UML-диаграмма. Виды диаграмм UML. Что такое UML

Большинство существующих методов объектно-ориентированного анализа и проектирования (ООАП) включают как язык моделирования, так и описание процесса моделирования. Язык моделирования – это нотация (в основном графическая), которая используется методом для описания проектов.

Нотация представляет собой совокупность графических объектов, которые используются в моделях; она является синтаксисом языка моделирования. Например, нотация диаграммы классов определяет, каким образом представляются такие элементы и понятия, как класс, ассоциация и множественность.

Процесс – это описание шагов, которые необходимо выполнить при разработке проекта.

Унифицированный язык моделирования UML (Unified Modeling Language) – это преемник того поколения методов ООАП, которые появились в конце 80-х и начале 90-х гг.

Язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML одновременно является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения.

Конструктивное использование языка UML основывается на понимании общих принципов моделирования сложных систем и особенностей процесса объектно-ориентированного проектирования (ООП) в частности. Выбор выразительных средств для построения моделей сложных систем предопределяет те задачи, которые могут быть решены с использованием данных моделей. При этом одним из основных принципов построения моделей сложных систем является принцип абстрагирования, который предписывает включать в модель только те аспекты проектируемой системы, которые имеют непосредственное отношение к выполнению системой своих функций или своего целевого предназначения. При этом все второстепенные детали опускаются, чтобы чрезмерно не усложнять процесс анализа и исследования полученной модели.

Другим принципом построения моделей сложных систем является принцип многомодельности . Этот принцип представляет собой утверждение о том, что никакая единственная модель не может с достаточной степенью адекватности описывать различные аспекты сложной системы. Применительно к методологии ООП это означает, что достаточно полная модель сложной системы допускает некоторое число взаимосвязанных представлений (views), каждое из которых адекватно отражает некоторый аспект поведения или структуры системы. При этом наиболее общими представлениями сложной системы принято считать статическое и динамическое представления, которые в свою очередь могут подразделяться на другие более частные представления.) феномен сложной системы как раз и состоит в том, что никакое ее единственное представление не является достаточным для адекватного выражения всех особенностей моделируемой системы.

Еще одним принципом прикладного системного анализа является принцип иерархического построения моделей сложных систем. Этот принцип предписывает рассматривать процесс построения модели на разных уровнях абстрагирования или детализации в рамках фиксированных представлений. При этом исходная или первоначальная модель сложной системы имеет наиболее общее представление (метапредставление). Такая модель строится на начальном этапе проектирования и может не содержать многих деталей и аспектов моделируемой системы.

Создание UML фактически началось в конце 1994 г., когда Гради Б уч и Джеймс Рамбо начали работу по объединению методов Booch и ОМТ (Object Modeling Technique) под эгидой компании Rational Software. К концу 1995 г. они создали первую спецификацию объединенного метода, названного ими Unified Method, версия 0.8. Тогда же, в 1995 г., к ним присоединился создатель метода OOSE (Object-Oriented Software Engineering) Ивар Якобсон . Таким образом, UML является прямым объединением и унификацией методов Буча, Рамбо и Якобсона , однако дополняет их новыми возможностями.

Главными в разработке UML были следующие цели:

– предоставить пользователям готовый к использованию выразительный язык визуального моделирования, позволяющий разрабатывать осмысленные модели и обмениваться ими;

– предусмотреть механизмы расширяемости и специализации для расширения базовых концепций;

– обеспечить независимость от конкретных языков программирования и процессов разработки;

– обеспечить формальную основу для понимания этого языка моделирования (язык должен быть одновременно точным и доступным для понимания, без лишнего формализма);

– стимулировать рост рынка объектно-ориентированных инструментальных средств;

– интегрировать лучший практический опыт.

Язык UML находится в процессе стандартизации, проводимом OMG (Object Management Group) – организацией по стандартизации в области объектно-ориентированных методов и технологий, в настоящее время принят в качестве стандартного языка моделирования и получил широкую поддержку в индустрии ПО.

Язык UML принят на вооружение практически всеми крупнейшими компаниями – производителями ПО (Microsoft, IBM, Hewlett-Packard, Oracle, Sybase и др.). Кроме того, практически все мировые производители CASE-средств, помимо Rational Software (Rational Rose), поддерживают UML в своих продуктах (Paradigm Plus 3.6, System Architec, Microsoft Visual Modeler for Visual Basic, Delphi, PowerBuilder и др.). Полное описание UML можно найти на сайтах http://www.omg.urg, http://www.rational.com и http://uml.shl.com. Описание UML на русском языке содержится в книге М. Фаулера и К. Скотта, в дальнейшем изложении терминология языка соответствует данному переводу.

Создатели UML представляют его как язык для определения, представления, проектирования и документирования программных систем, организационно-экономических, технических и др.

UML содержит стандартный набор диаграмм и нотаций самых разнообразных видов.

Диаграмма в UML – это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами (сущностями) и ребрами (отношениями). Диаграммы рисуют для визуализации системы с разных точек зрения.

Диаграмма – в некотором смысле одна из проекций системы. Как правило, за исключением наиболее тривиальных случаев, диаграммы дают свернутое представление элементов, из которых составлена система. Один и тот же элемент может присутствовать во всех диаграммах, или только в нескольких (самый распространенный вариант), или не присутствовать ни в одной (очень редко).

Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру программной системы.

В UML выделяют следующие типы диаграмм:

диаграммы вариантов использования (usecase diagrams) – для моделирования бизнес-процессов организации (требований к системе);

диаграммы классов (class diagrams) – для моделирования статической структуры классов системы и связей между ними. На таких диаграммах показывают классы, интерфейсы, объекты и кооперации, а также их отношения. При моделировании объектно-ориентированных систем этот тип диаграмм используют чаще всего. Диаграммы классов соответствуют статическому виду системы с точки зрения проектирования;

диаграммы поведения системы (behavior diagrams);

диаграммы взаимодействия (interaction diagrams) – для моделирования процесса обмена сообщениями между объектами. Существуют два вида диаграмм взаимодействия: диаграммы последовательности (sequence diagrams) и кооперативные диаграммы (collaboration diagrams). На диаграммах взаимодействия представлены связи между объектами; показаны, в частности, сообщения, которыми объекты могут обмениваться. Диаграммы взаимодействия относятся к динамическому виду системы. При этом диаграммы последовательности отражают временную упорядоченность сообщений, а диаграммы кооперации – структурную организацию обменивающихся сообщениями объектов. Эти диаграммы являются изоморфными, то есть могут быть преобразованы друг в друга;

диаграммы состояний (statechart diagrams) – для моделирования поведения объектов системы при переходе из одного состояния в другое. На них представлен автомат, включающий в себя состояния, переходы, события и виды действий. Диаграммы состояний относятся к динамическому виду системы; особенно они важны при моделировании поведения интерфейса, класса или кооперации. Они акцентируют внимание на поведении объекта, зависящем от последовательности событий, что очень полезно для моделирования реактивных систем;

диаграммы деятельностей (activity diagrams) – для моделирования поведения системы в рамках различных вариантов использования или моделирования деятельностей. Это частный случай диаграммы состояний; на ней представлены переходы потока управления от одной деятельности к другой внутри системы. Диаграммы деятельности относятся к динамическому виду системы; они наиболее важны при моделировании ее функционирования и отражают поток управления между объектами;

– диаграммы реализации (implementation diagrams): диаграммы компонентов (component diagrams) – для моделирования иерархии компонентов (подсистем) системы; диаграммы размещения (deployment diagrams) – для моделирования физической архитектуры системы. На диаграмме компонентов представлена организация совокупности компонентов и существующие между ними зависимости. Диаграммы компонентов относятся к статическому виду системы с точки зрения реализации. Они могут быть соотнесены с диаграммами классов, так как компонент обычно отображается на один или несколько классов, интерфейсов или коопераций.Краткая история UML

Объектно-ориентированные языки моделирования появились в период с середины 70-х до конца 80-х годов, когда исследователи, поставленные перед необходимостью учитывать новые возможности объектно-ориентированных языков программирования и требования, предъявляемые все более сложными приложениями, вынуждены были начать разработку различных альтернативных подходов к анализу и проектированию.

С 1989 по 1994 год число различных объектно-ориентированных методов возросло с десяти более чем до пятидесяти. Тем не менее, многие пользователи испытывали затруднения при выборе языка моделирования, который бы полностью соответствовал их потребностям, что послужило причиной так называемой «войны методов». В результате этих войн появилось новое поколение методов, среди которых особое значение приобрели языки Booch , созданный Грейди Бучем (Grady Booch), OOSE (Object-Oriented Software Engineering), разработанный Айваром Джекобсоном (Ivar Jacobson) и ОМТ (Object Modeling Technique), автором которого является Джеймс Рамбо (James Rumbaugh). Кроме того, следует упомянуть языки Fusion, Шлаера-Меллора (Shlaer-Mellor) и Коада-Йордона (Coad-Yourdon). Каждый из этих методов можно считать вполне целостным и законченным, хотя любой из них имеет не только сильные, но и слабые стороны.

Выразительные возможности метода Буча особенно важны на этапах проектирования и конструирования модели. OOSE великолепно приспособлен для анализа и формулирования требований, а также для высокоуровневого проектирования. ОМТ-2 оказался особенно полезным для анализа и разработки информационных систем, ориентированных на обработку больших объемов данных.

Критическая масса новых идей начала формироваться к середине 90-х годов, когда Грейди Буч (компания Rational Software Corporation), Айвар Джекобсон (Objectory) и Джеймс Рамбо (General Electric) предприняли попытку объединить свои методы, уже получившие мировое признание как наиболее перспективные в данной области. Являясь основными авторами языков Booch, OOSE и ОМТ , партнеры попытались создать новый, унифицированный язык моделирования и руководствовались при этом тремя соображениями.

Во-первых, все три метода, независимо от желания разработчиков, уже развивались во встречном направлении. Разумно было продолжать эту эволюцию вместе, а не по отдельности, что помогло бы в будущем устранить нежелательные различия и, как следствие, неудобства для пользователей.

Во-вторых, унифицировав методы, проще было привнести стабильность на рынок инструментов объектно-ориентированного моделирования, что дало бы возможность положить в основу всех проектов единый зрелый язык, а создателям инструментальных средств позволило бы сосредоточиться на более продуктивной деятельности.

Наконец, следовало полагать, что подобное сотрудничество приведет к усовершенствованию всех трех методов и обеспечит решение задач, для которых любой из них, взятый в отдельности, был не слишком пригоден.

– моделировать системы целиком, от концепции до исполняемого артефакта, с помощью объектно-ориентированных методов;

– решить проблему масштабируемости, которая присуща сложным системам, предназначенным для выполнения ответственных задач;

– создать такой язык моделирования, который может использоваться не только людьми, но и компьютерами.

Изобретение языка для объектно-ориентированного анализа и проектирования не слишком отличается от разработки языка программирования. Во-первых , требовалось ограничить задачу. Следует ли включать в язык возможность спецификации требований? Должен ли язык позволять визуальное программирование? Во-вторых , было необходимо найти точку равновесия между выразительной мощью и простотой. Слишком простой язык ограничил бы круг решаемых с его помощью задач, а слишком сложный мог ошеломить неискушенного разработчика. Кроме того, при объединении существующих методов приходилось учитывать наличие уже разработанных с их помощью продуктов. Внесение слишком большого числа изменений могло бы оттолкнуть уже имевшихся пользователей, а сопротивляясь развитию языка, авторы потеряли бы возможность привлекать новых пользователей и делать язык более простым и удобным для применения. Создавая UML, разработчики старались найти оптимальное решение этих проблем.

Официально создание UML началось в октябре 1994 года , когда Рамбо перешел в компанию Rational Software, где работал Буч. Первоначальной целью было объединение методов Буча и ОМТ. Первая пробная версия 0.8 Унифицированного Метода (Unified Method), как его тогда называли, появилась в октябре 1995 года . Приблизительно в это же время в компанию Rational перешел Джекобсон, и проект UML был расширен с целью включить в него язык OOSE. В результате совместных усилий в июне 1996 года вышла версия 0.9 языка UML . На протяжении всего года создатели занимались сбором отзывов от основных компаний, работающих в области конструирования программного обеспечения. За это время стало ясно, что большинство таких компаний сочло UML языком, имеющим стратегическое значение для их бизнеса. В результате был основан консорциум UML, в который вошли организации, изъявившие желание предоставить ресурсы для работы, направленной на создание полного определения UML.

Версия 1.0 языка появилась в результате совместных усилий компаний Digital Equipment Corporation, Hewlett Packard, I-Logix, Intellicprp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational, Texas Instruments и Unisys. UML 1.0 оказался хорошо определенным, выразительным, мощным языком, применимым для решения большого количества разнообразных задач. В январе 1997 года он был представлен Группе по управлению объектами (Object Management Group, OMG) на конкурс по созданию стандартного языка моделирования.

Между январем и июнем 1997 года консорциум UML расширился, в него вошли практически все компании, откликнувшиеся на призыв OMG, а именно: Andersen Consulting, Ericsson, ObjecTime Limited, Platinum Technology, Ptech, Reich Technologies, Softeam, Sterling Software и Taskon. Чтобы формализовать спецификации UML и координировать работу с другими группами, занимающимися стандартизацией, под руководством Криса Кобрина (Cris Kobryn) из компании MCI Systemhouse и Эда Эйкхолта (Ed Eykholt) из Rational была организована семантическая группа. Пересмотренная версия UML (1.1) была снова представлена на рассмотрение OMG в июле 1997 года. В сентябре версия была утверждена на заседаниях Группы по анализу и проектированию и Комитета по архитектуре OMG, a 14 ноября 1997 года принята в качестве стандарта на общем собрании всех членов OMG.

Дальнейшая работа по развитию UML проводилась Группой по усовершенствованию (Revision Task Force, RTF) OMG под руководством Криса Кобрина. В июне 1998 года вышла версия UML 1.2, а осенью 1998 – UML 1.3.

Язык моделирования UML

UML (унифицированный язык моделирования) – язык графического описания для объектного моделирования в области разработки программного обеспечения. Он использует графические обозначения для создания модели системы. Данный язык был создан для определения, визуализации, проектирования и документирования программных систем, а также его используют для моделирования бизнес-процессов, системного проектирования.

Описание унифицированного языка моделирования UML

Краткая история UML (Создатели: Грейди Буч , Айвар Джекобсон и Джеймс Рамбо )

Концептуальная модель UML (концептуальную модель включает: основные строительные блоки языка; правила их сочетания; некоторые общие для всего языка механизмы)

Виды диаграмм для моделирования:

Диаграммы вариантов использования (они описывают функциональное назначение системы или то, что система должна делать)

Диаграммы классов (используются для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования; такие диаграммы могут отражать различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывать их внутреннюю структуру и типы отношений)

Диаграммы взаимодействия (описывают взаимодействие между объектами в системе и подразделяются на два основных типа диаграмм: диаграммы последовательности и кооперативные диаграммы)

Диаграммы состояний (используется для описания всех возможных состояний одного экземпляра определенного класса и возможные последовательности его переходов из одного состояния в другое, то есть моделирует все изменения состояний объекта как его реакцию на внешние воздействия)

Диаграммы деятельности (применяется для моделирования процесса выполнения операций)

Диаграммы реализации (служат для представления компонентов системы и относятся к ее физической модели)

Диаграммы компонентов (описывает особенности физического представления системы и позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный и исполняемый код)

Диаграммы размещения (отражают физические взаимосвязи между программными и аппаратными компонентами системы, а также используются для изображения маршрутов перемещения объектов в распределенной системе)

Создавать для программы дополнительное визуальное и документальное сопровождение – процесс трудоемкий и утомительный: отнимает много времени и кажется совершенно излишним, если архитектура программного обеспечения проста или является эталонной. Однако на практике программисты далеко не всегда сталкиваются с такими задачами.

Почему не «взлетел» UML

В большинстве случаев при разработке программного обеспечения, если система требует правок, то программисты просто берут код и исправляют ошибки так, как им удобно, а затем демонстрируют результат заказчику.
«Сегодня программирование - это не инженерная наука, а прикладная математика. При этом программисты сразу учатся писать код», - уточняет заведующий кафедрой Технологии программирования Университета ИТМО Анатолий Шалыто.

Чаще всего архитектура решения объясняется на словах или с применением простейших блок-диаграмм. Универсальный язык моделирования (UML), основанный на базе нескольких предыдущих стандартов, таких как метод Гради Буча (Booch), метод Джима Румбаха (OMT) и метод Айвара Джекобсона (OOSE), должен был помочь в этом вопросе. И на него возлагали определенные надежды.

Люди пробовали работать с UML, надеясь, что тот станет своеобразной «серебряной пулей», однако он не приобрел широкой популярности. Исследователи выделяют три главных препятствия, которые помешали массовому распространению диаграмм состояний в качестве общепринятого средства описания алгоритмов и сложных поведений программ.

Во-первых, для описания поведения, кроме диаграмм состояний, предлагалось использовать и другие типы диаграмм, однако правила, определяющие их взаимодействие, не были регламентированы.

«Многие считают, что этот язык слишком объемный, - говорит исследователь и предприниматель Хорди Кабот (Jordi Cabot). - Это связано с большим количеством диаграмм, доступных в UML».

Во-вторых, не было предложено подходов для совместного использования диаграмм, описывающих структуру и поведение программ. В-третьих, диаграммы для описания поведения в основном использовались разработчиками для общения друг с другом, в то время как назначение UML - составление спецификации с последующим её воплощением в программном коде.

Подобная судьба ожидала и множество других решений, которые, однако, не являются полноценными альтернативами UML. Речь идет о системе условных обозначений для моделирования бизнес-процессов (BPMN), моделях сущность-связь (ERM), диаграммах потоков данных (DFD), диаграммах состояний и др. Как отмечает Крис Фурман (Cris Fuhrman), все это не более, чем инструменты общения.

Переход к автоматам

Однако спецификации проектов нужны, поскольку они фиксируют результат процесса проектирования, освобождая ум разработчика для решения других задач, а также используются в качестве входных данных на этапе реализации.


Этапы разработки программной системы со сложным поведением

Автоматное программирование является подходом, способным облегчить процесс формирования спецификации. Во время работы создаются графы, в которых под влиянием внешних или любых других входных воздействий осуществляются переходы между состояниями и формируются выходные «импульсы». Для этого сперва формируется текстовая версия технического задания, в котором заказчик прописывает подробную работу желаемого решения.

После этого объявляются условные обозначения входных и выходных воздействий, источников и приемников информации, а затем рисуется схема. Графы переходов позволяют заказчику лучше понять то, что будет делать программист.

Имея схему связей и диаграмму переходов, с помощью формального преобразования можно построить код, реализующий автомат на языке программирования. После этого спецификации становятся частью проектной документации системы. Проектная документация составляется на естественном языке и обычно содержит постановку задачи, описание структуры и поведения системы, примеры ее использования.

Автоматное описание в ООП

Принципы автоматного подхода находят применение и в объектно-ориентированном программировании. Это возможно благодаря концепции «автоматы и объекты управления как классы». Такая модель принята, например, в инструментальном средстве автоматного программирования UniMod. Архитектура системы со сложным поведением, построенная согласно этому принципу представлена на рисунке ниже.

Сопоставление отдельного класса каждому объекту управления приводит к тому, что усилия разработчиков по выделению этих объектов на стадии моделирования не пропадают на этапе реализации. При этом каждый запрос или команда имеет доступ только к строго определенной части вычислительного состояния.

В целом же процесс проектирования системы со сложным поведением можно описать следующим образом:

  1. Проведение объектной декомпозиции, когда система разбивается на множество самостоятельных взаимодействующих сущностей.
  2. Сопоставление сущностей с классами, определение интерфейсов классов и отношений.
  3. Выделение тех сущностей, которые обладают сложным поведением, - именно для их описания будет применяться автоматный подход.
  4. Задание набора управляющих состояний для каждой сущности. Запросы и команды сопоставляются с входными и выходными переменными управляющего автомата, а компоненты интерфейса - с его событиями. На их основе строится сам управляющий автомат.
  5. Реализация неавтоматизированных классов на выбранном объектно-ориентированном языке. Генерация кода может выполняться как автоматически, так и вручную.
Этот алгоритм не ограничивает программиста в выборе модели процесса разработки (водопадная, итеративная, кластерная и т. д.) и легко модифицируется в многоитерационный. При этом он также позволяет вносить изменения в уже существующую объектно-ориентированную систему и не требует проведения разработки «с чистого листа».

достаточно было добавить новый компонент, что несколько проще.

При использовании второго варианта нам в двух разных сценариях, помимо добавления нового компонента, потребовалось изменить компонент, обрабатывающий буквы.

Архитектура

Сценарий a

Сценарий b

Сценарий c

Сценарий d

Каналы и фильтры

Репозиторий

Таблица 6. Итоги оценки двух вариантов архитектуры индексатора.

+ обозначает возможность не изменять компонент, - - необходимость изменения компонента,

* - необходимость добавления одного компонента

6. В целом первая архитектура на предложенных сценариях выглядит лучше второй. Единственный ее недостаток - отсутствие возможности инкрементально поставлять данные на вход компонентам. Если его устранить, сделав компоненты способными потреблять данные постепенно, эта архитектура станет почти идеальным вариантом, поскольку она легко расширяется - для решения многих дополнительных задач потребуется только добавлять компоненты в общий конвейер.

Вторая архитектура, несмотря на выигрыш в инкрементальности, проигрывает в целом. Основная ее проблема - слишком специфически построенный компонент-обработчик букв. Необходимость изменить его в нескольких сценариях показывает, что нужно объединить обработчик букв и обработчик конца слов в единый компонент, выдающий слова целиком, после чего полученная архитектура не будет ничем уступать исправленной первой.

UML. Виды диаграмм UML

Для представления архитектуры, а точнее - различных входящих в нее структур, удобно использовать графические языки. На настоящий момент наиболее проработанным и наиболее широко используемым из них является унифицированный язык моделирования (Unified Modeling Language, UML) , хотя достаточно часто архитектуру системы описывают просто набором именованных прямоугольников, соединенных линиями и стрелками, которые представляют возможные связи.

UML предлагает использовать для описания архитектуры 8 видов диаграмм. 9-й вид UML диаграмм, диаграммы вариантов использования (см. Лекцию 4), не относится к архитектурным представлениям. Кроме того, и другие виды диаграмм можно использовать для описания внутренней структуры компонентов или сценариев действий пользователей и прочих элементов, к архитектуре часто не относящихся. В этом курсе мы не будем разбирать диаграммы UML в деталях, а ограничимся обзором их основных элементов, необходимым для общего понимания смысла того, что изображено на таких диаграммах.

Диаграммы UML делятся на две группы - статические идинамические диаграммы .

Статические диаграммы

Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними, либо суммарную информацию о сущностях и связях, либо сущности и связи, существующие в какой-то определенный момент времени. Они не показывают способов поведения этих сущностей. К этому типу относятсядиаграммы классов ,объектов ,компонентов идиаграммы развертывания .

Диаграммы классов (class diagrams ) показываютклассы илитипы сущностей системы, характеристики классов (поля иоперации ) и возможные связи между ними. Пример диаграммы классов изображен на Рис. 31.

Классы представляются прямоугольниками, поделенными на три части. В верхней части показывают имя класса, в средней - набор его полей, с именами, типами, модификаторами доступа (public ‘+’,protected ‘#’,private ‘-’) и начальными значениями, в нижней - набор операций класса. Для каждой операции показывается ее модификатор доступа и

сигнатура.

На Рис. 31 изображены классы Account, Person, Organization, Address, CreditAccountи

абстрактный класс Client .

Класс CreditAccount имеетprivate полеmaximumCredit типаdouble , а такжеpublic методgetCredit() иprotected методsetCredit() .

Интерфейсы , т.е. типы, имеющие только набор операций и не определяющие способов их реализации, часто показываются в виде небольших кружков, хотя могут изображаться и как обычные классы. На Рис. 31 представлен интерфейсAccountInterface .

Рисунок 31. Диаграмма классов.

Наиболее часто используется три вида связей между классами - связи по композиции, ссылки, связи по наследованию и реализации.

Композиция описывает ситуацию, в которой объекты классаA включают в себя объекты классаB , причем последние не могут разделяться (объект классаB , являющийся частью объекта классаA , не может являться частью другого объекта классаA ) и существуют только в рамках объемлющих объектов (уничтожаются при уничтожении объемлющего объекта).

Композицией на Рис. 31 является связь между классами Organization иAddress .

Ссылочная связь (илислабая агрегация ) обозначает, что объект некоторого классаA имеет в качестве поля ссылку на объект другого (или того же самого) классаB , причем ссылки на один и тот же объект классаB могут иметься в нескольких объектах классаA .

И композиция, и ссылочная связь изображаются стрелками, ведущими от класса A к классуB . Композиция дополнительно имеет закрашенный ромбик у начала этой стрелки. Двусторонние ссылочные связи, обозначающие, что объекты могут иметь ссылки друг на друга, показываются линиями без стрелок. Такая связь показана на Рис. 31 между классами

Account и Client.

Эти связи могут иметь описание множественности , показывающее, сколько объектов классаB может быть связано с одним объектом классаA . Оно изображается в виде текстовой метки около конца стрелки, содержащей точное число или нижние и верхние границы, причем бесконечность изображается звездочкой или буквой n. Для двусторонних

связей множественности могут показываться с обеих сторон. На Рис. 31 множественности, изображенные для связи между классами Account иClient , обозначают, что один клиент может иметь много счетов, а может и не иметь ни одного, и счет всегда привязан ровно к одному клиенту.

Наследование классов изображается стрелкой с пустым наконечником, ведущей от наследника к предку. На Рис. 31 классCreditAccount наследует классуAccount , а классы

Person и Organization- классу Client.

Реализация интерфейсов показывается в виде пунктирной стрелки с пустым наконечником, ведущей от класса к реализуемому им интерфейсу, если тот показан в виде прямоугольника. Если же интерфейс изображен в виде кружка, то связь по реализации показывается обычной сплошной линией (в этом случае неоднозначности в ее толковании не возникает). Такая связь изображена на Рис. 31 между классомAccount и интерфейсом

AccountInterface.

Один класс использует другой, если этот другой класс является типом параметра или результата операции первого класса. Иногда связи по использованию показываются в виде пунктирных стрелок. Пример такой связи между классомPerson и перечислимым типомAddressKind можно видеть на Рис. 31.

Ссылочные связи, реализованные в виде ассоциативных массивов или отображений (map)

Такая связь в зависимости от некоторого набора ключей определяет набор ссылокзначений - показываются при помощи стрелок, имеющих прямоугольник с перечислением типов и имен ключей, примыкающий к изображению класса, от которого идет стрелка. Множественность на конце стрелки при этом обозначает количество ссылок, соответствующее одному набору значений ключей.

На Рис. 31 такая связь ведет от класса Person к классуAddress , показывая, что объект классаPerson может иметь один адрес для каждого значения ключаkind , т.е. один домашний и один рабочий адреса.

Диаграммы классов используются чаще других видов диаграмм.

Диаграммы объектов (object diagrams ) показывают часть объектов системы и связи между ними в некотором конкретном состоянии или суммарно, за некоторый интервал времени. Объекты изображаются прямоугольниками с идентификаторами ролей объектов (в контексте тех состояний, которые изображены на диаграмме) и типами. Однородные коллекции объектов могут изображаться накладывающимися друг на друга прямоугольниками.

Такие диаграммы используются довольно редко.

Рисунок 32. Диаграмма объектов.

Диаграммы компонентов (component diagrams) представляют компоненты в нескольких смыслах - атомарные составляющие системы с точки зрения ее сборки, конфигурационного управления и развертывания. Компоненты сборки и конфигурационного управления обычно представляют собой файлы с исходным кодом, динамически подгружаемые библиотеки, HTML-странички и пр., компоненты развертывания - это компоненты JavaBeans, CORBA, COM и т.д. Подробнее о таких компонентах см. Лекцию 12.

Компонент изображается в виде прямоугольника с несколькими прямоугольными или другой формы «зубами» на левой стороне.

Связи, показывающие зависимости между компонентами, изображаются пунктирными стрелками. Один компонент зависит от другого, если он не может быть использован в отсутствии этого другого компонента в конфигурации системы. Компоненты могут также реализовывать интерфейсы.

Диаграммы этого вида используются редко.

Рисунок 33. Диаграмма компонентов.

На диаграмме компонентов, изображенной на Рис. 33, можно также увидеть пакеты , изображаемые в виде «папок», точнее - прямоугольников с прямоугольными «наростами» над левым верхним углом. Пакеты являются пространствами имен и средством группировки диаграмм и других модельных элементов UML - классов, компонентов и пр. Они могут появляться на диаграммах классов и компонентов для указания зависимостей между ними и отдельными классами и компонентами. Иногда на такой диаграмме могут присутствовать только пакеты с зависимостями между ними.

Диаграммы развертывания (deployment diagrams) показывают декомпозицию системы на физические устройства различных видов - серверы, рабочие станции, терминалы, принтеры, маршрутизаторы и пр. - и связи между ними, представленные различного рода сетевыми и индивидуальными соединениями.

Физические устройства, называемые узлами системы (nodes ), изображаются в виде кубов или параллелепипедов, а физические соединения между ними - в виде линий.

На диаграммах развертывания может быть показана привязка (в некоторый момент времени или постоянная) компонентов развертывания системы к физическим устройствам

Например, для указания того, что компонент EJB AccountEJB исполняется на сервере приложений, а аплет AccountInfoEditor - на рабочей станции оператора банка.

Рисунок 34. Диаграмма развертывания.

Что такое UML

UML- унифицированный язык моделирования

UML (Unified Modeling Language - унифицированный язык моделирования) - язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML-моделью . UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация.

Использование

Использование UML не ограничивается моделированием программного обеспечения. Его также используют для моделирования бизнес-процессов системного проектирования и отображения организационных структур.

UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), объединение (aggregation) и поведение, и больше сконцентрироваться на проектировании и архитектуре.

История

В 1994 году Гради Буч и Джеймс Рамбо, работавшие в компании Rational Software, объединили свои усилия для создания нового языка объектно-ориентированного моделирования. За основу языка ими были взяты методы моделирования, разработанные Бучем и Рамбо Object-Modeling Technique, (OMT). OMT был ориентирован на анализ, а Booch - на проектирование программных систем. В октябре 1995 года была выпущена предварительная версия 0.8 унифицированного метода Unified Method. Осенью 1995 года к компании Rational присоединился Айвар Якобсон, автор метода Object-Oriented Software Engineering - OOSE. OOSE обеспечивал превосходные возможности для спецификации бизнес-процессов и анализа требований при помощи сценариев использования. OOSE был также интегрирован в унифицированный метод.

На этом этапе основная роль в организации процесса разработки UML перешла к консорциуму OMG (Object Management Group). Группа разработчиков OMG, в которую также входили Буч, Рамбо и Якобсон, выпустила спецификации UML версий 0.9 и 0.91 в июне и октябре 1996 года.

На волне растущего интереса к UML к разработке новых версий языка в рамках консорциума UML Partners присоединились такие компании, как Digital Equipment Corporation, Hewlett-Packard, i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle Corporation, Rational Software, Texas Instruments и Unisys. Результатом совместной работы стала спецификация UML 1.0, вышедшая в январе 1997 года. В ноябре того же года за ней последовала версия 1.1, содержавшая улучшения нотации, а также некоторые расширения семантики.

Последующие релизы UML включали версии 1.3, 1.4 и 1.5, опубликованные, соответственно в июне 1999, сентябре 2001 и марте 2003 года.

Формальная спецификация последней версии UML 2.0 опубликована в августе 2005 года. Семантика языка была значительно уточнена и расширена для поддержки методологии Model Driven Development - MDD (англ.). Последняя версия UML 2.3 опубликована в мае 2010 года.

UML 1.4.2 принят в качестве международного стандарта ISO/IEC 19501:2005.

Диаграммы

В UML используются следующие виды диаграмм (для исключения неоднозначности приведены также обозначения на английском языке):

Structure Diagrams:

  • Class diagram
  • Component diagram
  • Composite structure diagram
    • Collaboration (UML2.0)
  • Deployment diagram
  • Object diagram
  • Package diagram
  • Profile diagram (UML2.2)

Behavior Diagrams:

  • Activity diagram
  • State Machine diagram
  • Use case diagram
  • Interaction Diagrams:
    • Communication diagram (UML2.0) / Collaboration (UML1.x)
    • Interaction overview diagram (UML2.0)
    • Sequence diagram
    • Timing diagram (UML2.0)

Структурные диаграммы:

  • Классов
  • Компонентов
  • Композитной/составной структуры
    • Кооперации (UML2.0)
  • Развёртывания
  • Объектов
  • Пакетов
  • Профилей (UML2.2)

Диаграммы поведения:

  • Деятельности
  • Состояний
  • Вариантов использования
  • Диаграммы взаимодействия:
    • Коммуникации (UML2.0) / Кооперации (UML1.x)
    • Обзора взаимодействия (UML2.0)
    • Последовательности
    • Синхронизации (UML2.0)

Структуру диаграмм UML 2.3 можно представить на диаграмме классов UML:

Диаграмма классов

Диаграмма классов (Class diagram) - статическая структурная диаграмма, описывающая структуру системы, она демонстрирует классы системы, их атрибуты, методы и зависимости между классами.

Существуют разные точки зрения на построение диаграмм классов в зависимости от целей их применения:

  • концептуальная точка зрения - диаграмма классов описывает модель предметной области, в ней присутствуют только классы прикладных объектов;
  • точка зрения спецификации - диаграмма классов применяется при проектировании информационных систем;
  • точка зрения реализации - диаграмма классов содержит классы, используемые непосредственно в программном коде (при использовании объектно-ориентированных языков программирования).

Диаграмма компонентов

Диаграмма компонентов (Component diagram) - статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами. В качестве физических компонент могут выступать файлы, библиотеки, модули, исполняемые файлы, пакеты и т. п.

Диаграмма композитной/составной структуры (Composite structure diagram) - статическая структурная диаграмма, демонстрирует внутреннюю структуру классов и, по возможности, взаимодействие элементов (частей) внутренней структуры класса.

Подвидом диаграмм композитной структуры являются диаграммы кооперации (Collaboration diagram, введены в UML 2.0), которые показывают роли и взаимодействие классов в рамках кооперации. Кооперации удобны при моделировании шаблонов проектирования.

Диаграммы композитной структуры могут использоваться совместно с диаграммами классов.

Диаграмма развёртывания

Диаграмма развёртывания (Deployment diagram) - служит для моделирования работающих узлов (аппаратных средств, англ. node ) и артефактов, развёрнутых на них. В UML 2 на узлах разворачиваются артефакты англ. artifact ), в то время как в UML 1 на узлах разворачивались компоненты. Между артефактом и логическим элементом (компонентом), который он реализует, устанавливается зависимость манифестации.

Диаграмма объектов

Диаграмма объектов (Object diagram) - демонстрирует полный или частичный снимок моделируемой системы в заданный момент времени. На диаграмме объектов отображаются экземпляры классов (объекты) системы с указанием текущих значений их атрибутов и связей между объектами.

Диаграмма пакетов

Диаграмма пакетов (Package diagram) - структурная диаграмма, основным содержанием которой являются пакеты и отношения между ними. Жёсткого разделения между разными структурными диаграммами не проводится, поэтому данное название предлагается исключительно для удобства и не имеет семантического значения (пакеты и диаграммы пакетов могут присутствовать на других структурных диаграммах). Диаграммы пакетов служат, в первую очередь, для организации элементов в группы по какому-либо признаку с целью упрощения структуры и организации работы с моделью системы.

Диаграмма деятельности

Диаграмма деятельности (Activity diagram) - диаграмма, на которой показано разложение некоторой деятельности на её составные части. Под деятельностью (англ. activity ) понимается спецификация исполняемого поведения в виде координированного последовательного и параллельного выполнения подчинённых элементов - вложенных видов деятельности и отдельных действий (англ. action ), соединённых между собой потоками, которые идут от выходов одного узла ко входам другого.

Диаграммы деятельности используются при моделировании бизнес-процессов, технологических процессов, последовательных и параллельных вычислений.

Аналогом диаграмм деятельности являются схемы алгоритмов по ГОСТ 19.701-90.

Диаграмма автомата

Диаграмма автомата (State Machine diagram, диаграмма конечного автомата , диаграмма состояний ) - диаграмма, на которой представлен конечный автомат с простыми состояниями, переходами и композитными состояниями.

Конечный автомат (англ. State machine ) - спецификация последовательности состояний, через которые проходит объект или взаимодействие в ответ на события своей жизни, а также ответные действия объекта на эти события. Конечный автомат прикреплён к исходному элементу (классу, кооперации или методу) и служит для определения поведения его экземпляров.

Диаграмма прецедентов

Диаграмма прецедентов (Use case diagram, диаграмма вариантов использования ) - диаграмма, на которой отражены отношения, существующие между акторами и прецедентами.

Основная задача - представлять собой единое средство, дающее возможность заказчику, конечному пользователю и разработчику совместно обсуждать функциональность и поведение системы.

Диаграммы коммуникации и последовательности

Диаграммы коммуникации и последовательности транзитивны, выражают взаимодействие, но показывают его различными способами и с достаточной степенью точности могут быть преобразованы одна в другую.

Диаграмма коммуникации (Communication diagram, в UML 1.x - диаграмма кооперации , collaboration diagram ) - диаграмма, на которой изображаются взаимодействия между частями композитной структуры или ролями кооперации. В отличие от диаграммы последовательности, на диаграмме коммуникации явно указываются отношения между элементами (объектами), а время как отдельное измерение не используется (применяются порядковые номера вызовов).

Диаграмма последовательности (Sequence diagram) - диаграмма, на которой изображено упорядоченное во времени взаимодействие объектов. В частности, на ней изображаются участвующие во взаимодействии объекты и последовательность сообщений, которыми они обмениваются.

Диаграмма сотрудничества - Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений.

По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.

Диаграмма обзора взаимодействия (Interaction overview diagram) - разновидность диаграммы деятельности, включающая фрагменты диаграммы последовательности и конструкции потока управления.

Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграммы последовательностей действий) и Collaboration diagram (диаграммы сотрудничества). Эти диаграммы позволяют с разных точек зрения рассмотреть взаимодействие объектов в создаваемой системе.

Диаграмма синхронизации

Диаграмма синхронизации (Timing diagram) - альтернативное представление диаграммы последовательности, явным образом показывающее изменения состояния на линии жизни с заданной шкалой времени. Может быть полезна в приложениях реального времени.

Преимущества UML

  • UML объектно-ориентированный, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных объектно ориентированных языках;
  • UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;
  • Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;
  • UML расширяет и позволяет вводить собственные текстовые и графические стереотипы, что способствует его применению не только в сфере программной инженерии;
  • UML получил широкое распространение и динамично развивается.

Критика

Несмотря на то, что UML достаточно широко распространённый и используемый стандарт, его часто критикуют из-за следующих недостатков:

  • Избыточность языка . UML часто критикуется, как неоправданно большой и сложный. Он включает много избыточных или практически неиспользуемых диаграмм и конструкций. Чаще это можно услышать в отношении UML 2.0, чем UML 1.0, так как более новые ревизии включают больше «разработанных-комитетом» компромиссов.
  • Неточная семантика . Так как UML определён комбинацией себя (абстрактный синтаксис), OCL (языком описания ограничений - формальной проверки правильности) и Английского (подробная семантика), то он лишен скованности присущей языкам, точно определённым техниками формального описания. В некоторых случаях абстрактный синтаксис UML, OCL и Английский противоречат друг другу, в других случаях они неполные. Неточность описания самого UML одинаково отражается на пользователях и поставщиках инструментов, приводя к несовместимости инструментов из-за уникального трактования спецификаций.
  • Проблемы при изучении и внедрении . Вышеописанные проблемы делают проблематичным изучение и внедрение UML, особенно когда руководство насильно заставляет использовать UML инженеров при отсутствии у них предварительных навыков.
  • Только код отражает код . Ещё одно мнение - что важны рабочие системы, а не красивые модели. Как лаконично выразился Джек Ривс, «The code is the design» («Код и есть проект»).,. В соответствии с этим мнением, существует потребность в лучшем способе написания ПО; UML ценится при подходах, которые компилируют модели для генерирования исходного или выполнимого кода. Однако этого всё же может быть недостаточно, так как UML не имеет свойств полноты по Тьюрингу и любой сгенерированный код будет ограничен тем, что может разглядеть или предположить интерпретирующий UML инструмент.
  • (Cumulative Impedance/Impedance mismatch). Рассогласование нагрузки - термин из теории системного анализа для обозначения неспособности входа системы воспринять выход другой. Как в любой системе обозначений UML может представить одни системы более кратко и эффективно, чем другие. Таким образом, разработчик склоняется к решениям, которые более комфортно подходят к переплетению сильных сторон UML и языков программирования. Проблема становится более очевидной, если язык разработки не придерживается принципов ортодоксальной объектно-ориентированной доктрины (не старается соответствовать традиционным принципам ООП).
  • Пытается быть всем для всех . UML - это язык моделирования общего назначения, который пытается достигнуть совместимости со всеми возможными языками разработки. В контексте конкретного проекта, для достижения командой проектировщиков определённой цели, должны быть выбраны применимые возможности UML. Кроме того, пути ограничения области применения UML в конкретной области проходят через формализм, который не полностью сформулирован, и который сам является объектом критики.

Литература

  • Крэг Ларман. Применение UML 2.0 и шаблонов проектирования = Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. - 3-е изд. - М .: Вильямс, 2006. - 736 с. - ISBN 0-13-148906-2
  • Джозеф Шмуллер. Освой самостоятельно UML 2 за 24 часа. Практическое руководство = Sams Teach Yourself UML in 24 Hours, Complete Starter Kit. - М .: Вильямс, 2005. - 416 с. - ISBN 0-672-32640-X
  • Грейди Буч, Джеймс Рамбо, Айвар Джекобсон. Язык UML. Руководство пользователя = The Unified Modeling Language user guide. - 2-е изд. - М ., СПб. : ДМК Пресс, Питер, 2004. - 432 с. - ISBN 5-94074-260-2
  • Буч Г., Якобсон А., Рамбо Дж. UML. Классика CS. 2-е изд. / Пер. с англ.; Под общей редакцией проф. С. Орлова - СПб. : Питер, 2006. - 736 с. ISBN 5-469-00599-2

UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (англ. generalization ), агрегация (англ. aggregation ) и поведение) и больше сконцентрироваться на проектировании и архитектуре.

История

Предпосылки появления языка моделирования UML обозначились в связи с бурным развитием во второй половине XX века объектно-ориентированных языков программирования (Simula 67 , Smalltalk , Objective C , C++ и др). Вследствие непрекращающегося усложнения создаваемых программных продуктов возникла нужда в учёте всё новых и новых возможностей языков и средств разработки при анализе, формулировании требований и в процессе проектирования программных приложений. Например, в короткий промежуток времени с 1989 года по 1994 год количество объектно-ориентированных инструментов выросло с десятка до более, чем полусотни. Однако, многие разработчики затруднялись подобрать язык моделирования, который бы полностью отвечал всем их потребностям. В результате выделилось новое поколение методов разработки, среди, которого особую популярность приобрели метод Буча , созданный Якобсоном Object-Oriented Software Engineering (OOSE ) и разработанный Рамбо (Object Modeling Technique (OMT ). Помимо них существовали и другие завершённые технологии, например Fusion , Shlaer-Mellor и Coad-Yourdon , однако всем из них были присущи не только преимущества, но и существенные недостатки .

До UML 1.x

UML 1.x

На волне растущего интереса к UML к разработке новых версий языка в рамках консорциума UML Partners присоединились такие компании, как Digital Equipment Corporation , Hewlett-Packard , i-Logix, IntelliCorp, IBM , ICON Computing, MCI Systemhouse, Microsoft , Oracle Corporation , Rational Software , Texas Instruments и Unisys . Результатом совместной работы стала спецификация UML 1.0, вышедшая в январе 1997 года . В ноябре того же года за ней последовала версия 1.1, содержавшая улучшения нотации, а также некоторые расширения семантики.

Последующие релизы UML включали версии 1.3, 1.4 и 1.5, опубликованные, соответственно, в июне , сентябре и марте 2003 года .

UML 1.4.2 принят в качестве международного стандарта ISO /IEC 19501:2005 .

UML 2.x

Формальная спецификация версии UML 2.0 опубликована в августе 2005 года. Семантика языка была значительно уточнена и расширена для поддержки методологии Model Driven Development - MDD . Последняя версия UML 2.5 опубликована в июне 2015 года.

UML 2.4.1 принят в качестве международного стандарта ISO /IEC 19505-1, 19505-2 .

Диаграммы

В UML используются следующие виды диаграмм (для исключения неоднозначности приведены также обозначения на английском языке):

Диаграммы композитной структуры могут использоваться совместно с диаграммами классов.

Диаграмма развёртывания

Диаграмма автомата

Диаграмма вариантов использования

Основная задача - представлять собой единое средство, дающее возможность заказчику, конечному пользователю и разработчику совместно обсуждать функциональность и поведение системы.

Диаграммы коммуникации и последовательности

Диаграммы коммуникации и последовательности транзитивны , выражают взаимодействие, но показывают его различными способами и с достаточной степенью точности могут быть преобразованы одна в другую.

Диаграмма коммуникации (Communication diagram, в UML 1.x - диаграмма кооперации , collaboration diagram ) - диаграмма, на которой изображаются взаимодействия между частями композитной структуры или ролями кооперации. В отличие от диаграммы последовательности, на диаграмме коммуникации явно указываются отношения между элементами (объектами), а время как отдельное измерение не используется (применяются порядковые номера вызовов).

Диаграмма последовательности (Sequence diagram) - диаграмма, на которой показаны взаимодействия объектов, упорядоченные по времени их проявления. В частности, на ней изображаются участвующие во взаимодействии объекты и последовательность сообщений, которыми они обмениваются.

Диаграмма сотрудничества - Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений.

По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.

Диаграмма обзора взаимодействия

Диаграмма обзора взаимодействия - разновидность диаграммы деятельности, включающая фрагменты диаграммы последовательности и конструкции потока управления.

Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграммы последовательностей действий) и Collaboration diagram (диаграммы сотрудничества). Эти диаграммы позволяют с разных точек зрения рассмотреть взаимодействие объектов в создаваемой системе.

Диаграмма синхронизации

Диаграмма синхронизации (Timing diagram) - альтернативное представление диаграммы последовательности, явным образом показывающее изменения состояния на линии жизни с заданной шкалой времени. Может быть полезна в приложениях реального времени.

Преимущества UML

  • UML объектно-ориентирован, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных объектно-ориентированных языках ;
  • UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;
  • Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;
  • UML расширяет и позволяет вводить собственные текстовые и графические