Прямая и двойственная задачи и их решение симплекс-методом. Решить задачу линейного программирования симплекс методом

Итак, последовательные переходы от одного сопряженного базиса к другому производят до тех пор, пока не получат решение задачи или не установят ее неразрешимость. Каждый переход от одного псевдоплана к другому составляет одну итерацию (один шаг) .

Каждая итерация содержит два этапа. На первом этапе выясняют, не является ли псевдоплан оптимальным планом прямой задачи, и если нет, то разрешима ли задача. Для этого необходимо вычислить и установить их знаки. Второй этап состоит в осуществлении элементарного преобразования - (одной итерации) метода полного исключения Жордана-Гауса, приводящего к новому псевдоплану с меньшим значением целевой функции.

Описание алгоритма . Задача ЛП должна быть задана в канонической форме (1.1), (1.2) или сведена к ней. Отыскивают сопряженный базис двойственной задачи и обозначают его . Разложим А 0 по векторам базиса А і1 ,.,А іm в соответствии с (1.9) и найдем псевдоплан прямой задачи.

Исследуем знаки {х i0 } . Если имеет место случай , то начальный псевдоплан является оптимальным планом прямой задачи. При наличии отрицательных компонент {х i0 } вычисляем коэффициенты разложения векторов A j по векторами сопряженного базиса {х ij } в соответствии с (1.8).

Если для некоторого r такого, что х r0 <0 , все то задача не разрешима (второй случай), и на этом процесс вычислений заканчивается.

Если имеет место третий случай (то есть для каждого r такого, что х r0 <0 , по крайней мере одна из компонент х rj <0 ), то переходим к второму этапу. С этой целью составляют таблицу k -й итерации (аналогичную симплекс-таблице ), которая состоит (m+2) строк и (n+1) -го столбца (табл. 6.1).

Столбец В x таблицы, как обычно, содержит векторы {A i } базиса псевдоплана хk , а столбец А 0 - базисные компоненти псевдоплана {х i0 (k)} . Строка (m+1) -индексная, ее заполняют параметрами , являющимися оценками векторов А j :

величина - значение целевой функции при псевдоплане

Итерацию k завершают заполнением главной части таблицы (от первой до (m+1) -й строк).

Таблица 6.1.
C C 1 C 2 . C j . C n
B x A 0 A 1 A 2 . A j . A n
C 1 X 1 X 10 X 11 X 12 . X 1j . X 1n
C 2 X 2 X 20 X 21 X 22 . X 2j . X 2n
. . . . . . . . .
C i X i X i0 X i1 X i2 . X ij . X in
. . . . . . . . .
C m X m X m0 X m1 X m2 . X mj . X mn
. .
. .

На первом этапе (k+1) -и итерации выясняют, имеет ли место первый, второй или третий случай.

В третьем случае переходим ко второму этапу. Сначала определяют вектор А r , который необходимо вывести из базиса. Его индекс r определяют из условия

В строке заполняют лишь те позиции, для которых x rj <0 . Вектор А l , который должен быть введен в базис, находят из условия

Определив направляющую строку r и столбец l , вычисляют элементы главной части таблицы (k+1) -й итерации по рекуррентным соотношениям

(1.15)

Где x ri - направляющий элемент преобразования.

Вычислительная схема алгоритма двойственного симплекс-метода похожа на вычислительную схему симплекс-метода . Аналогичны и формы таблиц.

Различие между методами заключается в том, что при симплекс -методе производят последовательный переход от одного допустимого базисного решения (опорного плана) задачи к другому, а при двойственном симплеск-методе - переход от одного псевдоплана к другому.

Формальное различие между вычислительными схемами этих методов проявляется только в правилах перехода от одного базиса к другому, а также в признаках оптимальности и неразрешимости задачи. В симплекс -методе сначала определяют вектор, вводимый в базис, а затем - вектор,исключаемый из базиса, а в двойственном симплекс-методе этот порядок - обратный.

Отметим некоторые важные свойства двойственного симплекс-метода .

В отличие от прямого

Рассмотрен пример решения задачи симплекс методом, а также пример решения двойственной задачи.

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

11.4. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

Из результатов предыдущих пунктов следует, что для получения решения исходной задачи можно перейти к двойственной и, используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, то легко заметить, что в столбцах записана исходная задача, а в строках –двойственная.

Как было показано, при решении прямой задачи на любой итерации разность , т.е. величина -коэффициента при переменной , равна разности между правой и левой частями соответствующего ограничения двойственной задачи. Если при решении прямой задачи с максимизируемой целевой функцией итерация не приводит к оптимальному решению, то по крайней мере для одной переменной и только в оптимуме для всех разность .

Рассматривая это условие с учетом двойственности, можно записать

.

Таким образом, если , то . Это означает, что, когда решение прямой задачи неоптимальное, решение двойственной задачи недопустимое. С другой стороны при . Отсюда следует, что оптимальному решению прямой задачи соответствует допустимое решение двойственной задачи.

Это позволило разработать новый метод решения задач линейного программирования, при использовании которого сначала получается недопустимое, но «лучшее, чем оптимальное» решение (в обычном симплекс-методе сначала находится допустимое , но неоптимальное решение). Новый метод, получивший название двойственного симплекс-метода , обеспечивает выполнение условия оптимальности решения и систематическое «приближение» его к области допустимых решений. Когда полученное решение оказывается допустимым, итерационный процесс вычислений заканчивается, так как это решение является и оптимальным.

Двойственный симплекс-метод позволяет решать задачи линейного программирования, системы ограничений которых при положительном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограничений, а также размера симплексной таблицы. Рассмотрим применение двойственного симплекс-метода на примере.

Пример . Найти минимум функции

при ограничениях

.

Перейдем к канонической форме:

при ограничениях

Начальная симплекс-таблица имеет вид

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 4

x 5

–3

–4

–1

–3

–3

–6

–2

–1

Начальное базисное решение оптимальное, но не допустимое.

Как и обычный симплексный метод, рассматриваемый метод решения основан на использовании условий допустимости и оптимальности.

Условие допустимости . В качестве исключаемой переменной выбирается наибольшая по абсолютной величине отрицательная базисная переменная (при наличии альтернатив выбор делается произвольно). Если все базисные переменные неотрицательные, процесс вычислений заканчивается, так как полученное решение допустимое и оптимальное.

Условие оптимальности . Включаемая в базис переменная выбирается из числа небазисных переменных следующим образом. Вычисляются отношения коэффициентов левой части -уравнения к соответствующим коэффициентам уравнения, ассоциированного с исключаемой переменной. Отношения с положительным или нулевым значением знаменателя не учитываются. В задаче минимизации вводимой переменной должно соответствовать наименьшее из указанных отношений, а в задаче максимизации – отношение, наименьшее по абсолютной величине (при наличии альтернатив выбор делается произвольно). Если знаменатели всех отношений равны нулю или положительные, задача не имеет допустимых решений.

После выбора включаемой в базис и исключаемой переменных для получения следующего решения осуществляется обычная операция преобразования строк симплекс-таблицы.

В рассматриваемом примере исключаемой переменной является . Отношения, вычисленные для определения новой базисной переменной, приведены в следующей таблице:

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

–2

–4

–1

–3

Отношение

В качестве включаемой переменной выбирается x 2 . Последующее преобразование строк приводит к новой симплекс-таблице:

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 2

x 5

–1

–1

Новое решение также оптимальное, но все еще недопустимое. В качестве новой исключаемой переменной выберем (произвольно) x 3 . Определим включаемую переменную.

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

отношение

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Заключается в построении оптимального недопустимого плана с последующим преобразованием его в допустимый, не нарушая оптимальности.

Алгоритм двойственного симплекс-метода

1) выбирают разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных членов;
2) выбирают разрешающий столбец по наименьшему по абсолютной величине отношению элементов L строки к отрицательным элементам разрешающей строки;
3) пересчитывают симплексную таблицу по правилам обычного симплекс-метода;
4) решение проверяют на оптимальность. Признаком получения допустимого оптимального решения является отсутствие в столбце свободных членов отрицательных элементов.
Замечания
1. Если в разрешающей строке нет ни одного отрицательного элемента, задача неразрешима.
2. Если ограничения задачи заданы неравенствами типа «≥», двойственный симплекс-метод позволяет избавиться от необходимости введения искусственных переменных.

Пример . Решить задачу, используя алгоритм двойственного симплекс-метода

L = x 1 + 4x 2 → min

Составляем исходную симплексную таблицу.

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 -2 -3 1 0 0 0 -20
x 5 -5 1 -2 0 1 0 0 -12
x 6 1 2 -1 0 0 1 0 2
x 7 -1 4 -2 0 0 0 1 1
L -1 -4 -1 0 0 0 0 0

Отсутствие в L строке положительных оценок свидетельствует об оптимальности исходного решения, а наличие в столбце свободных членов отрицательных элементов – о его недопустимости. Согласно алгоритму двойственного симплекс-метода выбираем разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных элементов. В нашем примере разрешающая строка – первая. Разрешающий столбец выбирается в соответствии с правилом, изложенным в пункте 2 схемы алгоритма. Разрешающий элемент равен (-4). После пересчета получаем следующую таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 1 0 0 0 5
х 5 0 1 0 0 -2
х 6 0 0 1 0 7
х 7 0 0 0 0 1 11
L 0 0 0 0 5

Аналогично рассуждая, получим еще одну таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 0 1 0 0
х 1 1 0 0 0
х 6 0 0 1 0
х 7 0 0 0 0 1 11
L 0 0 0 0

Отсутствие в столбце свободных членов отрицательных элементов свидетельствует о том, что получено оптимальное решение , .
Замечание . Если решение ЗЛП и недопустимо и неоптимально, то сначала получаем допустимое решение, используя алгоритм двойственного симплекс-метода, а затем по правилам обычного симплекс-метода получаем оптимальное решение.
Пример .
L = 5x 1 – x 2 – x 3 → max
или

Составляем исходную симплекс-таблицу

x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 0 -2 1 0 0 0 -9
x 5 1 -1 0 0 1 0 0 -1
x 6 -1 -1 3 0 0 1 0 -8
x 7 1 0 -1 0 0 0 1 4
L -5 1 4 0 0 0 0 0

Решение недопустимо, так как в столбце свободных членов есть отрицательные элементы и неоптимально, так как в строке L есть отрицательная оценка (-5). Получаем сначала допустимое решение, используя алгоритм двойственного симплекс-метода. После пересчета получаем следующую симплексную таблицу

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
x 5 1 0 2 -1 1 0 0 8
x 6 -1 0 5 -1 0 1 0 1
x 7 0 -1 0 0 0 1 4
L -5 0 2 1 0 0 0 -9

В столбце свободных членов нет отрицательных элементов, но в строке L есть отрицательная оценка (-5), значит решение допустимо, неоптимально.
Используем обычный симплекс-метод и получаем следующие таблицы

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
х 5 0 0 3 -1 1 0 -1 4
х 6 0 0 -1 0 1 1 5
x 1 1 0 -1 0 0 0 1 4
L 0 0 -3 1 0 0 5 11