Условная оптимизация. Метод множителей Лагранжа. Метод Лагранжа (метод вариации произвольных постоянных)

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.

ЛАГРАНЖА МЕТОД

Метод приведения квадратичной формы к сумме квадратов, указанный в 1759 Ж. Лагранжем (J. Lagrange). Пусть дана

от ппеременных х 0 , x 1 ,..., х п . с коэффициентами из поля k характеристики Требуется привести эту форму к канонич. виду

при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

1) При некотором g, диагональный Тогда

где форма f 1 (х).не содержит переменную x g . 2) Если же все но то


где форма f 2 (х).не содержит двух переменных x g и x h . Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде


Лит. : Г а н т м а х е р Ф. Р., Теория матриц, 2 изд., М., 1966; К у р о ш А. Г., Курс высшей алгебры, 11 изд., М., 1975; Александров П. С., Лекции по аналитической геометрии..., М., 1968. И. В. Проскуряков.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЛАГРАНЖА МЕТОД" в других словарях:

    Лагранжа метод - Лагранжа метод — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, λ*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по… … Экономико-математический словарь

    Лагранжа метод - Метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, ?*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по xi и?i . См. Лагранжиан. }