Типы данных. Типы с плавающей точкой (float, double и long double)

В этой записи-шпаргалке приведены сведения об основных типах данных языка программирования C++ и особенности их реализации. Также, в конце записи составлена таблица с диапазонами значений этих типов.

Концепция типа данных

Основная цель любой программы состоит в обработке данных. Данные различного типа хранятся и обрабатываются по-разному. В любом алгоритмическом языке каждая константа, переменная, результат вычисления выражения или функции должны иметь определенный тип.

Тип данных определяет:

  • внутреннее представление данных в памяти компьютера;
  • множество значений, которые могут принимать величины этого типа;
  • операции и функции, которые можно применять к величинам этого тина.

Исходя из этих характеристик, программист выбирает тип каждой величины, используемой в программе для представления реальных объектов. Обязательное описание типа позволяет компилятору производить проверку допустимости различных конструкций программы. От типа величины зависят машинные команды, которые будут использоваться для обработки данных.

Все типы языка C++ можно разделить на основные и составные . В языке C++ определено шесть основных типов данных для представления целых, вещественных, символьных и логических величин. На основе этих типов программист может вводить описание составных типов. К ним относятся массивы, перечисления, функции, структуры, ссылки, указатели, объединения и классы.

Основные типы данных в C++

Основные (стандартные) типы данных часто называют арифметическими, поскольку их можно использовать в арифметических операциях. Для описания основных типов определены следующие :

  1. int (целый);
  2. char (символьный);
  3. wchar_t (расширенный символьный);
  4. bool (логический);
  5. float (вещественный);
  6. double (вещественный с двойной точностью).

Первые четыре тина называют целочисленными (целыми ), последние два - типами с плавающей точкой . Код, который формирует компилятор для обработки целых величин, отличается от кода для величин с плавающей точкой.

Существует четыре спецификатора типа , уточняющих внутреннее представление и диапазон значений стандартных типов:

  • short (короткий);
  • long (длинный);
  • signed (знаковый);
  • unsigned (беззнаковый).

Целый тип (int)

Размер типа int не определяется стандартом, а зависит от компьютера и компилятора. Для 16-разрядного процессора под величины этого типа отводится 2 байта, для 32-разрядного - 4 байта.

Спецификатор short перед именем типа указывает компилятору, что под число требуется отвести 2 байта независимо от разрядности процессора. Спецификатор long означает, что целая величина будет занимать 4 байта. Таким образом, на 16-разрядном компьютере эквиваленты int и short int, а на 32-разрядном - int и long int.

Внутреннее представление величины целого типа - целое число в двоичном коде. При использовании спецификатора signed старший бит числа интерпретируется как знаковый (0 - положительное число, 1 - отрицательное). Спецификатор unsigned позволяет представлять только положительные числа, поскольку старший разряд рассматривается как часть кода числа. Таким образом, диапазон значений типа int зависит от спецификаторов. Диапазоны значений величин целого типа с различными спецификаторами для IBM PC-совместимых компьютеров приведены в таблице «Диапазоны значений простых типов данных» в конце записи.

По умолчанию все целочисленные типы считаются знаковыми, то есть спецификатор signed можно опускать.

Константам, встречающимся в программе, приписывается тот или иной тип в соответствии с их видом. Если этот тип по каким-либо причинам не устраивает программиста, он может явно указать требуемый тип с помощью суффиксов L, l (long) и U, u (unsigned). Например, константа 32L будет иметь тип long и занимать 4 байта. Можно использовать суффиксы L и U одновременно, например, 0x22UL или 05Lu.

Примечание

Типы short int, long int, signed int и unsigned int можно сокращать до short, long, signed и unsigned соответственно.

Символьный тип (char)

Под величину символьного типа отводится количество байт, достаточное для размещения любого символа из набора символов для данного компьютера, что и обусловило название типа. Как правило, это 1 байт. Тип char, как и другие целые типы, может быть со знаком или без знака. В величинах со знаком можно хранить значения в диапазоне от -128 до 127. При использовании спецификатора unsigned значения могут находиться в пределах от О до 255. Этого достаточно для хранения любого символа из 256-символьного набора ASCII. Величины типа char применяются также для хранения целых чисел, не превышающих границы указанных диапазонов.

Расширенный символьный тип (wchar_t)

Тип wchar_t предназначен для работы с набором символов, для кодировки которых недостаточно 1 байта, например, Unicode. Размер этого типа зависит от реализации; как правило, он соответствует типу short. Строковые константы типа wchar_t записываются с префиксом L, например, L»Gates».

Логический тип (bool)

Величины логического типа могут принимать только значения true и false, являющиеся зарезервированными словами. Внутренняя форма представления значения false - 0 (нуль). Любое другое значение интерпретируется как true. При преобразовании к целому типу true имеет значение 1.

Типы с плавающей точкой (float, double и long double)

Стандарт C++ определяет три типа данных для хранения вещественных значений: float, double и long double.

Типы данных с плавающей точкой хранятся в памяти компьютера иначе, чем целочисленные. Внутреннее представление вещественного числа состоит из двух частей - мантиссы и порядка. В IBM PC-совместимых компьютерах величины типа float занимают 4 байта, из которых один двоичный разряд отводится под знак мантиссы, 8 разрядов под порядок и 23 под мантиссу. Мантисса - это число, большее 1.0, но меньшее 2.0. Поскольку старшая цифра мантиссы всегда равна 1, она не хранится.

Для величин типа double, занимающих 8 байт, под порядок и мантиссу отводится 11 и 52 разряда соответственно. Длина мантиссы определяет точность числа, а длина порядка - его диапазон. Как можно видеть из таблицы в конце записи, при одинаковом количестве байт, отводимом под величины типа float и long int, диапазоны их допустимых значений сильно различаются из-за внутренней формы представления .

Спецификатор long перед именем типа double указывает, что под его величину отводится 10 байт.

Константы с плавающей точкой имеют по умолчанию тип double. Можно явно указать тип константы с помощью суффиксов F, f (float) и L, l (long). Например, константа 2E+6L будет иметь тип long double, а константа 1.82f - тип float.

Для написания переносимых на различные платформы программ нельзя делать предположений о размере типа int. Для его получения необходимо пользоваться операцией sizeof, результатом которой является размер типа в байтах. Например, для операционной системы MS-DOS sizeof (int) даст в результате 2, а для Windows 98 или OS/2 результатом будет 4.

В стандарте ANSI диапазоны значений для основных типов не задаются, определяются только соотношения между их размерами, например:

sizeof(float) ≤ slzeof(double) ≤ sizeof(long double)
sizeof(char) ≤ slzeof(short) ≤ sizeof(int) ≤ sizeof(long)

Примечание

Минимальные и максимальные допустимые значения для целых типов зависят от реализации и приведены в заголовочном файле (), характеристики вещественных типов - в файле (), а также в шаблоне класса numeric_limits

Тип void

Кроме перечисленных, к основным типам языка относится тип void, но множество значений этого типа пусто. Он используется для определения функций, которые не возвращают значения, для указания пустого списка аргументов функции, как базовый тип для указателей и в операции приведения типов.

Диапазоны значений простых типов данных в C++ для IBM PC-совместимых компьютеров

Q: Что означает термин IBM PC-совместимый компьютер?
A: IBM PC-совместимый компьютер (англ. IBM PC compatible) - компьютер, архитектурно близкий к IBM PC, XT и AT. IBM PC-совместимые компьютеры построены на базе микропроцессоров, совместимых с Intel 8086 (а, как известно, все выпущенные позднее процессоры Intel имеют полную обратную совместимость с 8086). По сути это практически все современные компьютеры.

Различные виды целых и вещественных типов, различающиеся диапазоном и точностью представления данных, введены для того, чтобы дать программисту возможность наиболее эффективно использовать возможности конкретной аппаратуры, поскольку от выбора типа зависит скорость вычислений и объем памяти. Но оптимизированная для компьютеров какого-либо одного типа программа может стать не переносимой на другие платформы, поэтому в общем случае следует избегать зависимостей от конкретных характеристик типов данных.

Тип Диапазон значений Размер (байт)
bool true и false 1
signed char -128 … 127 1
unsigned char 0 … 255 1
signed short int -32 768 … 32 767 2
unsigned short int 0 … 65 535 2
signed long int -2 147 483 648 … 2 147 483 647 4
unsigned long int 0 … 4 294 967 295 4
float 3.4e-38 … 3.4e+38 4
double 1.7e-308 … 1.7C+308 8
long double 3.4e-4932 … 3.4e+4932 10

Для вещественных типов в таблице приведены абсолютные величины минимальных и максимальных значений.

В данном разделе будут рассмотрены основные типы данных в С++, эти типы данных ещё называются встроенными. Язык программирования С++ является расширяемым языком программирования. Понятие расширяемый означает то, что кроме встроенных типов данных, можно создавать свои типы данных. Поэтому в С++ существует огромное количество типов данных. Мы будем изучать только основные из них.

Таблица 1 — Типы данных С++
Тип байт Диапазон принимаемых значений

целочисленный (логический) тип данных

bool 1 0 / 255

целочисленный (символьный) тип данных

char 1 0 / 255

целочисленные типы данных

short int 2 -32 768 / 32 767
unsigned short int 2 0 / 65 535
int 4
unsigned int 4 0 / 4 294 967 295
long int 4 -2 147 483 648 / 2 147 483 647
unsigned long int 4 0 / 4 294 967 295

типы данных с плавающей точкой

float 4 -2 147 483 648.0 / 2 147 483 647.0
long float 8
double 8 -9 223 372 036 854 775 808 .0 / 9 223 372 036 854 775 807.0

В таблице 1 представлены основные типы данных в С++. Вся таблица делится на три столбца. В первом столбце указывается зарезервированное слово, которое будет определять, каждое свой, тип данных. Во втором столбце указывается количество байт, которое отводится под переменную с соответствующим типом данных. В третьем столбце показан диапазон допустимых значений. Обратите внимание на то, что в таблице все типы данных расположены от меньшего к большему.

Тип данных bool

Первый в таблице — это тип данных bool целочисленный тип данных, так как диапазон допустимых значений — целые числа от 0 до 255. Но как Вы уже заметили, в круглых скобочках написано — логический тип данных, и это тоже верно. Так как bool используется исключительно для хранения результатов логических выражений. У логического выражения может быть один из двух результатов true или false . true — если логическое выражение истинно, false — если логическое выражение ложно.

Но так как диапазон допустимых значений типа данных bool от 0 до 255, то необходимо было как-то сопоставить данный диапазон с определёнными в языке программирования логическими константами true и false . Таким образом, константе true эквивалентны все числа от 1 до 255 включительно, тогда как константе false эквивалентно только одно целое число — 0. Рассмотрим программу с использованием типа данных bool .

// data_type.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { bool boolean = 25; // переменная типа bool с именем boolean if (boolean) // условие оператора if cout << "true = " << boolean << endl; // выполнится в случае истинности условия else cout << "false = " << boolean << endl; // выполнится в случае, если условие ложно system("pause"); return 0; }

В строке 9 объявлена переменная типа bool , которая инициализирована значением 25. Теоретически после строки 9 , в переменной boolean должно содержаться число 25, но на самом деле в этой переменной содержится число 1. Как я уже говорил, число 0 — это ложное значение, число 1 — это истинное значение. Суть в том, что в переменной типа bool могут содержаться два значения — 0 (ложь) или 1 (истина). Тогда как под тип данных bool отводится целый байт, а это значит, что переменная типа bool может содержать числа от 0 до 255. Для определения ложного и истинного значений необходимо всего два значения 0 и 1. Возникает вопрос: «Для чего остальные 253 значения?».

Исходя из этой ситуации, договорились использовать числа от 2 до 255 как эквивалент числу 1, то есть истина. Вот именно по этому в переменной boolean содержится число 25 а не 1. В строках 10 -13 объявлен , который передает управление оператору в строке 11 , если условие истинно, и оператору в строке 13 , если условие ложно. Результат работы программы смотреть на рисунке 1.

True = 1 Для продолжения нажмите любую клавишу. . .

Рисунок 1 — Тип данных bool

Тип данных char

Тип данных char — это целочисленный тип данных, который используется для представления символов. То есть, каждому символу соответствует определённое число из диапазона . Тип данных char также ещё называют символьным типом данных, так как графическое представление символов в С++ возможно благодаря char . Для представления символов в C++ типу данных char отводится один байт, в одном байте — 8 бит, тогда возведем двойку в степень 8 и получим значение 256 — количество символов, которое можно закодировать. Таким образом, используя тип данных char можно отобразить любой из 256 символов. Все закодированные символы представлены в .

ASCII (от англ. American Standard Code for Information Interchange) - американский стандартный код для обмена информацией.

Рассмотрим программу с использованием типа данных char .

// symbols.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { char symbol = "a"; // объявление переменной типа char и инициализация её символом "a" cout << "symbol = " << symbol << endl; // печать символа, содержащегося в переменной symbol char string = "сайт"; // объявление символьного массива (строки) cout << "string = " << string << endl; // печать строки system("pause"); return 0; }

Итак, в строке 9 объявлена переменная с именем symbol , ей присвоено значение символа "a" (ASCII код ). В строке 10 оператор cout печатает символ, содержащийся в переменной symbol . В строке 11 объявлен строковый массив с именем string , причём размер массива задан неявно. В строковый массив сохранена строка "сайт" . Обратите внимание на то, что, когда мы сохраняли символ в переменную типа char , то после знака равно мы ставили одинарные кавычки, в которых и записывали символ. При инициализации строкового массива некоторой строкой, после знака равно ставятся двойные кавычки, в которых и записывается некоторая строка. Как и обычный символ, строки выводятся с помощью оператора cout , строка 12 . Результат работы программы показан на рисунке 2.

Symbol = a string = сайт Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Тип данных char

Целочисленные типы данных

Целочисленные типы данных используются для представления чисел. В таблице 1 их аж шесть штук: short int , unsigned short int , int , unsigned int , long int , unsigned long int . Все они имеют свой собственный размер занимаемой памяти и диапазоном принимаемых значений. В зависимости от компилятора, размер занимаемой памяти и диапазон принимаемых значений могут изменяться. В таблице 1 все диапазоны принимаемых значений и размеры занимаемой памяти взяты для компилятора MVS2010. Причём все типы данных в таблице 1 расположены в порядке возрастания размера занимаемой памяти и диапазона принимаемых значений. Диапазон принимаемых значений, так или иначе, зависит от размера занимаемой памяти. Соответственно, чем больше размер занимаемой памяти, тем больше диапазон принимаемых значений. Также диапазон принимаемых значений меняется в случае, если тип данных объявляется с приставкой unsigned — без знака. Приставка unsigned говорит о том, что тип данных не может хранить знаковые значения, тогда и диапазон положительных значений увеличивается в два раза, например, типы данных short int и unsigned short int .

Приставки целочисленных типов данных:

short приставка укорачивает тип данных, к которому применяется, путём уменьшения размера занимаемой памяти;

long приставка удлиняет тип данных, к которому применяется, путём увеличения размера занимаемой памяти;

unsigned (без знака)— приставка увеличивает диапазон положительных значений в два раза, при этом диапазон отрицательных значений в таком типе данных храниться не может.

Так, что, по сути, мы имеем один целочисленный тип для представления целых чисел — это тип данных int . Благодаря приставкам short , long , unsigned появляется некоторое разнообразие типов данных int , различающихся размером занимаемой памяти и (или) диапазоном принимаемых значений.

Типы данных с плавающей точкой

В С++ существуют два типа данных с плавающей точкой: float и double . Типы данных с плавающей точкой предназначены для хранения чисел с плавающей точкой. Типы данных float и double могут хранить как положительные, так и отрицательные числа с плавающей точкой. У типа данных float размер занимаемой памяти в два раза меньше, чем у типа данных double , а значит и диапазон принимаемых значений тоже меньше. Если тип данных float объявить с приставкой long , то диапазон принимаемых значений станет равен диапазону принимаемых значений типа данных double . В основном, типы данных с плавающей точкой нужны для решения задач с высокой точностью вычислений, например, операции с деньгами.

Итак, мы рассмотрели главные моменты, касающиеся основных типов данных в С++. Осталось только показать, откуда взялись все эти диапазоны принимаемых значений и размеры занимаемой памяти. А для этого разработаем программу, которая будет вычислять основные характеристики всех, выше рассмотренных, типов данных.

// data_types.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include // библиотека манипулирования вводом/выводом #include // заголовочный файл математических функций #include using namespace std; int main(int argc, char* argv) { cout << " data type " << "byte" << " " << " max value " << endl // заголовки столбцов << "bool = " << sizeof(bool) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных bool*/ << (pow(2,sizeof(bool) * 8.0) - 1) << endl << "char = " << sizeof(char) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных char*/ << (pow(2,sizeof(char) * 8.0) - 1) << endl << "short int = " << sizeof(short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных short int*/ << (pow(2,sizeof(short int) * 8.0 - 1) - 1) << endl << "unsigned short int = " << sizeof(unsigned short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned short int*/ << (pow(2,sizeof(unsigned short int) * 8.0) - 1) << endl << "int = " << sizeof(int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных int*/ << (pow(2,sizeof(int) * 8.0 - 1) - 1) << endl << "unsigned int = " << sizeof(unsigned int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned int*/ << (pow(2,sizeof(unsigned int) * 8.0) - 1) << endl << "long int = " << sizeof(long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных long int*/ << (pow(2,sizeof(long int) * 8.0 - 1) - 1) << endl << "unsigned long int = " << sizeof(unsigned long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных undigned long int*/ << (pow(2,sizeof(unsigned long int) * 8.0) - 1) << endl << "float = " << sizeof(float) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных float*/ << (pow(2,sizeof(float) * 8.0 - 1) - 1) << endl << "double = " << sizeof(double) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных double*/ << (pow(2,sizeof(double) * 8.0 - 1) - 1) << endl; system("pause"); return 0; }

Данная программа выложена для того, чтобы Вы смогли просмотреть характеристики типов данных в своей системе. Не стоит разбираться в коде, так как в программе используются управляющие операторы, которые Вам, вероятнее всего, ещё не известны. Для поверхностного ознакомления с кодом программы, ниже поясню некоторые моменты. Оператор sizeof() вычисляет количество байт, отводимое под тип данных или переменную. Функция pow(x,y) возводит значение х в степень y , данная функция доступна из заголовочного файла . Манипуляторы fixed и setprecision() доступны из заголовочного файла . Первый — fixed , передаёт в поток вывода значения в фиксированной форме. Манипулятор setprecision(n) отображает n знаков после запятой. Максимальное значение некоторого типа данных вычисляется по такой формуле:

Max_val_type = 2^(b * 8 - 1) - 1; // для типов данных с отрицательными и положительными числами // где, b - количество байт выделяемое в памяти под переменную с таким типом данных // умножаем на 8, так как в одном байте 8 бит // вычитаем 1 в скобочках, так как диапазон чисел надо разделить надвое для положительных и отрицательных значений // вычитаем 1 в конце, так как диапазон чисел начинается с нуля // типы данных с приставкой unsigned max_val_type = 2^(b * 8) - 1; // для типов данных только с положительными числами // пояснения к формуле аналогичные, только в скобочка не вычитается единица

Пример работы программы можно увидеть на рисунке 3. В первом столбце показаны основные типы данных в С++, во втором столбце размер памяти, отводимый под каждый тип данных и в третьем столбце — максимальное значение, которое может содержать соответствующий тип данных. Минимальное значение находится аналогично максимальному. В типах данных с приставкой unsigned минимальное значение равно 0.

Data type byte max value bool = 1 255.00 char = 1 255.00 short int = 2 32767.00 unsigned short int = 2 65535.00 int = 4 2147483647.00 unsigned int = 4 4294967295.00 long int = 4 2147483647.00 unsigned long int = 4 4294967295.00 float = 4 2147483647.00 double = 8 9223372036854775808.00 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Типы данных С++

Если, например, переменной типа short int присвоить значение 33000, то произойдет переполнение разрядной сетки, так как максимальное значение в переменной типа short int это 32767. То есть в переменной типа short int сохранится какое-то другое значение, скорее всего будет отрицательным. Раз уж мы затронули тип данных int ,стоит отметить, что можно опускать ключевое слово int и писать, например, просто short . Компилятор будет интерпретировать такую запись как short int . Тоже самое относится и к приставкам long и unsigned . Например:

// сокращённая запись типа данных int short a1; // тоже самое, что и short int long a1; // тоже самое, что и long int unsigned a1; // тоже самое, что и unsigned int unsigned short a1; // тоже самое, что и unsigned short int

Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и способ реализации хранения значений и выполнения операций.

Процесс проверки и накладывания ограничений на типы используемых данных называется контролем типов или типизацией программных данных . Различают следующие виды типизации:

  • Статическая типизация - контроль типов осуществляется при компиляции.
  • Динамическая типизация - контроль типов осуществляется во время выполнения.

Язык Си поддерживает статическую типизацию, и типы всех используемых в программе данных должны быть указаны перед ее компиляцией.

Различают простые, составные и прочие типы данных.

Простые данные

Простые данные можно разделить на

  • целочисленные,
  • вещественные,
  • символьные
  • логические.

Составные (сложные) данные

  • Массив — индексированный набор элементов одного типа.
  • Строковый тип — массив, хранящий строку символов.
  • Структура — набор различных элементов (полей записи), хранимый как единое целое и предусматривающий доступ к отдельным полям структуры.

Другие типы данных

  • Указатель — хранит адрес в памяти компьютера, указывающий на какую-либо информацию, как правило - указатель на переменную.

Программа, написанная на языке Си, оперирует с данными различных типов. Все данные имеют имя и тип. Обращение к данным в программе осуществляется по их именам (идентификаторам).

Идентификатор - это последовательность, содержащая не более 32 символов, среди которых могут быть любые буквы латинского алфавита a — z, A — Z, цифры 0 — 9 и знак подчеркивания (_). Первый символ идентификатора не должен быть цифрой.

Несмотря на то, что допускается имя, имеющее до 32 символов, определяющее значение имеют только первые 8 символов. Помимо имени, все данные имеют тип. Указание типа необходимо для того, чтобы было известно, сколько места в оперативной памяти будет занимать данный объект.

Компилятор языка Си придерживается строгого соответствия прописных и строчных букв в именах идентификаторов и лексем.

Целочисленные данные

Целочисленные данные могут быть представлены в знаковой и беззнаковой форме.

Беззнаковые целые числа представляются в виде последовательности битов в диапазоне от 0 до 2 n -1, где n-количество занимаемых битов.

Знаковые целые числа представляются в диапазоне -2 n-1 …+2 n-1 -1. При этом старший бит данного отводится под знак числа (0 соответствует положительному числу, 1 – отрицательному).

Основные типы и размеры целочисленных данных:

Вещественные данные

Вещественный тип предназначен для представления действительных чисел. Вещественные числа представляются в разрядной сетке машины в нормированной форме.

Нормированная форма числа предполагает наличие одной значащей цифры (не 0) до разделения целой и дробной части. Такое представление умножается на основание системы счисления в соответствующей степени. Например, число 12345,678 в нормированной форме можно представить как

12345,678 = 1,2345678·10 4

Число 0,009876 в нормированной форме можно представить как

0,009876 = 9,876·10 -3

В двоичной системе счисления значащий разряд, стоящий перед разделителем целой и дробной части, может быть равен только 1. В случае если число нельзя представить в нормированной форме (например, число 0), значащий разряд перед разделителем целой и дробной части равен 0.

Значащие разряды числа, стоящие в нормированной форме после разделителя целой и дробной части, называются мантиссой числа .

В общем случае вещественное число в разрядной сетке вычислительной машины можно представить в виде 4 полей.

  • знак — бит, определяющий знак вещественного числа (0 для положительных чисел, 1 — для отрицательных).
  • степень — определяет степень 2, на которую требуется умножить число в нормированной форме. Поскольку степень 2 для числа в нормированной форме может быть как положительной, так и отрицательной, нулевой степени 2 в представлении вещественного числа соответствует величина сдвига, которая определяется как

    где n — количество разрядов, отводимых для представления степени числа.

  • целое — бит, который для нормированных чисел всегда равен 1, поэтому в некоторых представлениях типов этот бит опущен и принимается равным 1.
  • мантисса — значащие разряды представления числа, стоящие после разделителя целой и дробной части в нормированной форме.

Различают три основных типа представления вещественных чисел в языке Си:

Как видно из таблицы, бит целое у типов float и double отсутствует. При этом диапазон представления вещественного числа состоит из двух диапазонов, расположенных симметрично относительно нуля. Например, диапазон представления чисел типа float можно представить в виде:

Пример : представить число -178,125 в 32-разрядной сетке (тип float ).

Для представления числа в двоичной системе счисления преобразуем отдельно целую и дробную части:

178 10 = 10110010 2 .

0,125 10 = 0,001 2 .

178,125 10 = 10110010,001 2 =1,0110010001·2 111

Для преобразования в нормированную форму осуществляется сдвиг на 7 разрядов влево).

Для определения степени числа применяем сдвиг:

0111111+00000111 = 10000110 .

Таким образом, число -178,125 представится в разрядной сетке как

Символьный тип

Символьный тип хранит код символа и используется для отображения символов в различных кодировках. Символьные данные задаются в кодах и по сути представляют собой целочисленные значения. Для хранения кодов символов в языке Си используется тип char .

Логический тип

Логический тип имеет применяется в логических операциях, используется при алгоритмических проверках условий и в циклах и имеет два значения:

  • истина — true
  • ложь — — false

В программе должно быть дано объявление всех используемых данных с указанием их имени и типа. Описание данных должно предшествовать их использованию в программе.

Пример объявления объектов

int n; // Переменная n целого типа
double a; // Переменная a вещественного типа двойной точности

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.