Сети и стандарты мобильной связи на территории российской федерации. Смотреть что такое "GSM" в других словарях

Прежде чем разобраться в том, как работает GSM, важно понять, что такое GSM.

GSM – международный цифровой стандарт планетарного значения, название которого произошло от словосочетания «Groupe Spécial Mobile».

Этот стандарт предназначен для мобильной сотовой связи с разделением каналов. Каналы разделяются по принципу TDMA. Разработан стандарт институтом стандартизации электросвязи ещё в конце восьмидесятых годов прошлого века.

Самая первая подобная система была создана в далёком 1946 году в Соединённых Штатах Америки. Глобальное внедрение мобильной связи началось только в 1979 году.

Стандартизация

Перед стартом GSM, в самом начале восьмидесятых годов прошлого века на европейской территории работали 24 аналоговые сети. Они не были совместимы между собой, поэтому приобрёл актуальность вопрос о создании единого стандарта. Потребность в решении этой проблемы послужила поводом создания группы GSM(Group Special Mobile). В эту группу вошли представители 24 стран Европы. Система компании Mannesmann была избрана в качестве цифрового стандарта, а внедрена эта система была в 1991 году в Германии.

Под аббревиатурой GSM сегодня скрывается уже несколько иное словосочетание - Global System for Mobile. Сам стандарт GSM или его версии успешно работают в 80 странах мира.

Как работает GSM

Для того, чтобы осуществить данный вид связи на определённой территории, применяются следующие действия:

  • Установка приёмо-передающих станций стационарного типа. Каждая из станций действует на относительно небольших территориях площадью в несколько километров.
  • Станции располагаются таким образом, чтобы перекрывать друг друга. Это даёт возможность сигналу абонента перемещаться из одной зоны в другую, причём связь не нарушится.

Для реализации этого вида связи, на практике соседствующие станции настроены на различные частоты. Таких частот обычно около трёх. Используя три разные частоты, станции, расположенные в виде треугольника, перекрывали зоны обслуживания.

Есть ещё и четвёртая станция, которая может использовать одну из частот снова. Это возможно, так как она граничит с двумя зонами. Таким образом, зона действия станции будет напоминать шестиугольник, имея вид пчелиной соты.

GSM – модули

Каждый слышал, но не все знают, что такое GSM –модуль. Между тем это очень полезное устройство, использующее принципы GSM. Если говорить конкретнее, то gsm-модуль – это устройство, помогающее производить мониторинг местонахождения вашего автомобиля. Это устройство работает в связке с сигнализацией или мобильным телефоном. Вы можете также, в случае необходимости, блокировать двигатель.

С помощью этого модуля идентифицируется абонент мобильной связи. Об этом вы узнали, когда читали о том, что такое сеть GSM.

Преимущества и недостатки стандарта GSM

Преимущества стандарта GSM:

  • Меньшие в сравнении с аналоговыми стандартами размеры и вес аппаратов. При этом время работы без подзарядки заметно больше.
  • Качество связи на очень высоком уровне.
  • Низкий уровень помех на заданных частотах.
  • Защита от подслушивания. Также за счёт алгоритмов шифрования связь защищена от нелегального использования.
  • Обширные территории распространения.
  • Возможность использования роуминга. Роуминг – это возможность перемещаться из одной сети в другую, не теряя при этом своего номера

Недостатки стандарта GSM:

  • Ввиду цифровой обработки речи, речь может быть несколько искажена.
  • Расстояние, покрытое сетью, не слишком большое. Оно составляет лишь 120 километров.

Таким образом, пока что gsm остается развивающейся технологией, но, тем не менее, ее значение в мире невозможно переоценить. Ведь мы пользуемся ей каждый день.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!
  • мобильные устройства
  • радиоканал
  • радиосвязь
  • Добавить метки

    24 Мар 2015

    GSM. Что это такое?

    Перед тем как вникать в работу GSM, нужно приложить усилия для понимания самой сути понятия аббревиатуры GSM.

    GSM - это цифровой стандарт международного формата планетарного значения, название которого появилось от следующего словообразования - Groupe Special Mobile.

    GSM предназначен для сотовой мобильной связи с разделенными каналами. Разделение каналов ведется по принципу TDMA. Сам же стандарт разработан еще в восьмидесятых годах предыдущего века институтом стандартизации электросвязи.

    Первый образец подобной системы был изобретен еще в 1946 году в США. Однако глобальное использование мобильной связи приходится на 1979 год.

    Стандарт GSM.

    Перед запуском GSM, в начале 80-х годов прошедшего века на территории Европы действовало около 25 аналоговых сетей. Они не были переплетены между собой, в связи с этим возник вопрос, который стал на то время актуальным, о изобретении единого стандарта. Нужда в решении сложившейся проблемы стала толчком для создания группы Groupe Special Mobile (GSM). Группу составляли представители 24-х европейских стран. Структура корпорации Mannesmann была избрана в качестве цифровой стандартизации и в дальнейшем была введена уже в Германии в 1991 году.

    Под GSM на сегодняшний день понимается уже несколько другое словообразование - Global System for Mobile. Однако сама суть стандарта успешно действует в восьмидесяти странах мира.

    Как работает GSM?

    Для того чтобы применить такой вид связи в определённом регионе, нужно выполнить некоторые действия:

    • Монтаж и обслуживание передающих прием станций непередвижного типа. Каждая из таких установок действует на небольших расстояниях всего лишь в несколько километров диаметром
    • Станции монтируются, таким образом, дабы перекрывать сигнал друг друга. Такое расположение способствует постоянному сигналу при перемещении абонента из одной зоны действия в другую.

    Для установки такого вида связи, практикуя, соседние станционные установки настроены на разные частоты (в основном частот обычно около трех). Таким образом, при использовании разных частот, установки, которые расположены в виде треугольника, перекрывают зону обслуживания.

    Существует в этой цепи и четвертая станции, которая способна использовать одну из частот заново. Такой эффект возможен, потому что она соседствует с 2-мя зонами. Принимая этот факт во внимание, площадь действия станции напоминает шестиугольник, выглядя как пчелиные соты.

    Модули GSM.

    Каждый имеет у себя на слуху такое понятие как модуль GSM, однако не все понимают что это. Это весьма полезное оборудование, которое использует все принципы GSM. Если принимать во внимание всю конкретику, то модуль GSM - это структура, представленная устройством, которое помогает производить контроль над мониторингом местонахождения, например вашего автомобиля. Такое устройство работает в одной сети и привязано к сигнализации и мобильному телефонному устройству. Также присутствует блокировка работы двигателя посредством таких модулей.

    При помощи такого модуля абонент мобильной телефонной связи идентифицируется. Об это было оговорено выше, о том, что такое сеть GSM.

    Плюсы и минусы стандарта GSM.

    Преимущества:

    • В сравнении с аналогичными стандартами имеет в сравнении меньшие вес и размеры.
    • Высокий уровень качества связи.
    • Помехи на заданных частотах находятся на низшем уровне.
    • Защищенность от прослушки. За счет алгоритмов, также защищена от нелегального пользования шифрованная связь.
    • Территории распространения внушительных размеров.
    • Доступность и возможность использования роуминговой связи (перемещение из одной сети в другую без потери присвоенного номера).

    Недостатки:

    • Незначительное искажение речи, по причине цифровой обработки.
    • Расстояние, покрываемое сетью, незначительно и составляет всего лишь 120 километров.

    GSM является перспективной разработкой, однако значение в мировом масштабе переоценить невозможно. Ведь мы используем ее каждый день.

    Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

    Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

    GSM (Global System Mobile) — глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

    GSM обеспечивает поддержку услуг:

    Кроме того, существуют дополнительные услуги:

    • Определение номера
    • Переадресация вызова
    • Ожидание и удержание вызова
    • Конференц-связь
    • Голосовая почта

    Архитектура сети GSM

    Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

    Сеть GSM делится на две системы: SS (Switching System) — коммутационная подсистема, BSS (Base Station System) — система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

    SS включает в себя:

    • MSC (Mobile Switching Center) — узел коммутации сети GSM
    • GMSC (Gate MSC) — коммутатор, который обрабатывает вызовы от внешних сетей
    • HLR (Home Location Register) — база данных домашних абонентов
    • VLR (Visitor Location Register) — база данных гостевых абонентов
    • AUC (Authentication Cetner) — центр аутентификации (проверки подлинности абонента)

    BSS включает в себя:

    • BSC (Base Station Controller) — контроллер базовых станций
    • BTS (Base Transeiver Station) — приемо-передающая станция
    • MS (Mobile Station) — мобильная станция

    Состав коммутационной подсистемы SS

    MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

    В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
    распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
    Хранящаяся информация в HLR включает в себя:

    • Идентификаторы (номера) абонента.
    • Дополнительные услуги, закрепленные за абонентом
    • Информацию о местоположении абонента, с точностью до номера MSC/VLR
    • Аутентификационную информацию абонента (триплеты)

    HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

    База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

    Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC — центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

    Состав подсистемы базовых станций BSS

    BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

    BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

    Географическое построение сетей GSM

    Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

    Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

    Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

    Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

    Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

    Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

    Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

    Частотный план GSM

    GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

    • P-GSM900 890-915/935-960 MHz
    • E-GSM900 880-915/925-960 MHz
    • R-GSM900 890-925/935-970 MHz
    • R-GSM1800 1710-1785/1805-1880 MHz

    В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
    обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

    В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

    Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

    По состоянию на ноябрь 2007г. в России было около 168 млн. абонентов мобильной связи. При этом 85 % из них - клиенты GSM-операторов "большой тройки" - "Мобильных телесистем" (МТС), "Мегафона" и "Вымпелкома". Несмотря на то, что годовые темпы прироста постоянно сокращаются, уровень проникновения сотовых услуг в целом по России составляет 107%, при этом в Московской лицензионной зоне (МЛЗ) этот показатель составил 164%.

    Лидерство в приросте абонентской базы в общероссийском масштабе удерживает Мегафон, а в МЛЗ он уступает по этому показателю компании МТС. Среди федеральных и региональных операторов наиболее высокие темпы прироста абонентов в годовом исчислении демонстрируют Tele2, НТК, Байкалвестком и Енисейтелеком.

    Региональные GSM-операторы, не входящие в "большую сотовую тройку", ищут способ конкурентной борьбы с гигантами рынка. Большинство независимых GSM-операторов в России появились в последние несколько лет на базе операторов устаревшего стандарта AMPS. Все они в 2001-2002 гг. получили от Минсвязи лицензии, дающие им право на работу в стандарте GSM-1800.
    Сейчас эти компании одна за другой запускают GSM-сети, но их абоненты, оказавшись в других регионах, вынуждены платить за связь в роуминге по $1-$1,5 за минуту. Теперь эти компании намерены договориться о единых роуминговых тарифах друг для друга, что позволит абонентам сетей при перемещении по стране ощущать себя не хуже клиентов МТС, "Вымпелкома" и "МегаФона", для которых единые и сравнительно низкие тарифы на внутрисетевой роуминг являются одним из ключевых преимуществ операторов "большой тройки".

    Открытое Акционерное Общество «Мобильные ТелеСистемы» (МТС) - крупнейший оператор сотовой связи в России и странах СНГ, обслуживающий более 74 миллионов абонентов. Лицензионный портфель МТС включает большинство регионов России, Украину, Белоруссию, Узбекистан и Туркменистан, а население, проживающее в зоне действия сети МТС, составляет более 230 миллионов человек.
    Компания "Мобильные ТелеСистемы" была образована в октябре 1993 года. 19 ноября 1993 года МТС получила первую лицензию на оказание услуг сотовой связи стандарта GSM. 15 мая 1994 г. были совершены первые звонки в сети МТС и уже 7 июля 1994 года МТС начала подключать первых абонентов.
    В июне 2002 года МТС запустила сеть в Республике Беларусь. В марте 2003 года МТС приобрела контрольный пакет акций UMC, ведущего оператора мобильной связи в Украине.

    ОАО "Мегафон" - общероссийский оператор мобильной связи стандарта GSM 900/1800. Образован в мае 2002 года. Лицензионная территория ОАО "МегаФон" охватывает 100% территории России - все 89 субъектов РФ, где проживает 145 миллионов человек. МегаФон - первый общероссийский оператор мобильной связи стандарта GSM 900/1800.

    ОАО "ВымпелКом" является оператором сотовой связи в России, предоставляющим свои услуги под торговой маркой "Билайн". Лицензии на предоставление услуг сотовой связи группы компаний "ВымпелКом" охватывают территорию, на которой проживает 94% населения России, включая Москву, Московскую область и Санкт-Петербург. Сеть "Билайн" работает на территории 76 субъектов РФ.
    Компания "ВымпелКом" организована 15сентября 1992 г. В июне 1997 года осуществлен успешный запуск первой в России сети стандарта GSM-1800- "БИЛАЙН 1800". 21 октября 1998 года компания успешно запустила в Москве первую очередь двухдиапазонной сети GSM-900/1800.
    24 марта 1999 года АО "ВымпелКом" вошел в число членов Ассоциации Операторов GSM, которая объединяет компании, работающие встандарте GSM-900 и GSM-1800 на территории России и ряда стран СНГ.

    ЗАО «СредневолжскаяМежрегиональная Ассоциация РадиоТелекоммуникационных Систем» (СМАРТС) было основано в мае 1991 г. в Самаре. Учредителями компании на 95% являются физические лица. Сейчас GSM-сеть СМАРТС охватывает 16 регионов России. На сегодняшний день СМАРТС заключила роуминговые соглашения практически со всеми российскими сетями в 74 регионах. Мировой роуминг у компании действует в 78 странах.

    ОАО"Уралсвязьинформ" –крупнейший оператор мобильной связи и интернет-услуг Уральского региона. Компания работает на территории семи субъектов РФ общей площадью 1,9 млн. кв. км с населением более 15 млн. человек

    НСС Нижегородская Сотовая Связь - в конце июня 1995 года компания начала работу с абонентами. В 1999 году компания наладила связь с миром посредством международного роуминга.

    ОАО "Сибирьтелеком" - это крупнейший оператор телекоммуникационных услуг в Сибирском федеральном округе. Компания действует на территории около 5 тыс.кв.км с численностью населения порядка 21 млн. человек.

    TELE2 , до 1993года известная под названием Comviq, была основана в Швеции в 1981 году. В России TELE2 являетс явладельцем 12 российских компаний-операторов мобильной связи. Первая в России сеть мобильной связи TELE2 была запущена в Иркутске 1 апреля 2003 года.

    Знаете ли вы, что