    Лазерные сканеры оказываются практически бесполезными, когда требуется отсканировать объекты, находящиеся в движении. Например, осуществить сканирование человеческого тела для медицинских задач. И тут на помощь приходят оптические приборы. Они осуществляют процесс сканирования предмета путем проецирования на него линий, формирующих своеобразный узор. Данные о поверхности предмета содержатся в искажениях формы проецируемой трехмерной картинки.

    Оптические устройства могут похвастаться высокой скоростью работы. Это автоматически устраняет проблему искажения компьютерной модели в случае движения сканируемого объекта. Кроме того, здесь не требуется наносить на предмет специальные метки. То есть оптические сканеры могут с успехом применяться для сканирования подвижных предметов или человеческого тела. Несмотря на то, что оптические приборы уступают по точности создания 3D моделей лазерным аналогам, они характеризуются большей универсальностью. В то же время и у них есть свои минусы. В частности, оптические устройства не способны осуществлять сканирование предметов с зеркальными или блестящими поверхностями.

    Области применения

    Получение 3D моделей отдельных объектов или предметов является очень важной задачей для многих сфер деятельности человека. Можно перечислить лишь несколько ключевых областей, где 3D-сканеры находят широкое применение:

    — Дизайн: создание трехмерного макета, на основе которого можно будет получить серийное изделие, изготовление дизайнерской упаковки, а также возможность получения и исследования формы объекта с ее последующей доработкой.

    Медицина: возможность создания трехмерных моделей суставов, строений кости и отдельных органов человеческого тела, планирование операционных манипуляций, проектирование разнообразной анатомической обуви и ортопедических конструкций.

    — Реверс-инжиниринг: получение точной компьютерной модели предметов, которых требуется воссоздать.

    — Архитектура: 3D-сканеры могут применяться для сканирования на заказ различных архитектурных деталей и элементов, например, колонн, статуй и декораций.

    — Индустрия развлечений: получение анимационных моделей для игр и фильмов, возможность создания цифрового мультимедиа контента, основанного непосредственно из концептуальной модели разработчика. Это актуально, прежде всего, для видеоигр и разработки игровых персонажей, навеянных творческой фантазией.

    — Строительная промышленность: получение чертежей мостов и сооружений в трехмерном исполнении, реконструкция автомобильных трасс и магистралей.

    — Контроль качества продукции: проверка соответствия создаваемой продукции установленным требованиям и техническим нормам.

    — Музейное дело и сохранение культурного наследия: точное восстановление формы устаревших скульптур или памятников для их последующей реконструкции, возможность организации виртуальных музейных экскурсий, сканирование старинных, антикварных предметов.

    — Архивирование: создание цифрового архива прототипов изделий.

    — Киноиндустрия: получение цветной трехмерной модели человека.

    Итак, использование столь технологичного прибора, как 3D-сканер, может облегчить деятельность человека во многих сферах. Это динамично развивающаяся технология, которая предоставляет уникальные возможности – от планирования медицинских операций и создания объемного дизайн-макета до контроля качества создаваемых изделий. 3D-сканеры требуются во всех случаях, когда нужно определить форму предмета с большой точностью и в минимально короткие сроки.