Реферат: Применение информационных технологий в медицине

Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура и конечно же медицина. Во многих медицинских исследованиях просто не возможно обойтись без компьютера и специального программного обеспечения к нему. В настоящее время в Республике Калмыкия идет крупномасштабное внедрение инновационных компьютерных технологий в области медицины. Этот процесс сопровождается существенными изменениями в медицинской теории и практике, связанными с внесением корректив к подготовке медицинских работников.

За последние 20 лет уровень применения компьютеров в медицине чрезвычайно повысился. Практическая медицина становится все более и более автоматизированной. Выделяют два вида компьютерного обеспечения: программное и аппаратное. Программное обеспечение включает в себя системное и прикладное. В системное программное обеспечение входит сетевой интерфейс, который обеспечивает доступ к данным на сервере. Данные, введенные в компьютер, организованы, как правило, в базу данных, которая, в свою очередь, управляется прикладной программой управления базой данных (СУБД) и может содержать, в частности, истории болезни, рентгеновские снимки в оцифрованном виде, статистическую отчетность по стационару, бухгалтерский учет. Прикладное обеспечение представляет собой программы, для которых, собственно, и предназначен компьютер. Это – вычисления, обработка результатов исследований, различного рода расчеты, обмен информацией между компьютерами. Сложные современные исследования в медицине немыслимы без применения вычислительной техники. К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов. Количество информации, которое получается при таких исследования так огромно, что без компьютера человек был бы неспособен ее воспринять и обработать.

Комплексная система автоматизации деятельности медицинского учреждения
В Павлодарской области разработаны медицинские информационные системы и их можно разделить по следующим критериям:
Медицинские системы, включающие в себя программы, решающие узкие задачи врачей-специалистов, таких как рентгенолог, УЗИ и т.д.
Медицинские системы организации делопроизводства врачей и обработки медицинской статистики. Больничные информационные системы
Система сбора и обработки информации в современных медицинских центрах должна выполнять столь много разнообразных функций, что их нельзя даже описать, а уж тем более автоматизировать в сколько-нибудь короткие сроки. Жизненный цикл автоматизированной информационной системы состоит из пяти основных стадий:
- разработки системы или приобретения готовой системы;
- внедрения системы;
- сопровождения программного обеспечения;
- эксплуатации системы;
- демонтажа системы.

Телемедицина
Телемедицина – это отрасль современной медицины, которая развивалась параллельно совершенствованию знаний о теле и здоровье человека вместе с развитием информационных технологий. Современная медицинская диагностика предполагает получение визуальной информации о здоровье пациента. Поэтому для формирования телемедицины необходимы были информационные средства, позволяющие врачу «видеть» пациента. В настоящее время клинические телемедицинские программы существуют во многих информационно развитых странах мира. Информатика – отрасль науки, изучающая структуру и общие свойства научной информации, а также вопросы, связанные с ее сбором, хранением, поиском, переработкой, преобразованием, распространением и использованием в различных сферах человеческой деятельности. Ее медицинская отрасль, образовавшаяся в результате внедрения информационных технологий в одну из древнейших областей деятельности человека, сегодня становится одним из важнейших направлений интеллектуального прорыва медицины на новые рубежи.
Компьютер в стоматологии.
Сегодня в Казахстане компьютер есть в каждой стоматологической клинике. Наиболее широко распространены на стоматологическом рынке компьютерных программ – системы цифровой (дигитальной) рентгенографии, часто называемые радиовидеографами. Системы позволяют детально изучить различные фрагменты снимка зуба и пародонта, увеличить или уменьшить размеры и контрастность изображений, сохранить всю информацию в базе данных и перенести ее при необходимости на бумагу с помощью принтера. Наиболее известные программы: Gendex, Trophy. Вторая группа программ – системы для работы с дентальными видеокамерами. Они позволяют детально запечатлять состояние групп или определенно взятых зубов «до» и «после» проведенного лечения. К таким программам, распространенным в Казахстане, относятся: Vem Image, Acu Cam, Vista Cam,Telecam DMD.
Электронный документооборот модернизирует обмен информации внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и
др. процедур дает возможность надежно защищать любую информацию.

Компьютерная томография
Метод изучения состояния организма человека, при котором производится последовательное, очень частое измерение тонких слоев внутренних органов. Эти данные записываются в компьютер, который на их основе конструирует полное объемное изображение. Физические основы измерений разнообразны: рентгеновские, магнитные, ультразвуковые, ядерные и пр.
Совокупность устройств, обеспечивающих измерения, сканирование, и компьютер, создающий полную картину, называются томографом (см. рис.).
Томография является одним из основных примеров внедрения новых информационных технологий в медицине. Создание этого метода без мощных компьютеров было бы невозможным.

Использование компьютеров в медицинских лабораторных исследованиях
При использовании компьютера в лабораторных медицинских исследованиях в программу закладывают определенный алгоритм диагностики. Создается база заболеваний, где каждому заболеванию соответствуют определенные симптомы или синдромы. В процессе тестирования, используя алгоритм, человеку задаются вопросы. На основании его ответов подбираются симптомы (синдромы), максимально соответствующие группе заболеваний. В конце теста выдается эта группа заболеваний с обозначением в процентах - насколько это заболевание вероятно у данного тестируемого. Чем выше проценты, тем выше вероятность этого заболевания. Сейчас делаются попытки создать такую систему (алгоритм), которая бы выдавала не несколько, а один диагноз. Но все это пока на стадии разработки и тестирования. Вообще, на сегодняшний день в мире создано более 200 компьютерных экспертных систем.

Компьютерная флюрография
Программное обеспечение (ПО) для цифровых флюорографических установок,разработанное в НПЦ медицинской радиологии, содержит три основных компоненты: модуль управления комплексом, модуль регистрации и обработки рентгеновских изображений, включающий блок создания формализованного протокола, и модуль хранения информации, содержащий блок передачи информации на расстояние. Подобная структура ПО позволяет с его помощью получать изображение, обрабатывать его, сохранять на различных носителях и распечатывать твердые копии.
Особенностью данного программного продукта является то, что он максимально полно отвечает требованиям решения задачи профилактических исследований легких у населения. Наличие блока программы для заполнения и хранения протокола исследования в виде стандартизованной формы создает возможность автоматизации анализа данных с выдачей диагностических рекомендаций, а также автоматизированного расчета различных статистических показателей, что очень важно с учетом значительного роста числа легочных заболеваний в различных регионах страны. В программном обеспечении предусмотрена возможность передачи снимков и протоколов при использовании современных систем связи (в том числе и INTERNET) с целью консультаций диагностически сложных случаев в специализированных учреждениях. На основании данного опыта удалось сформулировать основные требования к организации и аппаратно-программному обеспечению цифровой флюорографической службы, нашедшие отражение в проекте Методических указаний по организации массовых обследований грудной клетки с помощью цифровой рентгеновской установки, подготовленном при участии специалистов НПЦ медицинской радиологии. Разработанное математическое обеспечение может быть использовано не только при флюорографии, но пригодно и для других пульмонологических приложений

Медицинские информационные технологии: возможности и перспективы

Медицинская информационная система Павлодарской области призвана повысить качество и доступность медицинских услуг. Использование новых информационных технологий в современных медицинских центрах позволит легко вести полный учет всех оказанных услуг, сданных анализов, выписанных рецептов. Также при автоматизации медицинского учреждения заполняются электронные амбулаторные карты и истории болезни, составляются отчеты и ведется медицинская статистика. Автоматизация медицинских учреждений – это создание единого информационного пространства ЛПУ, что, в свою очередь, позволяет создавать автоматизированные рабочие места врачей, организовывать работу отдела медицинской статистики, создавать базы данных, вести электронные истории болезней и объединять в единое целое все лечебные, диагностические, административные, хозяйственные и финансовые процессы. Использование информационных технологий в работе поликлиник или стационаров значительно упрощает ряд рабочих процессов и повышает их эффективность при оказании медицинской помощи жителям нашего региона.

Информационные технологии оказывают позитивное влияние на модернизацию процесса предоставления медицинских услуг, значительно упрощая и убыстряя многие бизнес-процессы в современной клинике. В статье мы будем рассматривать стадии введения информационных технологий и их применение в медицине, а также направления внедрения.

Цели современных информационных технологий в медицине

Использование информационных технологий делает возможным решение ряда вопросов в медицине:

1. Создание информационных ресурсов в медицинской отрасли. Состояние и задачи информационных систем на различных уровнях

2. Направление формирования ИТ в медицинской сфере. Прогрессивные отечественные и иностранные теории и практики

3. Нормативно-правовая и технологическая помощь информационного взаимодействия в медицине

4. Применение средств телекоммуникаций и сети интернет для оказания медицинских услуг

5. Справочные средства и сервисы, помогающие решать вопросы в области здоровья, обучающих проектов и научных исследований. Применение искусственного интеллекта

6. Применение автоматизированной аналитики в решении административных вопросов

7. Информационные технологии в системе постоянного обучения сотрудников медицинских организаций.

Стадии внедрения технологий в медицине

К 2025 году в России завершится программа, направленная на рост качества и возможностей получения медицинских услуг. Программа вводится поэтапно, основа для нее уже сформирована. Сейчас все внимание сконцентрировано на процессе становления национальной технологической платформы.

Информационные технологии в медицине затронут:

  • первую и скорую помощь
  • терапию в стационарах, профилактику патологий
  • предоставление лекарств
  • увеличение осведомленности населения
  • кадровое обучение и перепрофилирование сотрудников медучреждений
  • научную деятельность
  • менеджмент в медицинской деятельности.

Применение информационных технологий в медицине

1. Одним из направлений применения информационных технологий в медицине являются Федеральные составляющие ЕГИСЗ. Единая государственная информационная система в сфере здравоохранения - это технологическая база электронного здравоохранения. С ее помощью стороны взаимодействуют друг с другом, соединяются региональные медицинские информационные системы. Частные клиники будут подключаться с системе ЕГИСЗ с 2019 г, чтобы получать весь объем данных о ресурсах, которые есть в медицинской сфере. А цифровые посредники во взаимодействии между медицинской организацией и пациентом должны будут подключаться к Единой системе идентификации и аутентификации (ЕСИА).

2. Сервисы для автоматизации клиники, способные работать с большим объемом данных о пациентах - от ведения всей клиентской базы до карточки пациента. С помощью таких сервисов можно обеспечить практически полную прозрачность всех бизнес-процессов, значительно повысить качество обслуживания пациентов, оптимизировать лекарственное обеспечение клиники. Применение информационных технологий в медицине за счет таких сервисов позволяет делать смс-рассылки, работать с онлайн-кассами, рассчитывать зарплату сотрудников и обладают рядом дополнительных функций для получения оперативных сведений о работе предприятия.

3. Федеральный регистр медицинского персонала. Это база для других систем федерального значения - аккредитации медицинских работников и непрерывного образования.

4. Нормативно-справочная информация. В конце 2016 года был создан Федеральный справочник лабораторных исследований, в связи с этим многопрофильные информационные системы теперь имеют возможность получать друг у друга результаты лабораторных исследований, пересылать заказы. В данный момент идет процесс разработки справочников по лабораторному эпикризу.

5. Электронный документооборот. Предполагается, что в 2018 году процент российских организаций, которые применяют информационные технологии в медицине и работают с электронным документооборотом, достигнет 40. А в 2025 году их станет более 90%. Количество подключенных к информационным системам в рамках ЕГИСЗ рабочих мест медиков поменяется с 70% в 2018 году на 90% в 2025 году.

6. Использование в медицине сокращает период диагностирования болезни, гарантирует методологическую помощь. Так, например, применение этих технологий может снизить к 2025 году летальность от патологий сердца и сосудов.

На сегодняшний день имеется возможность удаленно считывать 12 параметров состояния больного, среди которых ЭКГ, уровень гликемии и другие. Это позволяет эффективнее лечить хронические заболевания, заостряя внимание на профилактике. Одновременно, снижается общее количество осложнений. Сейчас в своей работе примерно 40% клиник страны применяют телемедицинские информационные технологии в медицине.

Как сотрудники, так и руководители медицинских организаций должны обладать определенными навыками, чтобы использовать максимум возможностей информационных технологий в медицине. Для этого необходимо проводить обучение, чтобы работники могли получить всю необходимую информацию.

Возможности применения технологий в медицине

ЕГИСЗ предоставляет возможность воспользоваться такими сервисами, как:

  • . Содержит сведения о ходе лечения, диагнозах, назначениях и результатах исследований больного. Карта находится в облачном хранилище и, при необходимости, доступна сотруднику медучреждения в любом регионе.
  • . Дает возможность пациентам записаться на прием, либо вызвать врача на дом. Содержит расписание врачей. Федеральная электронная регистратура позволяет медучреждениям управлять потоками пациентов. Например, оценивать нагрузку врачей, записывать больных на прием через ЕПГУ.
  • Нозологические регистры. Это регистры, которые содержат медицинские данные из региональных медицинских информационных систем. В ситуации, когда больной обращается в медучреждение не в своем регионе, врач сможет получить всю информацию о том, какая помощь оказывалась, из этого регистра. А в паре с электронной медицинской картой обеспечивают государственную поддержку больным по некоторым видам заболеваний.

Помимо этого, в ЕГИСЗ входят информационные сервисы, реестры и регистры медицинских организаций, врачей, медикаментов, телемедицинская система. Устройство пространства ИТ в медицине можно рассмотреть на схемах, представленных в документе.

Вложенные файлы

  • Внедрение ИТ в медицину.docx

УДК 616-082
ББК 67.404.213

В статье рассматривается возможности применения современных компьютерных технологий для улучшения качества оказываемых медицинских услуг. Приводится сравнительных анализ использования информационных технологий на Западе и в России, с учетом специфики этой предметной области. Рассматривается развитие государственной информационной поддержки органов и организаций системы здравоохранения в рамках процессов управления медицинской помощью и ее непосредственного оказания. Анализируются положительные и отрицательные социальные аспекты, возникающие связи с активным внедрением информационных технологий в сфере здравоохранения.

Ключевые слова: информационные технологии , исследование рынка , медицинские услуги , управление медицинской помощью .

Целью настоящего исследования является исследование рынка информационных продуктов и услуг в области медицины и проведение анализа информационного пространства в здравоохранении в России.

Необходимо рассмотреть, насколько развита информационная поддержка органов и организаций системы здравоохранения, а также граждан в рамках процессов управления медицинской помощью и ее непосредственного оказания. А также определить, в какой мере насыщен рынок информационных продуктов и услуг в здравоохранении.

Вышеперечисленные вопросы, несомненно, важны в век высоких технологий, которые обеспечивают человечеству комфортное существование. Автоматизация и информатизация области, касающейся здоровья и долголетия людей, повысит безопасность и скорость реагирования в тех или иных ситуациях.

Применение современных информационных технологий в медицине позволяет:

  • улучшить качество медицинских услуг;
  • увеличить эффективность работы мед. персонала;
  • оптимизировать затраты на обеспечение лечебного процесса;
  • улучшить эффективность работы ЛПУ (лечебно-профилактического учреждения);
  • повысить удовлетворенность пациентов и врачей;
  • автоматизировать сбор и подготовку обязательной отчетности.

Рассмотрим, как происходит процесс использования медицинских информационных технологий в Европе:

  • формализация стратегий;
  • методики изменения эффективности и потенциального эффекта от внедрения технологий;
  • прекрасные аналитические материалы;
  • внятные программы долгосрочного целевого финансирования.

Выделяют 5 политических целей (Gartner):

1. Безопасность пациентов (снижение риска причинения вреда состоянию здоровья пациентов).

2. Качество медицинской помощи (удовлетворенность пациентов, эффективность оказания медицинской помощи).

3. Доступность медицинской помощи (равный доступ к помощи для всех граждан, уменьшение времени ожидания медицинской помощи, оптимальная загрузка ресурсов).

4. Вовлеченность пациентов (ориентация на пациента, его вовлечение к участию в процессе лечения).

5. Непрерывность медицинской помощи (координация действий и обмен информацией между различными медицинскими организациями, оказывающими помощь).

Рис.1. Модель стратегии по данным resortsoft

Модель стратегий включает 11 технологий (Gartner):

T1. Системы ведения электронных медицинских записей (EMR/CPR)

T2. Системы ведения паспорта здоровья/электронной медицинской карты (EHR)

T3. Электронная запись на прием

T4. Электронные назначения (CPOE - Computerised Physician Order Entry)

T5. Электронная передача рецептов (ETP - Electronic Transfer of Prescription)

Т6. Cистема передачи и архивации изображений (PACS)

T7. Персональный паспорт здоровья (PHR - Personal Health Record)

T8. Порталы для пациентов

Т9. Телемедицина

Т10. Средства бизнес-аналитики (BI - Business Intelligence)

T11. Радиочастотная идентификация и штрих-кодирование (RFID/Barcoding).

При определении приоритетов по достижению политических целей нужно правильно выбирать средства ИТ (технологии)

Для установления приоритетов необходимо оценивание ежегодного потенциала улучшений, проводимого либо с использованием накопленной статистики, либо опираясь на экспертные оценки, либо на данные других государств

Надо внимательно изучать международный опыт, который существенно отличается от российских разработок глубиной и качеством проработки решений и аналитических материалов. Однако, работы в этой области ведутся интенсивно и накопленный передовой опыт учитывается.

В настоящее время в Российской Федерации идут работы по созданию комплекса государственных информационных систем, призванных обеспечить новое качество значительной части государственных функций. Одним из ключевых направлений данных работ является создание единой государственной информационной системы в сфере здравоохранения (ГИС-Здрав) . Процесс ее создания без преувеличения можно считать уникальным по ряду параметров - широте и глубине охвата, применению передовых технологий, модели построения и функционирования, основанной на федеративных принципах. Дополнительно необходимо учитывать интеграцию ГИС-Здрав с другими государственными информационными системами.

Основной целью создания ГИС-Здрав является обеспечение эффективной информационной поддержки органов и организаций системы здравоохранения, а также граждан в рамках процессов управления медицинской помощью и ее непосредственного оказания.

Приказом Минздравсоцразвития России №364 от 4 мая 2011 г. утверждена «Концепция создания единой государственной информационной системы в сфере здравоохранения», которая определила цель, принципы, общую архитектуру, основные этапы создания ГИС-Здрав, механизм управления и ресурсного обеспечения ее создания и сопровождения, а также ожидаемый социально-экономический эффект.

Для практической реализации взаимоувязанных задач по построению ГИС-Здрав и реализации региональных программ модернизации в части создания современных информационных систем Министерством здравоохранения и социального развития Российской Федерации разработаны и опубликованы методические рекомендации по построению региональных сегментов системы .

Методические рекомендации описывают процесс формирования информационных систем в здравоохранении по различным параметрам, рекомендуют технические и функциональные параметры, уровень взаимодействия, показатели эффективности и безопасности, сроки и объемы работ по их реализации, параметры мониторинга и контрольные значения. В рамках методических рекомендаций также допускаются различные формы использования уже созданных и используемых в регионах программных и аппаратных решений, что позволяет обеспечить защиту ранее сделанных региональных инвестиций.

Такой подход обеспечивает гибкость в построении, учет особенностей конкретных территорий и в то же время позволяет обеспечить единую политику в вопросах сбора, передачи, хранения, обработки и использования полученных данных.

Конечно, процесс создания и отладки системы, состоящей из множества крупных информационных объектов сложный, не всегда однозначно определенный. Создание ГИС-Здрав вызывает массу вопросов в процессе практической реализации на всех уровнях. Опора на современные технологические решения при ее реализации только повышает уровень неопределенности при принятии решений и формирует потребность в эффективных контактах в среде коллег-профессионалов.

На практике (особенно в медицине) термин «информационная технология» употребляют в более узком смысле, подразумевая использование некоторой компьютерной системы для решения указанных задач. В настоящее время такая компьютерная система, как правило, включает в себя собственно компьютер, программу (или комплекс программ) осуществляющую регистрацию, обработку и предоставление информации врачу, базу данных, хранящую информацию о проведенных обследованиях, средства приема и передачи накопленной информации другому пользователю (рис.2).

Рис.2. Информационные технологии в медицине

При разработке сложных программ их часто разбивают на функционально законченные модули, каждый из которых выполняет определенную функцию и загружается по мере необходимости. Такой подход позволяет, с одной стороны, сэкономить ресурсы системы, с другой - является технологичным для разработчика. Примером является система РеоКардиоМонитор (рис.3).

Рис. 3. Структура многозвенного медицинского приложения

Казалось бы, первая задача решается автоматически операционной системой, но это не так. Например, в ОС Windows не используемые участки памяти перемещаются в файл подкачки, однако остальные ресурсы (графические, таймер, прерывания, и т.п.) не освобождаются и производительность системы падает по мере загрузки новых приложений.

Что касается технологичности, то разбиение задачи на отдельные модули позволяет подключить к работе сразу нескольких специалистов. При этом оговариваются методы обмена данными между модулями, форматы входных и выходных данных и диапазоны допустимых значений. Такой подход позволяет ускорить работу над проектом и многократно использовать наиболее удачные модули. (например, модуль “Карта пациента” используется уже в 5й программе почти без изменений).

Следующий шаг в этом направлении - распределенные системы, когда разные процессы или группы процессов выполняются на разных компьютерах, объединенных каналом передачи данных (сетью). Моделью распределенной системы может служить информационная сеть поликлиники или госпиталя.

В настоящее время существуют несколько технологий создания подобных систем. В простейшем случае это системы типа клиент-сервер. В общем - каждый компонент системы является и клиентом и сервером.

Наиболее известные технологии:

COM - технология Microsoft, работает только на базе Windows NT, поддерживает около 50 клиентов, поставляется в комплекте с Windows, наиболее завершенная на сегодняшний момент;

RMI - технология. основанная на языке Java;

Corba - мультиплатформенная технология, практически отсутствуют ограничения по масштабируемости и количеству клиентов, в настоящее время завершается разработка стандартов для Corba.

Рис. 4. Распределенная система

С активным внедрением информационных технологий, качество оказываемого медицинского обслуживания повышается, и, как показывают многочисленные социологические исследования, граждане России стали меньше интересоваться самолечением и обратили больше внимания на консультации онлайн, общение с врачами и аналогичными пациентами онлайн - таким образом, медицинский сектор постепенно приходит к цивилизованному обращению с информацией, выложенной в сети .

Исходя из рассмотренных выше вопросов, можно сделать вывод, что в РФ немаловажную роль и значительные средства отводят информационным технологиям в здравоохранении. Однако основная часть проектов находится на стадии изучения или разработки, реализуются немногие. В этой сфере мы еще проигрываем европейским странам, поэтому здравоохранение включено в список приоритетных направлений государственной поддержки в нашей стране.

Литература

  1. Материалы конференции «Информационные технологии в медицине», 13—14 октября 2011 года. М., 2011.
  2. Информационные технологии в медицине [Электронный ресурс]. URL: http://www.resortsoft.ru (дата обращения 21.02.2013)
  3. Концепция создания единой государственной информационной системы в сфере здравоохранения: Приказ Министерства здравоохранения и социального развития РФ №364 от 4 мая 2011 [Электронный ресурс]. Доступ из справ.-правовой системы «КонсультантПлюс».
  4. Столбов А. Рынок ИТ и стандарты [Электронный ресурс]. URL: http://www.pcweek.ru/themes/detail.php?ID=55142 (дата обращения 21.02.2013)
  5. ИТ в здравоохранении 2011. CNews. Аналитика [Электронный ресурс]. URL: http://www.cnews.ru/reviews/free/publichealth2011/ (дата обращения 21.02.2013)
  6. Гусев А.В. Рынок медицинских информационных систем: обзор, изменения, тренды // Врач и информационные технологии. 2012. №3. С. 6-15.

Bibliography

  1. Materials of the «Information technologies in medicine» conference, October 13-14, 2011. M., 2011.
  2. Information technologies in medicine . URL: http://www.resortsoft.ru (access date 21.02.2013)
  3. The concept of creating a unified state information system in healthcare sector: the Order of the Ministry of Health and Social Development of the Russian Federation № 364 of May 4, 2011 . Access from reference-legal system «ConsultantPlus».
  4. Stolbov А. The IT market and standarts . URL: http://www.pcweek.ru/themes/detail.php?ID=55142 (access date 21.02.2013)
  5. IT in healthcare 2011. CNews. Analysis . URL: http://www.cnews.ru/reviews/free/publichealth2011/ (access date 21.02.2013)
  6. Gusev A.V. The market of medical information systems: review, changes, trends. // Doctors and information technologies. 2012. №3. P. 6-15.

The impact of information technology development on the quality of providing services in the field of medicine in Russia

In article it is considered possibilities of application of modern computer technologies for improvement of quality of rendered medical services. The analysis of use of information technologies in the West and is provided in Russia, taking into account specifics of this subject domain comparative. Development of the state information support of bodies and the health system organizations within management of medical care and its direct rendering is considered. The positive and negative social aspects, arising communications with active introduction of information technologies in the health care sphere are analyzed.

Key words:

В условиях развития современного общества информационные технологии глубоко проникают в жизнь людей. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Сейчас трудно найти сферу, в которой не используются информационные технологии.

С каждым годом информационные технологии все прочнее входят во все сферы деятельности (от автобизнеса до строительства). Стремительно набирая темпы в последние десятилетия, прогресс на фоне повсеместного внедрения компьютерных информационных технологий (IT-технологий) охватил и медицину. Сегодня информационные системы в медицине используются всё шире: при создании серьёзной клиники без IT-составляющей уже не обойтись. Особенно актуально их внедрение в практику деятельности коммерческих клиник и медицинских центров, ведь помимо пользы для медперсонала и пациентов, информационные системы выгодны с чисто экономической точки зрения.

И далеко не случайно, намереваясь финансировать медучреждения либо даже их сети, инвесторы прежде всего закладывают в инвестиционный бюджет оснащённость клиник современными IT системами. Применяемые в медицинских клиниках и центрах информационные технологии дают следующие преимущества:

· Делают работу медицинского персонала более эффективной и удобной.

· Позволяют сэкономить значительные денежные средства.

Поэтому изучение данной темы является актуальным.

Компьютеры уже давно используются в медицине. Многие современные методы диагностики базируются на компьютерных технологиях. Такие способы обследования, как УЗИ или компьютерная томография, вообще немыслимы без компьютера. Но и в более "старые" методы обследования и диагностики компьютеры вторгаются все более активно. Кардиограмма и анализы крови, исследование глазного дна и состояния зубов... - трудно сейчас найти область медицины, в которой компьютеры не применялись бы все более и более активно.

Но только диагностикой применение компьютеров в медицине уже не ограничивается. Они все активнее начинают использоваться и при лечении различных заболеваний - начиная от составления оптимального плана лечения и до управления различным медицинским оборудованием во время проведения процедур.

Кроме того, сейчас компьютеры помогают больным людям и в повседневной жизни. Уже создано огромное количество устройств, предназначенных для больных и немощных людей, которые управляются компьютерами.

В британских больницах появились новые сотрудники - роботы, которые могут выполнять не только несложные действия, но и проводить хирургические операции. В лондонском госпитале Святой Марии роботы Remote Presence (RP6) Robots будут "присматривать" за больными. Персонал больницы дал машинам имена "Сестра Мери" и "Доктор Робби". С их помощью врачи смогут из любой точки мира не только контролировать состояние пациентов, но и проводить видеоконференции.

Доктор, находящийся, к примеру, в другой стране, будет управлять роботом, используя джойстик и беспроводную сеть. Направив электронного помощника к койке, врач получит возможность увидеть больного, поговорить с ним, просмотреть результаты анализов и рентгеновские снимки. А пациент все это время будет видеть лицо медика на ЖК-дисплее, которым оснащен робот. Конечно же, новые устройства не заменят врачей целиком и полностью. Но медперсонал клиники считает, что роботы решат насущную проблему - очень часто высококвалифицированным врачам просто необходимо присутствовать одновременно в нескольких местах, что невозможно осуществить физически. Теперь же специалисты будут наблюдать за здоровьем пациентов, невзирая на разделяющие их расстояния.

В другой больнице Лондона, Guy’s and St Thomas’ Hospital, на технику возложены гораздо более ответственные обязанности. Там медицинский робот da Vinci провел операцию по извлечению почки у живого донора. Пятидесятипятилетняя жительница Рочестера решила спасти своего жениха и, пожертвовав почкой, дала ему шанс еще пожить на этом свете. Эта сложнейшая операция впервые была проведена на территории Великобритании с использованием электронного хирурга. Естественно, без

участия человека не обошлось - управлял роботом со специальной консоли врач из плоти и крови. С момента проникновения манипуляторов da Vinci в тело донора и до завершения забора почки прошла всего одна минута. Всю остальную работу - трансплантацию органа реципиенту - проводила бригада хирургов.

Проведенная операция вывела робота da Vinci на новый уровень, ведь ранее он использовался только для восстановительной хирургии на сердце и удаления патологически измененных органов.

Сегодня в России компьютер есть в каждой стоматологической клинике. Чаще всего он работает как помощник бухгалтера, а не служит для автоматизации делопроизводства всей стоматологической клиники

Наиболее широко распространены на стоматологическом рынке компьютерных программ – системы цифровой (дигитальной) рентгенографии, часто называемые радиовидеографами (рис. 1). Системы позволяют детально изучить различные фрагменты снимка зуба и пародонта, увеличить или уменьшить размеры и контрастность изображений, сохранить всю информацию в базе данных и перенести ее при необходимости на бумагу с помощью принтера. Наиболее известные программы: Gendex, Trophy. Недостатком данной группы программ является дефицит информации о пациенте.

Вторая группа программ – системы для работы с дентальными видеокамерами. Они позволяют детально запечатлять состояние групп или определенно взятых зубов «до» и «после» проведенного лечения. К таким программам, распространенным в России, относятся: Vem Image, Acu Cam, Vista Cam, Telecam DMD. Недостатки те же, что и у

Предыдущей группы.

Следующая группа – системы управления стоматологическими клиниками. Таких программ достаточно много. Они применяются в Воронеже, Москве, Санкт-Петербурге и даже в Белгороде. Одним из

недостатков является их незащищенность от несанкционированного доступа к информации.

Электронный документооборот модернизирует обмен информации внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и др. процедур дает возможность надежно защищать любую информацию.

Вывод .

Сегодня все большее внимание уделяется внедрению современных информационных технологий в больницах и поликлиниках, поскольку это позволяет вывести их работу на качественно новый уровень. Ведущий российский системный интегратор компания Открытые Технологии гарантирует, что применение информационных технологий в медицине позволяет:

· повысить качество оказания медицинских услуг и удовлетворенность пациентов;

· снизить нелечебную нагрузку на врачей-специалистов;

· улучшить доступность медицинской информации и скорость ее предоставления медицинскому персоналу;

· повысить эффективность работы служб обеспечения;

· снизить процент случайных потерь и необоснованных трат медицинских материалов, оборудования и инвентаря;

· совершенствовать внутренний медицинский учет;

· оптимизировать процесс обязательной отчетности перед вышестоящими организациями, представлять результаты работы поликлиники для руководства в реальном времени;

· повысить лояльность врачей и медицинского персонала.

· Компьютеры играют важную роль в медицинских исследованиях. Они позволяют установить, как влияет загрязнение воздуха на заболеваемость населения данного района. Кроме того, с их помощью можно изучать влияние ударов на различные части тела, в

частности последствия удара при автомобильной катастрофе для черепа и позвоночника человека.

· Банки медицинских данных позволяют медикам быть в курсе последних научных и практических достижений.

· Компьютеры используются для создания карт, показывающих скорость распространения эпидемий.

· Компьютеры хранят в своей памяти истории болезни пациентов, что освобождает врачей от бумажной работы, на которую уходит много времени, и позволяет больше времени уделять самим больным.

Сегодня информационные системы в медицине используются всё шире. Поэтому медицина XXIвека не может существовать без компьютера и ИКТ.

Список литературы .

1) А. Новембер, Б. Кёршан, Дж. Стоун. «Основы компьютерной грамотности». Издательство «Мир» 2000 год.

2)Журнал «Медицинская техника» №14 1999 – 2000 г, стр. 25-26.

3)Научно-практический журнал №3, №7, 1999 год, том VIII, стр. 18-19.

5) http://comp-doctor.ru/int/int_0006.php

6) http://www.syssupport.ru/page/page23.html

7) http://itm.consef.ru/main.mhtml?Part=24&PubID=28

По сравнению с другими отраслями в здравоохранение информационные технологии пришли с запозданием. Но теперь и эта сфера претерпевает значительные изменения под влиянием ИТ. Какие мировые тенденции в области информатизации здравоохранения наиболее значимы для России? Как меняется сегодня отечественный рынок медицинских ИТ и какие технологии способны обеспечить прорыв, чтобы преимущества ИТ в медицине ощутили и чиновники, и врачи, и пациенты? На эти вопросы Computerworld Россия/MedIT ответили представители ИТ-компаний, для которых здравоохранение является стратегически важной отраслью.

ЭМК и удаленный мониторинг

Наиболее значимая задача для России — информатизация лечебных учреждений, лабораторной деятельности, радиологии с формированием полноценной электронной медкарты (ЭМК), считает Виктор Абрамов, директор по продажам филиала корпорации InterSystems в России, странах СНГ и Балтии. По его словам, глобальная информатизация на уровне государства и регионов (как в России и Казахстане) без массовой информатизации снизу, когда в медицинских организациях нет ЭМК, мало что дает. «Весь мировой опыт показывает, что глобальные информационные системы в здравоохранении строят на основе информатизированных ЛПУ, но не наоборот», — заявил он.

Светлана Мацкевич, архитектор решений для отрасли здравоохранения SAP CIS, выделила три важных тренда. Первый — осознание технологических инноваций как «дверей», открывающих путь новым подходам в медицине. Так, мобильные технологии позволяют задуматься о более экономичных и при этом более эффективных способах мониторинга здоровья отдельных категорий пациентов. Второй тренд — растущий электронный обмен данными, без которого немыслимо совместное ведение пациента от врача первичного звена через специализированные клиники до реабилитации, а также лечение пациентов вне зависимости от их «охоты к перемене мест». И третья тенденция — перенос фокуса со сбора данных о лечении на их анализ. «Массивы медицинских данных растут очень быстро, а привычные способы агрегации ведут к ограничению гибкости при анализе. Это заставляет специалистов находить принципиально новые подходы к работе с информацией», — подчеркнула Мацкевич.

Поиск таких подходов направлен, в частности, на снижение смертности пациентов в отделениях реанимации и активной терапии. «С развитием технологий потоковой обработки данных стремительно развиваются способы прогнозирования состояний, угрожающих здоровью пациента, путем анализа в реальном масштабе времени большого (более сотни) количества параметров пациента», — сообщил Борис Поддубный, директор по развитию бизнеса IBM Россия/СНГ.

Значимой тенденцией, по его мнению, является также развитие концепции удаленного мониторинга пациентов (connected home health) за счет появления множества индивидуальных медицинских приборов, таких как тонометры, глюкометры, весы, кардиографы, инсулиновые инжекторы с возможностью подключения к компьютерам и смартфонам через стандартизованные по IEEE и ISO интерфейсы. Удаленный мониторинг дает возможность сократить время пребывания больного в стационаре, а после выписки из него — отслеживать динамику жизненных параметров, избегать критических состояний и своевременно оказывать консультативную помощь.

Кроме того, Поддубный отметил усилия по консолидации и систематизации информации о болезнях и методах их лечения, накопленной человечеством. «Сегодня остро стоит задача построения единого информационного пространства для обеспечения доступности информации как профессионалам медицинского сообщества, так и пациентам», — сказал он.

При этом приметой времени являются высокие требования к защищенности данных в медицинских информационных системах (МИС) и надежности средств обмена медицинской информацией, отмечают эксперты.

До зрелости далеко

Насколько российский рынок медицинских ИТ готов воспринять перечисленные тенденции, какие изменения происходят на нем сегодня?

Рынок явно незрелый, что видно по огромному числу предлагаемых МИС и по их преимущественно низкому уровню, неиспользованию международных стандартов обмена медицинской информацией, отметил Абрамов. «Это связано с невысокими требованиями заказчиков, с несовершенством нормативной базы, с давлением со стороны известного "гегемона" (компании "Ростелеком". — И. Ш. ), навязывающего и Минздраву РФ, и регионам свои представления об информатизации здравоохранения и "своих" разработчиков», — полагает он. В этих условиях рынок изменяется не в лучшую сторону: остаются не лучшие и перспективные, а приближенные и доверенные. Остается надеяться, что рынок выправится, став нормальным конкурентным, здоровым, как это произошло около 15 лет назад с рынком банковских систем.

Активность информатизации здравоохранения в России не могла не отразиться на скорости взросления рынка, считает Мацкевич. По ее словам, медицинские организации сегодня стали задумываться не только о функциях систем, но и о таких важных вопросах, как безопасность персональных данных, доверие к информации и надежность решения. Еще один аспект взросления — сдвиг от потребности в автоматизации ввода информации к необходимости осмысленного ее использования.

В России успешно идет, например, оснащение диагностических и медицинских центров высококлассным импортным оборудованием, но при этом отстает профессиональная подготовка кадров, способных эффективно работать на этом оборудовании, отметил Поддубный. В сельской местности остро ощущается нехватка квалифицированного медицинского персонала, основные медицинские услуги просто недоступны населению. «Существенно поправить ситуацию могли бы телемедицинские, мобильные системы и стационарозамещающие технологии, но их применение и распространение сдерживается отсутствием нормативной базы (регламентов, стандартов информационного взаимодействия на всех уровнях), а также комплексных систем управления информацией», — подчеркнул он.

Мобильность, облака и Большие Данные

Чтобы пользователи ощутили преимущества ИТ в медицине, требуется более активное развитие, популяризация и использование ИТ-стандартов, обеспечивающих более легкое взаимодействие информационных систем и комплексов между собой (на базе международных IHE, HL7, DICOM), уверен Поддубный. Кроме того, по его мнению, необходимо внедрение единых подходов и технических средств идентификации пациентов. Одной из таких прорывных технологий потенциально является единая универсальная карта, содержащая наряду с другой информацией идентификатор пациента с возможностью унифицированного доступа в различные информационные системы. «К сожалению, меняющиеся сроки проекта и перспективы его развития не дают уверенности в успехе», — заметил он.

К числу наиболее перспективных технологий относится мобильность, особенно мобильная ЭМК, считает Мацкевич. Для пациента это снижение риска при экономии времени, для врача - экономия времени при повышении качества лечения, для органов управления отраслью — реальная возможность экономии бюджетных средств при повышении их эффективности, например в лечении пациентов с хроническими заболеваниями. Перспективной является также технология работы с большими массивами данных, которая уже показала себя как при планировании медицинских программ, так и в сфере биоинформатики и в клинических испытаниях.

Чтобы все группы пользователей быстро почувствовали эффект, для полноценной информатизации медицинских оранизаций следует использовать корпоративные облака, их глубокую интеграцию между собой и с другими информационными системами, применяемыми для управления корпорацией/регионом/страной, а также интеграцию с порталами государственных услуг, полагает Абрамов. По его мнению, cоздание изолированных систем (даже регионального или национального уровня) вроде записи на прием и просмотра расписания врачей не принесет серьезной пользы с точки зрения качества оказания медицинских услуг и управления здравоохранением, хотя может несколько снизить очереди в поликлиниках.

Для совершения прорыва важно не только наличие технологий, но и умелое их применение. «Давно известные технологии хранения медицинских данных в электронном формате дают возможность оказывать и получать более качественную медицинскую помощь, в том числе снижать количество ненужных или дублирующих анализов, отслеживать тренды, позволяющие избежать осложнений», — сказал Мирослав Кончар, директор по развитию бизнеса Oracle в сфере здравоохранения кластера Восточная Европа. Однако ключевой темой сегодня является «персонифицированная медицина», важную роль в которой играет грамотное использование информационных технологий. Проекты по моделированию физиологии, патофизиологии и процесса лечения (Virtual Physiological Human), проекты, относящиеся к трансляционной, или молекулярной, медицине, геномике и протеомике, требуют правильно организованной ИТ-инфраструктуры и приложений с хорошо написанным программным кодом для правильного хранения, обработки, интеграции и анализа больших объемов медицинских данных, отметил он.