Скорость передачи информации по сети. Скорость передачи информации. Что такое бит? Как измеряется скорость в битах

В случае со скоростью передачи информации эти “красивые цифры” запутывают. Конечно, тут ситуация всё-таки другая- это путаница между стандартом (где скорость названа по тому, какова она на канальном уровне) и реальностью, но смысл очень похож: цифра на наклейке не соответствует тому, что вы видите глазами, включив компьютер. Вот с этой путаницей и попытаемся разобраться.

Существуют два типа подключения- с помощью кабеля, и по воздуху, беспроводным способом.

Подключение кабелем.

В этом случае проблем с цифрами меньше всего. Подключение происходит на скорости 10, 100 или 1000 мегабит (1 гигабит) в секунду. Это – не “скорость интернета”, не скорость открытия страниц или скачки файлов. Это только скорость между двумя точками, которые соединяет такой кабель. Из вашего компьютера кабель может идти в рутер (модем), в другой компьютер или в подъезд, к аппаратуре провайдера, но в любом случае эта скорость говорит только о том, что соединение между этими двумя точками произошло на указанной скорости.

Скорость передачи данных ограничена не только типом кабеля, но в и довольно сильно– скоростью вашего жёсткого диска. На гигабитном подключении скорость передачи файла упрётся именно в это, и достичь реальных 120 мегабайт в секунду можно только в некоторых случаях.

Скорость подключения выбирается автоматически в зависимости от того, как “договорятся” ваши соединяемые устройства, по самому медленному из них. Если у вас гигабитная сетевая карта (а их сейчас большинство в компьютерах), а с другого конца- 100 мегабитная аппаратура, то скорость подключения будет установлена в 100mbit. Никаких дополнительных установок скорости делать не надо, если это требуется-это показатель того, что есть проблема с кабелем, или с аппаратурой у вас или на другом конце, и потому максимальная скорость автоматически не выставляется.

Беспроводное подключение.

А вот с этим типом подключения проблем и путаницы намного больше. Дело в том, что при беспроводном подключении скорость передачи данных- примерно в два раза меньше, чем говорит цифра стандарта. Как это выглядит в реальных данных- смотрим таблицу.

Стандарт Частота и ширина полосы пропускания Скорость по стандарту Реальная скорость передачи файлов Дополнительная информация
Wi-Fi 802.11a 5Ghz. (20Mhz) 54 mbit/s В настоящее время в бытовой аппаратуре используется редко, встречается в сетях провайдеров.
Wi-Fi 802.11b 2,4Ghz(20Mhz) 11 mbit/s ок. 0.6 мегабайт (4,8 мегабита) в секунду В настоящее время используется только для связи “компьютер-компьютер” (Ad-Hoc)
Wi-Fi 802.11g 2,4Ghz(20Mhz) 54 mbit/s ок. 3 мегабайт (24 мегабита) в секунду Пока что самый распространённый тип подключения.
Wi-Fi 802.11n 2,4Ghz/5Ghz(20Mhz/40Mhz) 150, 300, 600 mbit/s 5-10 мегабайт в секунду. Условно 1 поток (антенна) – 150 мегабит, рутер (сетевая) с 4мя антеннами поддерживает 600mbps

Как видите, все очень печально и некрасиво, а хвалёный “N” вообще и близко не показывает тех цифр, которые хотелось бы увидеть. Кроме того, такая скорость обеспечивается при условиях окружающей среды, близких к идеальным: нет помех, нет стен с металлом между рутером и компьютером (лучше-прямая видимость), и чем меньше расстояние, тем лучше. В типовой трёхкомнатной квартире железобетонного дома беспроводная точка доступа, установленная в дальней части квартиры, может быть практически неуловима из противоположной части. Стандарт “N” обеспечивает лучшее покрытие, и это его преимущество лично для меня важнее, чем скорость; да и на скорости качественное покрытие сказывается хорошо: там, где скорость передачи данных при использовании аппаратуры с “G” равна 1 мегабиту, только лишь использование “N” способно увеличить её в несколько раз. Однако совершенно не факт, что так будет всегда- дело в диапазонах, в некоторых случаях такое переключение не даёт результата.

На скорость влияет так же производительность устройства, раздающего интернет (рутера, точки доступа) При активном использовании торрентов, например, скорость передачи данных через рутер может существенно упасть- его процессор просто не справится с потоком данных.

Ещё на скорость влияет выбранный тип шифрования. Из самого названия понятно, что “шифрование” –это обработка данных с целью их закодировать. Могут использоваться разные методы шифрования, а отсюда-разная производительность устройства, которое это шифрование-дешифрование выполняет. Поэтому рекомендуется выставлять в параметрах беспроводной сети тип шифрования WPA2 – это максимально быстрый и наиболее защищённый на данный момент тип шифрования. Собственно говоря, по стандарту любой другой тип шифрования и не даст включиться “N” на “полную мощность”, но некоторые китайские рутеры плюют на стандарты.

Ещё один момент. Для того, чтоб получить все преимущества стандарта N (особенно для аппаратуры, поддерживающей MIMO), точка доступа должна обязательно быть выставлена в режим “N Only”.

Если вы выбрали “G+N Mixed” (любой “смешанный” режим), велика вероятность того, что ваши устройства будут стараться связаться не на на максимальной скорости. Это плата за совместимость стандартов. Если ваши устройства поддерживают “N”, забудьте об остальных режимах- зачем терять предлагаемые преимущества? Использование в одной сети одновременно и G, и N аппаратуры лишит вас их. Однако существуют рутеры, имеющие два передатчика, и позволяющие работать в двух разных частотных диапазонах одновременно, но это скорее редкость, а цена их гораздо выше (пример- Asus RT-N56U).

Другие типы подключения.

Помимо описанных, конечно, существуют и другие типы подключения. Устаревший вариант– подключение по коаксиальному кабелю, необычный вариант подключения через электросеть здания, множество вариантов подключения с использованием сетей мобильной связи- 3G, новый LTE, относительно малораспространённый WiMAX. Любой из этих типов подключения имеет характеристики скорости, и любой из них оперирует понятием “скорость ДО”. Вас не обманывают (ну формально не обманывают), но обращать внимание на эти цифры имеет смысл, понимая, что в реальности они значат.

Единицы измерения.

Существует путаница, вызванная неправильным использованием единиц измерения. Наверно, это тема для другой статьи (по сетям и подключениям, которую я в скором времени напишу), но всё-таки и тут (сжато) будет к месту.

В компьютерном мире принята двоичная система счисления. Наименьшая единица измерения- бит. Следующая- байт.

По возрастающей:

1 байт = 8 бит

1024 бит = 1 килобит (kb)

8 килобит = 1 килобайт (KB)

128 килобайт = 1 мегабит (mb)

8 мегабит = 1 мегабайт (MB)

1024 килобайт = 1 мегабайт (MB)

128 мегабайта = 1 гигабит (gb)

8 гигабит = 1 гигабайт (GB)

1024 мегабайт = 1 гигабайт (GB)

Вроде бы всё понятно. Но! Вдруг оказывается, что и тут есть путаница. Вот что говорит википедия :

При обозначении скоростей телекоммуникационных соединений, например, 100 Мбит/с в стандарте 100BASE-TX («медный» Fast Ethernet) соответствует скорости передачи именно 100 000 000 бит/с, а 10 Гбит/с в стандарте 10GBASE-X (Ten Gigabit Ethernet) — 10 000 000 000 бит/с.

Кому верить? Решайте сами, как вам удобнее, почитайте ту же википедию. Дело в том,что написанное в википедии –не является истиной в последней инстанции, её пишут люди (фактически-любой человек может там что-то написать). А вот в учебниках (в частности,в учебнике “Компьютерные сети” от Олифер В.Г., Олифер Н.А.) – исчисление нормальное, двоичное, и в 100 мегабитах –12.5 мегабайт, и именно 12 мегабайт вы увидите, скачивая файл по 100-мегабитной локалке, практически в любой программе.

Разные программы отображают скорость по-разному –какие-то в килобайтах, какие-то в килобитах. Формально, если речь идёт о *байтах, ставится большая буква, о *битах-маленькая (обозначение КB (КБ, иногда kB или кБ, или Кбайт)) –обозначает “килобайт”, kb (кб, или кбит)- “килобит”, и т.д.), но это не закреплённое железно правило.

Любой сигнал можно рассматривать как функцию времени, или как функцию частоты. В первом случае эта функция показывает, как меняются впоследствии параметры сигнала, например, напряжение или ток. Если эта функция имеет непрерывный характер, то говорят о непрерывном сигнале. Если эта функция имеет дискретный вид, то говорят о дискретном сигнале.

Частотное представление функции основано на том факте, что любая функция может быть представлена в виде ряда Фурье

(1),
где - частота, an,bn – амплитуды n-ой гармоники.

Характеристику канала, который определяет спектр частот, которые физическая среда, из которой сделана линия связи, которая образует канал, пропускает без существенного снижения мощности сигнала, называют полосой пропускания .

Максимальную скорость, из которой канал способен передавать данные, называют пропускной способностью канала или битовой скоростью.

В 1924 Найквист открыл взаимосвязь между пропускной здатностью канала и шириной его полосы пропускания.

Теорема Найквиста

где – максимальная скорость передачи H - ширина полосы пропускания канала, выраженная в Гц, М - количество уровней сигнала, которые используются при передаче. Например, из этой формулы видно, что канал с полосой 3 кГц не может передавать двухуровневые сигналы быстрее 6000 бит/сек.

Эта теорема также показывает, что, например, бессмысленно сканировать линию чаще, чем удвоена ширина полосы пропускания. Действительно, все частоты выше этой отсутствуют в сигнале, а потому вся информация, необходимая для возобновления сигнала будет собрана при таком сканировании.

Однако, теорема Найквиста не учитывает шум в канале, который измеряется как отношение мощности полезного сигнала к мощности шума: S/N . Эта величина измеряется в децибелах: 10log10(S/N) dB . Например, если отношение S/N равняется 10, то говорят о шуме в 10 dB если отношение равняется 100, то - 20 dB .

На случай канала с шумом есть теорема Шенона, по которой максимальная скорость передачи данные по каналу с шумом равняется:
H log2 (1+S/N) бит/сек, где S/N - соотношение сигнал-шум в канале.

Здесь уже не важно количество уровней в сигнале. Эта формула устанавливает теоретический предел, который редко достигается на практике. Например, по каналу с полосой пропускания в 3000 Гц и уровнем шума 30 dB (это характеристики телефонной линии) нельзя передать данные быстрее, чем со скоростью 30 000 бит/сек.

Методы доступа и их классификация

Метод доступа (accessmethod ) – это набор правил, которые регламентируют способ получения в пользование (“восторгу”) среды передачи. Метод доступа определяет, каким образом узлы получают возможность передавать данные.
Выделяют следующие классы методов доступа:

  1. селективные методы
  2. состязательные методы (методы случайного доступа)
  3. методы, основанные на резервировании времени
  4. кольцевые методы.

Все методы доступа, кроме состязательных, образуют группу методов детерминированного доступа. При использовании селективных методов для того, чтобы узел мог передавать данные, он должен получить разрешение. Метод называется опросом (polling ), если разрешения передаются всем узлам по очереди специальным сетевым оборудованием. Метод называется передачей маркера (token passing ), если каждый узел по завершении передачи передает разрешение следующему.

Методы случайного доступа (random access methods ) основаны на “соревновании” узлов за получение доступа к среде передачи. Случайный доступ может быть реализован разными способами: базовым асинхронным, с тактовой синхронизацией моментов передачи кадров, с прослушиванием канала перед началом передачи (“слушай, прежде чем говорить”), с прослушиванием канала во время передачи (“слушай, пока говоришь”). Могут быть использованы одновременно несколько способов из перечисленных.
Методы, основанные на резервировании времени , сводятся к выделению интервалов времени (слотов), которые распределяются между узлами. Узел получает канал в свое распоряжение на всю длительность выделенных ему слотов. Существуют варианты методов, которые учитывают приоритеты - узлы из больше высоким приоритетам получают большее количество слотов.
Кольцевые методы используются в ЛВМ с кольцевой топологией. Кольцевой метод вставки регистров заключается в подключении параллельно к кольцу одного или нескольких буферных регистров. Данные для передачи записываются в регистр, после чего узел ожидает межкадрового промежутка. Потом содержимое регистра передается в канал. Если во время передачи поступает кадр, он записывается в буфер и передается после своих данных.

Различают клиент-серверные и одноранговые методы доступа.

Клиент-серверные методы доступа допускают наличие в сети центрального узла, который управляет всеми другими. Такие методы распадаются на две группы: с опросом и без опроса.

Среди методов доступа с опросом наиболее часто используемый “опрос с остановкой и ожиданием” и “непрерывный автоматический запрос на повторение” (ARQ). Во всяком случае первичный узел последовательно передает узлам разрешение на передачу данных. Если узел имеет данные для передачи, он выдает их в среду передачи, если нет - или выдает короткий пакет данных типа “данных нет”, или просто ничего не передает.

При использовании одноранговых методов доступа все узлы равноправные. Мультиплексна передача со временным делением - наиболее простая одноранговая система без приоритетов, что использует твердое расписание работы узлов. Каждому узлу выделяется интервал времени, в течение которого узел может передавать данные, причем интервалы распределяются поровну между всеми узлами.

Аналоговые каналы передачи данные.

Под каналом передачи данные (КПД) понимается совокупность среды передачи (среды распространения сигнала) и технических средств передачи между канальными интерфейсами. В зависимости от формы информации, которая может передавать канал, различают аналоговые и цифровые каналы.

Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или другие характеристики которого (например, амплитуда или частота) несут переданную информацию. Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

Скорость передачи данных характеризует объем данных, который передается за конкретный период времени. Знать скорость передачи нужно, если вы что-то скачиваете из интернета или копируете данные с одного носителя информации на другой. Сначала нужно преобразовать единицы измерения размера файла и скорости передачи так, чтобы унифицировать их, а затем подставить значения в формулу S = A ÷ T, где A – объем данных, T – время передачи, S – скорость передачи. Также по этой формуле можно вычислить объем данных или время передачи, если вы знаете одну из переменных и скорость передачи.

Шаги

Часть 1

Преобразование единиц измерения

    Найдите единицы измерения размера файла. Размер файла может быть указан в битах (бит), байтах (Б), килобайтах (КБ), мегабайтах (МБ), гигабайтах (ГБ) и даже в терабайтах (ТБ).

    • Обратите внимание на прописные и строчные буквы. Например, бит обозначается как «бит» (строчными буквами), а байт – прописной буквой «Б».
  1. Обратите внимание на единицы измерения скорости передачи данных. Скорость передачи может выражаться в битах в секунду (бит/с), байтах в секунду (Б/с), килобайтах в секунду (КБ/с), мегабайтах в секунду (МБ/с) или гигабайтах в секунду (ГБ/с).

  2. Преобразуйте единицы в биты или байты и убедитесь, что у них одинаковый префикс (К, М, Г). Прежде чем воспользоваться формулой, убедитесь, что у вас однотипные единицы измерения размера файла и скорости передачи. О единицах измерения времени не думайте.

    • 8 бит = 1 байт (B); чтобы конвертировать биты в байты, разделите значение в битах на 8. Чтобы преобразовать байты в биты, умножьте значение в байтах на 8.
    • 1024 байта = 1 килобайт (КБ); чтобы конвертировать байты в килобайты, разделите значение в байтах на 1024. Чтобы преобразовать килобайты в байты, умножьте значение в килобайтах на 1024.
    • 1024 килобайта = 1 мегабайт (МБ); чтобы конвертировать килобайты в мегабайты, разделите значение в килобайтах на 1024. Чтобы преобразовать мегабайты в килобайты, умножьте значение в мегабайтах на 1024.
    • 1024 мегабайта = 1 гигабайт (ГБ); чтобы конвертировать мегабайты в гигабайты, разделите значение в мегабайтах на 1024. Чтобы преобразовать гигабайты в мегабайты, умножьте значение в гигабайтах на 1024.
    • 1024 гигабайта = 1 терабайт (ТБ); чтобы конвертировать гигабайты в терабайты, разделите значение в гигабайтах на 1024. Чтобы преобразовать терабайты в гигабайты, умножьте значение в терабайтах на 1024.
  3. Конвертируйте единицы измерения времени, если потребуется. В 1 минуте 60 секунд, а в 1 часе 60 минут. Чтобы преобразовать секунды в минуты, разделите значение в секундах на 60. Чтобы преобразовать минуты в часы, разделите значение в минутах на 60. Чтобы преобразовать часы в минуты, умножьте значение в часах на 60. Чтобы преобразовать минуты в секунды, умножьте значение в минутах на 60.

    • Чтобы преобразовать секунды в часы, разделите на 3600 (60 х 60). Чтобы конвертировать часы в секунды, умножьте на 3600.
    • Как правило, скорость передачи данных обозначается в секундах. Если передача большого файла заняла слишком много секунд, преобразуйте их в минуты или даже часы.

    Часть 2

    Вычисление скорости передачи, времени и объема данных
    1. Вычислите скорость передачи, разделив объем данных на время передачи. Подставьте значения объема данных (A) и времени передачи (T) в формулу S = A ÷ T.

      • Например, файл размером 25 МБ передается за 2 минуты. Сначала преобразуйте 2 минуты в секунды: 2 х 60 = 120 с. Таким образом, S = 25 МБ ÷ 120 с = 0,208. Следовательно, скорость передачи равна 0,208 МБ/с. Чтобы конвертировать это значение в килобайты, умножьте 0,208 на 1024: 0,208 x 1024 = 212,9. Итак, скорость передачи также равна 212,9 КБ/с.
    2. Вычислите время передачи, разделив объем данных на скорости передачи. То есть воспользуйтесь формулой T = A ÷ S, где T – время передачи, A – объем данных, S – скорость передачи.

      • Например, файл размером 134 ГБ был передан со скоростью 7 МБ/с. Сначала преобразуйте ГБ в МБ, чтобы унифицировать единицы измерения: 134 х 1024 = 137217 МБ. Итак, 137217 МБ были переданы со скоростью 7 МБ/с. Чтобы найти время передачи (T), разделите 137217 на 7 и получите 19602 секунд. Чтобы преобразовать секунды в часы, разделите 19602 на 3600 и получите 5,445 ч. Другими словами, чтобы передать 134 ГБ данных со скоростью 7 МБ/с, потребовалось 5,445 часа.
      • Чтобы использовать часы и минуты, разделите целую и дробную часть десятичной дроби. В нашем примере это 5 часов и 0,445 часа. Чтобы преобразовать 0,445 часа в минуты, умножьте на 60: 0,445 x 60 = 26,7 (26 минут и 0,7 минут). Чтобы преобразовать десятичную дробь в секунды, умножьте на 60: 0,7 x 60 = 42. Таким образом, время передачи составило 5 часов 26 минут и 42 секунды.
    3. Вычислите объем данных, умножив время передачи на скорость передачи. То есть воспользуйтесь формулой А = Т х S, где T – время передачи, A – объем данных, S – скорость передачи.

      • Например, нужно определить, сколько данных было передано за 1,5 часа со скоростью 200 бит/с. Сначала преобразуйте часы в секунды: 1,5 х 3600 = 5400 с. Итак, А = 5400 с х 200 бит/с = 1080000 бит/с. Чтобы преобразовать это значение в байты, разделите на 8: 1080000 ÷ 8 = 135000. Чтобы конвертировать значение в килобайты, разделите на 1024: 135000 ÷ 1024 = 131,84. Таким образом, 131,84 КБ данных было передано за 1,5 часа со скоростью 200 бит/с.

Все виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), то есть в последовательности нулей и единиц. Такое кодирование информации в компьютере называется двоичным кодированием, а логические последовательности нулей и единиц – машинным языком.

Эти цифры можно рассматривать как два равновероятностных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания Binary digit, то есть двоичный разряд.

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом две цифры несут информацию 2 бита, три разряда – 3 бита и т.д. Количество информации в битах равно количеству цифр двоичного машинного кода.

Передача информации в информационной системе.

Система состоит из отправителя информации, линии связи и получателя информации. Сообщение для передачи его в соответствующий адрес должно быть предварительно преобразовано в сигнал. Под сигналом понимается изменяющаяся физическая величина, отображающее сообщение. Сигнал – материальный переносчик сообщения, то есть изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Физическая среда, по которой происходит передача сигналов от передатчика к приемнику, называется линией связи.

В современной технике нашли применение электрические, электромагнитные, световые, механические, звуковые, ультразвуковые сигналы. Для передачи сообщений необходимо принять тот переносчик, который способен эффективно распределяться по используемой в системе линии связи.

Преобразование сообщений в сигналы, удобные для прохождения по линии связи, осуществляется передатчиком.

В процессе преобразования дискретных сообщений в сигнал происходит кодирование сообщения. В широком смысле кодированием называется преобразование сообщений в сигнал. В узком смысле кодирование – это отображение дискретных сообщений сигналами в виде определенных сочетаний символов. Устройство, осуществляющее кодирование называется кодером.

При передаче сигналы подвергаются воздействию помех. Под помехами подразумеваются любые мешающие внешние возмущения или воздействия (атмосферные помехи, влияние посторонних источников сигналов), а также искажения сигналов в самой аппаратуре (аппаратурные помехи), вызывающие случайное отклонение принятого сообщения (сигнала) от передаваемого.

На приемной стороне осуществляется обратная операция декодирования, т.е. восстановление по принятому сигналу переданного сообщения.

Решающее устройство, помещенное после приемника, осуществляет обработку принятого сигнала с целью наиболее полного извлечения из него информации.

Декодирующее устройство, (декодер) преобразует принятый сигнал к виду удобному для восприятия получателем.

Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Одна и та же линия связи может использоваться для передачи сигналов между многими источниками и приемниками, то есть линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с передачей сообщений:

Обеспечение помехоустойчивости передачи сообщений

Обеспечение высокой эффективности передачи сообщений

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации. Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу).

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути повышения помехоустойчивости и эффективности.

Скорость передачи данных - скорость, с которой передается или принимается информация в двоичной форме. Обычно скорость передачи данных измеряется количеством бит, переданных в одну секунду.

Биты в секунду - единица скорости передачи информации, равная количеству двоичных разрядов, пропускаемых каналом связи в 1 секунду с учетом и полезной и служебной информации.

Пропускная способность канала связи - максимальная скорость передачи данных от источника к получателю.

Символы в секунду - единица измерения скорости передачи (только) полезной информации.

Переход к более крупным единицам измерения

Ограничения на максимальную мощность алфавита не существует, но есть алфавит, который можно считать достаточным (на современном этапе) для работы с информацией, как для человека, так и для технических устройств. Он включает в себя: латинский алфавит, алфавит языка страны, числа, спецсимволы - всего около 200 знаков. По приведенной выше таблице можно сделать вывод, что 7 битов информации недостаточно, требуется 8 битов, чтобы закодировать любой символ такого алфавита, 256 = 28. 8 бит образуют 1 байт. То есть для кодирования символа компьютерного алфавита используется 1 байт. Укрупнение единиц измерения информации аналогично применяемому в физике - используют приставки «кило», «мега», «гига». При этом следует помнить, что основание не 10, а 2.

1 Кб (килобайт) = 210 байт = 1024 байт,

1 Мб(мегабайт) = 210 Кб = 220 байт и т. д.

Умение оценивать количество информации в сообщении поможет определить скорость информационного потока по каналам связи. Максимальную скорость передачи информации по каналу связи называют пропускной способностью канала связи. Самым совершенным средством связи на сегодня являются оптические световоды. Информация передается в виде световых импульсов, посылаемых лазерным излучателем. У этих средств связи высокая помехоустойчивость и пропускная способность более 100Мбит/с.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени - секунду.

Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости - бод. Бод - число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300-9600 бит/с, а для синхронных -1200- 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени - секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Единица измерения пропускной способности канала связи - знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований.

Единица измерения достоверности: количество ошибок на знак - ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10-6 -10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

Единица измерения надежности: среднее время безотказной работы - час.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.