Вторая информационная революция связана с изобретением. Контрольная работа основные информационные революции

Так как любые технологии предназначены для описания последовательности действий (способов) во времени по преобразованию различных потоков (материальных, энергетических и информационных) в соответствующие продукты или услуги, то и информационные технологии можно представить совокупностью трех основных способов преобразования информации: храпения, обработки и передачи.

Поскольку основным источником и потребителем информации является человек, то на раннем этапе развития общества его профессиональные навыки передавались главным образом личным примером по принципу "делай как я". В качестве способа передачи информации использовались ритуальные танцы, обрядовые песни, устные предания и т.д., которые реализовывались самим человеком. Эти технологии развивались со временем и живы до сих пор. Примерами служат различные национальные танцы, легенды и сказки, баллады и оды, так бережно хранимые всеми народами. Недостатком таких способов хранения, обработки и передачи информации является недолговечность, обусловленная сроком жизни самого человека.

Первая информационная революция

Первый этап развития информационной технологии связан с открытием способов длительного хранения информации на материальном носителе. Это и пещерная живопись, сохраняющая наиболее характерные зрительные образы, связанные с охотой и ремеслами (примерно 25–30 тыс. лет назад), и гравировка по кости, обозначающая лунный календарь; а также числовые нарезки для замеров (выполненные примерно 20–25 тыс. лет назад). Способы хранения информации со временем совершенствовались, а период до появления инструментов для обработки материальных объектов и регистрации информационных образов на материальном носителе составил около миллиона лет. Становится понятно, почему при решении абстрактных информационных задач эффективность обработки информации человеком резко возрастает в случае представления ее в виде изображений материальных объектов (использование графических интерфейсов). В этом случае включаются в работу те механизмы человеческой интуиции, которые развивались в первые 99% времени существования цивилизации. Недостатком такого способа хранения является неоднозначность восприятия (расшифровки/интерпретации) информации, которое у каждого человека разное. Интерпретация информации человеком продиктована собственной его мировоззренческой моделью восприятия внешнего мира, которая формируется на протяжении всей его жизни. Эта технология тоже развивалась и совершенствовалась, и сейчас ее продуктами являются, например, живопись (картины, в том числе и граффити), скульптура (скажем, памятники), архитектура и т.д.

Второй этап развития информационной технологии, связанный с открытием способов длительного хранения информации, – он начал свой отсчет около 6 тыс. лет назад и связан с появлением письменности. Эра письменности характеризуется появлением новых способов регистрации на материальном носителе символьной информации. Применение этих технологий позволяет осуществлять накопление и длительное хранение знаний. В качестве носителей информации на втором этапе развития ИТ до сегодняшнего времени используются камень, кость, дерево, глина, папирус, шелк, бумага. Сейчас этот ряд существенно пополнился магнитными покрытиями (лентами, дисками, цилиндрами и т.д.), жидкими кристаллами, оптическими носителями, полупроводниками и т.д. В этот период накопление знаний происходило достаточно медленно и было обусловлено трудностями, связанными с доступом к информации (недостаток второго этапа развития ИТ). Знания, представленные в виде рукописных изданий, хранились в единичных экземплярах, причем доступ к ним был существенно затруднен, так как они охранялись специальной кастой – жрецами, которые наделялись исключительным правом монопольного доступа к фонду человеческого опыта и являлись посредниками между накопленными знаниями и заинтересованными людьми. В частности, для воспроизведения одного экземпляра книги монаху-переписчику требовался один год. Представьте себе, какие затраты потребовались бы для издания небольшого тиража в 100 экз. Этот барьер был разрушен на следующем этапе развития ИТ.

Начало третьего этапа датируется 1445 г. и связано с изобретением И. Гуттенбергом печатного станка, что подвело итог становлению способов регистрации информации. Появление книг открыло доступ к информации широкому кругу людей и резко ускорило темпы накопления систематизированных по отраслям знаний. За три столетия после изобретения печатного станка оказалось возможным накопить ту "критическую массу" социально доступных знаний, при которой начался лавинообразный процесс развития промышленной революции. Печатный станок сыграл роль информационного ключа, резко повысив пропускную способность социального канала обмена знаниями.

Книгопечатание является заключительным этапом развития способа регистрации информации на материальном носителе и подводит черту под завершением первой информационной революции. Характерным признаком первой информационной революции является то, что с этого момента началось необратимое поступательное движение технологической цивилизации.

Вторая информационная революция

Четвертый этап развития информационной технологии начался в 1946 г. с появлением электронной вычислительной машины (ЭВМ) и связан с совершенствованием способа обработки информации. Этой машиной являлась первая ЭВМ (ENIAC – Electronic Number Integrator And Computer), запущенная в эксплуатацию в Пенсильванском университете (рис. 2.1). У этой машины не было хранимой программы, которая задавалась путем шнуровой коммутации (аналог табуляторов – счетно-решающих машин).

Электронно-вычислительная машина UNIVAC (1949) уже использовала общую память и для программ, и для данных, что обеспечивало сохранение программ на носителе (магнитных лентах, магнитных барабанах). Отметим, что к этому времени значительная часть населения США была занята в информационной сфере.

Рис. 2.1.

Четвертый этап развития ИТ совпал со второй информационной революцией, характерным признаком которой являлось появление впервые за всю историю развития человечества усилителя интеллекта – ЭВМ.

Третья информационная революция

Дальнейшее развитие вычислительной техники и совершенствование алгоритмов обработки информации вызвало развитие способов передачи информации – появление информационно-вычислительных (компьютерных) сетей и привело к наступлению третьей информационной революции. В 1983 г. Международной организацией по стандартизации (International Standard Organization – ISO) была разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (Open System Interconnection – OSI/ISO ), или эталонной модели взаимодействия открытых систем (ЭМ ВОС). Модель OSI/ ISO предполагала использование самых общих рекомендаций для построения стандартных совместимых сетевых программных продуктов, баз для разработки сетевого оборудования. Появление системы стандартных протоколов сыграло важную роль при формировании компьютерных сетей, в том числе и Интернета. Некоторые авторы, анализируя информационные технологии, которые используются в Интернете, сравнивают его с нейронной сетью уждают вопрос о возникновении и развитии нейронной сети планеты и становлении планетарного разума.

  • ru.wikipedia.org/wiki/Искусственная_нейронная_сеть

В истории человеческого общества несколько раз происходили радикальные изменения в информационной области, которые можно назвать информационными революциями.

Первая информационная революция была связана с изобретением письменности. Письменность создала возможность для накопления и распространения знаний, для передачи знаний будущим поколениям. Цивилизации, освоившие письменность, развивались быстрее других, достигали более высокого культурного и экономического уровня. Примерами могут служить древний Египет, страны Междуречья, Китай. Позднее переход от пиктографического и идеографического письма к алфавитному, сделавший письменность более доступной, в значительной степени способствовал смещению центров цивилизации в Европу (Греция, Рим).

Вторая информационная революция (середина XVI в.) была связана с изобретением книгопечатания. Стало возможным не только сохранять информацию, но и сделать ее массово-доступной. Грамотность становится массовым явлением. Все это ускорило рост науки и техники, помогло промышленной революции. Книги перешагнули границы стран, что способствовало началу создания общечеловеческой цивилизации.

Третья информационная революция (конец XIX в.) была обусловлена прогрессом средств связи. Телеграф, телефон, радио позволили оперативно передавать информацию на любые расстояния. Эта революция не случайно совпала с периодом бурного развития естествознания.

Четвертая информационная революция (70-е гг. XX в.] связана с появлением микропроцессорной техники и, в ча стности, персональных компьютеров. Вскоре после этогс возникли компьютерные телекоммуникации, радикальнс изменившие системы хранения и поиска информации. Быле заложены основы преодоления информационного кризис* (об этом будет сказано немного позже).

    Понятие «Информационное общество»

Четвертая информационная революция дала толчок i столь существенным переменам в развитии общества, что для его характеристики появился новый термин

«информационное общество».

Само название впервые возникло в Японии. Специали сты, предложившие этот термин, разъяснили, что он опре деляет общество, в котором в изобилии циркулирует высо кая по качеству информация, а также есть все необходимы средства для ее хранения, распределения и использования Информация легко и быстро распространяется по требованн ям заинтересованных людей и организаций и выдается им привычной для них форме. Стоимость пользования инфор мационными услугами настолько невысока, что они доступ ны каждому.

Академик В. А. Извозчиков предлагает следующее опре деление: «Будем понимать под термином «информацион ное» («компьютеризированное») общество то, во все сфер] жизни и деятельности членов которого включены компьк тер, телематика, другие средства информатики в качеств орудий интеллектуального труда, открывающих широки доступ к сокровищам библиотек, позволяющих с огромно скоростью производить вычисления и перерабатывать лн бую информацию, моделировать реальные и прогнозиру< мые события, процессы, явления, управлять производство» автоматизировать обучение и т. д.» (под «телематикой» ш нимается обработка информации на расстоянии).

Проследим более детально существующие тенденции развитии информационного общества. Однако вначале отм> тим, что в настоящее время ни одно государство не находи 1 ся в этой стадии. Ближе всех к информационному общест* подошли США, Япония, ряд стран Западной Европы.

Не существует общепринятого критерия оценки полн< масштабного информационного общества, однако извести попытки его формулировки. Интересный критерий предлжил академик А. П. Ершов: «о фазах продвижения к информационному обществу следует судить по совокупным пропускным способностям каналов связи». За этим стоит простая мысль: развитие каналов связи отражает и уровень компьютеризации, и объективную потребность общества во всех видах информационного обмена, и другие проявления информатизации. Согласно этому критерию, ранняя фаза информатизации общества наступает при достижении действующей в нем совокупной пропускной способности каналов связи, обеспечивающей развертывание достаточно надежной междугородной телефонной сети. Завершающая фаза - при возможности реализации надежного и оперативного информационного контакта между членами общества по принципу «каждый с каждым». На завершающей фазе пропускная способность каналов связи должна быть в миллион раз больше, чем в первой фазе.

Согласно мнению ряда специалистов, США завершат в целом переход к информационному обществу к 2020 году, Япония и большинство стран Западной Европы к 2030-2040 годам. Путь России в информационное общество обсудим ниже отдельно.

Изменение структуры экономики и структуры труда

Переход к информационному обществу сопровождается переносом центра тяжести в экономике с производства материальных благ (товаров) на оказание услуг, что влечет за собой значительное снижение добычи и переработки сырья и расхода энергии.

Вторая половина XX века, благодаря информатизации, сопровождалась перетоком людей из сферы прямого материального производства в информационную сферу. Промышленные рабочие, составлявшие в середине XX века более 2/3 населения, сегодня в развитых странах составляют менее 1/3. Значительно разросся социальный слой, который называют «белые воротнички» - люди наемного труда, не производящие непосредственно материальных ценностей, а занятые обработкой информации (в широком смысле): учителя, банковские служащие, программисты и т. д. Так, к 1980 году в сельском хозяйстве США было занято 3% работающих, в промышленности - 20%, в сфере обслуживания - 30%, и 47% людей было занято в информационной сфере.

Самое главное, информатизация изменила и характер труда в традиционных отраслях промышленности. Появление робототехнических систем, повсеместное внедрение элементов микропроцессорной техники является основной причиной этого явления.

Приведем разительный пример: в станкостроительной отрасли в США в 1990 году было занято 330 тыс. человек, а и 2005 году, по официальным прогнозам, останется 14 тыс, человек. Это произойдет за счет массового сокращения людей на сборочных линиях, вследствие внедрения вместо них роботов и манипуляторов.

Еще одна характерная черта в этой сфере - появление развитого рынка информационных продуктов и услуг. Это! рынок включает секторы:

  • деловой информации (биржевая, финансовая, статистическая, коммерческая информация);
  • профессиональной информации (научно-техническая ин
    формация, первоисточники и пр.);
  • потребительской информации (новости, всевозможные
    расписания, развлекательная информация);
  • услуг образования и другие.

Развитие и массовое использование информационных и коммуникационных технологий

В основе информационной революции лежит взрывное развитие информационных и коммуникационных технологий. В этом процессе отчетливо наблюдается и обратная связь: движение к информационному обществу резко ускоряет процессы развития указанных технологий, делая их широко востребованными.

Однако сам по себе бурный рост производства средств вычислительной техники, начавшийся с середины XX века, не стал причиной перехода к информационному обществу. Компьютеры использовались сравнительно небольшим числом специалистов до тех пор, пока существовали обособленно. Важнейшим этапом на пути в информационное общество стало:

  • создание телекоммуникационной инфраструктуры, включающей в себя сети передачи данных;
  • появление огромных баз данных, доступ к которым через сети получили миллионы людей;
  • выработка единых правил поведения в сетях и поиск в них информации.

Огромную роль в обсуждаемом процессе сыграло создание международной компьютерной сети Интернет. Сегодня она

представляет собой колоссальную и быстро (на 10-15% в месяц) растущую систему, число пользователей которой приближается к 200 миллионам человек. В Интернете задействовано более 10 миллионов компьютеров и около 250 тысяч Web-серверов по всему миру. Необходимо отметить, что количественные характеристики Интернета устаревают быстрее, чем печатаются книги, в которых эти показатели приводятся. В настоящее время в мире наблюдается отказ от создания собственных корпоративных сетей в пользу построения открытых стандартизованных систем и их интеграции в Интернет (за исключением, конечно, сетей специального назначения, в которых очень высоки требования к безопасности информации).

Информационные и коммуникационные технологии постоянно развиваются. Постепенно происходит универсализация ведущих технологий, то есть вместо создания для решения каждой задачи собственной технологии разрабатываются мощные универсальные технологии, допускающие много вариантов использования. Хорошо вам знакомый пример - офисные системы программного обеспечения, в которых можно производить множество разнообразных действий, от простейшего набора текста до создания специальных программ (скажем, начисления заработной платы с помощью табличного процессора).

Универсализации информационных технологий способствует широкое использование мультимедиа. Современная мультимедийная система способна объединить функции, например, компьютера, телевизора, радиоприемника, овер-хэд-проектора (кодоскопа), диапроектора, телефона, автоответчика, факса, обеспечивая при этом и доступ к сетям передачи данных.

Совершенствование вычислительной техники приводит к персонализации и миниатюризации устройств хранения информации. Крошечные, умещающиеся на ладони устройства, имеющие все функции персонального компьютера, позволяют человеку обзавестись собственным универсальным справочником, объем информации в котором сопоставим с несколькими энциклопедиями. Поскольку это устройство может быть подключено к сети, то оно же передает и оперативные данные, например: о погоде, текущем времени, состоянии пробок на дорогах и т.д.

    Преодоление информационного кризиса

Информационный кризис - явление, которое стало заметным уже в начале XX века. Оно проявляется в том, что поток информации, который хлынул на человека, столь велик, что недоступен обработке в приемлемое время.

Это явление имеет место и в научных исследованиях, и в технических разработках, и в общественно-политической жизни. В нашем усложняющемся мире принятие решений становится все более ответственным делом, а оно невозможно без полноты информации.

Ускорение накопления общего объема знаний происходит с удивительной быстротой. В начале XX века общий объем всей производимой человечеством информации удваивался каждые 50 лет, к 1950 году удвоение происходило каждые 10 лет, к 1970 году - уже каждые 5 лет; конца этому процессу ускорения пока не видно.

Приведем несколько примеров проявлений информационного взрыва. Число научных публикаций по большинству отраслей знания столь велико, а традиционный доступ к ним (чтение журналов) столь затруднен, что специалисты не могут успевать в них ориентироваться, что порождает дублирование работ и иные неприятные последствия.

Часто оказывается проще заново сконструировать некоторое техническое устройство, чем найти документацию о нем в бесчисленных описаниях и патентах.

Политический руководитель, принимающий на высоком уровне ответственное решение, но не владеющий полнотой информации, легко попадет впросак, а последствия могут быть катастрофическими. Разумеется, одной информации в таком деле мало, нужны и адекватные методы политического анализа, но без информации они бесполезны.

В результате наступает информационный кризис, проявляющийся в следующим:

  • информационный поток превосходит ограниченные воз можности человека по восприятию и переработке информации;
  • возникает большое количество избыточной информации (так называемый «информационный шум»), которая затрудняет восприятие полезной для потребителя информации;
  • возникают экономические, политические и другие барьеры, которые препятствуют распространению информации (например, по причине секретности).

Частичный выход из информационного кризиса видится в применении новых информационных технологий. Внедрение современных средств и методов хранения, обработки и передачи информации многократно снижают барьер доступа к ней и скорость поиска. Разумеется, одни лишь технологии не могут решить проблему, имеющую и экономический характер (информация стоит денег), и юридический (информация имеет собственника), и ряд других. Эта проблема комплексная и решается усилиями как каждой страны, так и мирового сообщества в целом.

Есть много событий в истории человечества, которые изменили и создали мир таковым, каким мы его видим сейчас. Одним из важнейших таких событий является изобретение Иоганна Гутенберга.

Иоганн Гутенберг

Ио́ганн Генсфляйш цур Ладен цум Гу́тенберг (между 1397 и 1400, Майнц - 3 февраля 1468, Майнц) - немецкий ювелир и изобретатель. В середине 1440-х годов создал европейский способ книгопечатания подвижными литерами, распространившийся по всему миру.

Первоначально он носил фамилию Генсфлайш, но по традиции тех времен стал звать себя по названию местечка, где проживали его родители - Иоганн из Гутенберга. Затем как-то незаметно люди привыкли и стали звать его просто Иоганном Гутенбергом.

Вместе со своим деловым партнером Андреасом Дритценом Иоганн занимался шлифовкой и изготовлением зеркал, также шлифовал полудрагоценные камни. Наконец, к 1440 году он разработал «искусственное письмо» - способ нанесения текста на бумагу с помощью механического станка.

Не вполне ясна в этом роль Дритцена, наследники которого пытались возбудить против Гутенберга уголовное дело, обвиняя того в единоличном использовании изобретения, которое компаньоны, якобы, совершили вместе. Впрочем, Гутенберг без труда выиграл суд, и его авторство было признано и зафиксировано юридически.

В чем состояло изобретение Гутенберга? Он изготавливал из металла выпуклые буквы-литеры, которые представляли собой зеркальное отражение обычных букв латинского алфавита. Из букв набирались целые строки и листы, которые удерживались специальной рамкой. Литеры покрывались краской, делался оттиск на бумаге и через небольшое время, которое требовалось для высыхания краски, лист будущей книги был готов.

Дело было неторопливым и хлопотным, однако по сравнению с тем, сколько времени уходило на переписывание книг от руки, станок Гутенберга позволял изготавливать печатную продукцию с небывалой по тем временам скоростью.

Большинство исследователей XV века считали, что окончательное изобретение книгопечатания Гутенберг совершил в 1440 году, хотя не найдено литературы, отпечатанной и датированной этим годом. Предположение о 1440 годе как точке отсчёта современного книгопечатания подтверждается документами, извлечёнными из дел авиньонских нотариусов и обнародованными в 1890 году. Из этих документов видно, что в 1444 и 1446 годах некий Прокопий Вальдфогель вступал в сделки с разными лицами, которых за деньги и другие выгоды посвящал в тайну «искусственного письма». Выдвигались предположения, что Вальдфогель и Гутенберг - одно и то же лицо, но подтвердить это невозможно.

Гутенберг испытывал серьезные проблемы с финансированием своего предприятия и был вынужден занять крупную по тем временам сумму - 800 гульденов - у промышленника Иоганна Фуста. Также Гутенберг обязывался выплачивать еще по 800 гульденов ежегодно на расходные материалы: краску, бумагу и т.д. Доход от типографии должен был делиться пополам, однако через некоторое время Фуст начал требовать деньги, которых Гутенберг еще не заработал.

Финансовая отдача от книгопечатания была поначалу небольшой и не покрывала расходов, должно было пройти еще несколько лет, чтобы затраты окупились. Но Фуст не хотел ждать и отсудил у изобретателя книгопечатания его оборудование, вынудив Гутенберга начинать все сначала и искать других преуспевающих людей, которые согласились бы вкладывать деньги в его типографию.

Несмотря на разочарование, через некоторое время Гутенберг снова нашел деньги, начал сотрудничать не только с частными лицами, но и с королевскими дворами.

До 1468 года книгопечатник успевает изготовить несколько видов шрифтов, отпечатать ряд текстов, изданных Римским папой, выпустить в свет две Библии и несколько сочинений современных ему ученых и философов. В 1468 году Гутенберг умер, но его изобретение продолжало жить.

Хотя Гутенберг действительно стал первым европейцем, благодаря которому книгопечатание широко распространилось по всему миру, но и до него было несколько человек, придумавших практически тот же самый способ изготовлять книги. Поэтому точнее было бы называть Гутенберга не изобретателем книгопечатания, а первым человеком, открытие которого в этой области не только не было забыто, но и стало копироваться.

Жители Нидерландов оспаривают первенство Гутенберга и утверждают, что первым книгопечатником был Лоренц Янсен по прозвищу Костер (что в переводе с голландского означает «Пономарь»). Якобы именно он первым придумал наборный алфавит из металлических литер и даже напечатал книгу «Зерцало человеческого спасения», посвященную вопросам заботы о человеческой душе. По неподтвержденной информации, он узнал секрет книгопечатания от армянских купцов, которые подсмотрели его где-то на Востоке, скорее всего, в Китае.

Бельгийцы считают, что первым изобрел книгопечатание некто Жан Бритто из города Брюгге. Им была напечатана книга «Учение», написанная парижским философом и богословом Жаном Жерсоном. Правда, по другим сведениям Бритто отпечатал свою первую книгу лишь в 1480 году, т. е. через четверть века после открытия типографии Гутенберга. Но бельгийцы отвечают на это, что в хронологию попросту вкралась ошибка. И на самом деле Бритто начал свою работу не меньше, чем за десять лет до Гутенберга.

Значение

Таким образом именно благодаря Иоганну Гутенбергу между 1450 и 1455 годами произошла масштабная информационная революция.

На момент изобретения печатного пресса Гутенбергом в Европе существовала мощная информационная индустрия. В многочисленных монастырях жили сотни хорошо обученных монахов. Каждый из них трудился от рассвета до заката шесть дней в неделю, переписывая книги от руки. Умелый, хорошо подготовленный монах мог переписать четыре страницы в день, или 25 страниц за шестидневную рабочую неделю; ежегодная производительность, таким образом, составляла 1200-1300 рукописных страниц.

К 1505 тиражи книг в 500 экземпляров стали массовым явлением. Это означало, что группа печатников могла выпускать по 25 млн. печатных страниц в год, переплетённых в 125 000 готовых к продаже книг - 2 500 000 страниц на одного работника против 1 200-1 300, которые мог изготовить монах-переписчик всего за 50 лет до этого.

В середине XV века книги были роскошью, которую могли себе позволить только очень богатые и образованные люди. Но когда в 1522 из печати вышла немецкая Библия Мартина Лютера (свыше 1 000 страниц), цена её была настолько невысокой, что даже бедная крестьянская семья могла её приобрести.

За очень незначительное время революция в книгопечатании изменила институты общества, включая и систему образования. Книгопечатание сделало возможной протестантскую Реформацию. Но не только её.

Именно печатный станок принёс с собой массовое производство и стандартизацию процесса обработки информации, проложивших дорогу промышленной революции.

В последовавшие за ней десятилетия по всей Европе были созданы новые университеты, но, в отличие от ранее существовавших, где основное внимание уделялось теологии, здесь преподавали светские дисциплины: право, медицину, математику, натуральную философию (естественные науки).

Революция в печати быстро сформировала новый класс специалистов по информационной технологии, точно так же, как современная информационная революция создала множество информационных предприятий, специалистов по ИС и ИТ, разработчиков программного обеспечения и руководителей информационных служб.

Существует и другая хронология информационных революций, согласно которой изобретение Гутенберга было не первой таковой революцией, а уже третьей (всего было четыре):

Началом первой информационной революции стало одно из самых важнейших изобретений человечества - письменность. Она появилась около пяти тысяч лет назад в Месопотамии и Египте, затем (независимо, но несколько тысяч лет спустя) - в Китае и ещё на 1500 лет позднее - в Центральной Америке у индейцев племени майя.

Её ранние примеры - глиняные дощечки с клинописью жителей Вавилона - представляют собой деловые расписки и правительственные документы, летописи или описания методов земледелия.

Вторая информационная революция связана с появлением рукописной книги.

Третья информационная революция связана с изобретением немцем Иоганном Гутенбергом (1399-1468) печатного пресса и наборного шрифта между 1450 и 1455 годами.

Конец ХХ века называют новым информационным веком и связывают с четвертой информационной революцией - распространением компьютеров и Интернета.

Станислав Шульга, для "Хвилі"

Давеча Сергей Карелов опубликовал статью про неизбежность «большой войны» и другие апокалипсисы. В основе статьи лежало рассмотрение двух конкурирующих гипотез о перспективах «большой войны». Автор концепции «долгого мира» Стивен Пинкер утверждал о спаде насилия после 1945 года, а знаменитый своими «черными лебедями» Нассим Талеб утверждал обратное. Разразилась дискуссия с участием критиков и последователей, в которой стороны обменивались залпами из статистических данных и выводов, сделанных на их основе.

Я не буду касаться самого предмета спора, а хочу акцентировать внимание на его характере. Мы имеем ситуацию, когда стороны обосновано и аргументировано отстаивают диаметрально противоположные точки зрения. Причем так, что без глубокого погружения в предмет понять кто из них прав, а кто нет невозможно. В чем причины такой разности тоже можно долго рассуждать, я выделю только одну – несовершенство применяемых теоретических моделей, описывающих реальные процессы.

Этот пример не единичен. Подобных ситуаций есть множество, что свидетельствует о простом факте – наше представление о процессах, происходящих в реальности далеко от совершенства. В чем причина? Опять же, их целый ряд, я упомяну только одну – ограничения, которые накладывают знаковые системы и информационные технологии, которые применяет человек. Для их более полного понимания перечислю основные вехи, которые привязаны к гуманитарно-технологическим скачкам, или – «информационным революциям», которые приводили нас на новый уровень познания окружающего мира.

Итак, первая информационная революция произошла, когда Предмет Был Назван. Один первобытный человек ткнул в булыжник и сказал «ку», другой согласился и тоже назвал его «ку». Тот, кто продолжал обозначать предметы невербальными методами или называл его «цак» был объявлен невежей, еретиком и тем, кому чужд прогресс. Дальше процесс развивался по накатанной. Предметы и действия были с перекодированы в звуки и установлены правила, произнесения этих звуков. Племя, имеющее в своем арсенале такой мощный организующий фактор, стало сильнее племен, члены которых продолжали мычать невпопад. Собственно, тут мы имеем новый уровень коммуникации, который позволил отдельным частям человечества прогрессировать как в познании окружающего мира, так и в усложнении социальной структуры. И какое-то время все было хорошо.

Вторая информационная революция случилась, когда самый популярный настенный живописец вместо мамонта нарисовал Знак, обозначавший его, мамонта. Так, Звуки Стали Знаками и Появилась Письменность. Говорят, что сначала рисовали все, а потом финикийцы придумали алфавит. После этого человечество пошло по двум дорогам. Некоторые, как китайцы и японцы, до сих пор рисуют, а большинство пользует алфавиты. Кроме того, потомки лучших живописцев и резчиков по камню продолжали копировать мир привычными методами. Художники, что с них возьмешь.

Появление такого мощного инструмента, как письменность привело к тому, что знания перестали умирать вместе с их носителями. Их стали накапливать и передавать из поколения в поколение. Несколько тысяч лет человечество экспериментировало с технологиями сохранения и копирования знаний. В ход шло все - камень, шкуры, глина, сухие листья, ткань, бумага. Параллельно люди зачем-то изобретали все новые и новые языки, алфавиты и знаки. Это говорило, что не все идет так хорошо, как надо бы, но что было, то было.

Эксклюзивными правами на создание и копирование информации обладали специально обученные люди. Их было мало и монополию они держали крепко ибо «знание - сила». Жрецы, монахи, ученые, знать, грамотные простолюдины, сподобившиеся выучиться грамоте. Они умели читать, писать, копировать и хранить информацию. И какое-то время все было хорошо, ибо «ученье свет, а неученых — тьма». Управлять безграмотной толпой куда проще, чем людьми, умеющими читать и писать.

А потом появился Гуттенберг и Федоров и через какое-то время десятки тысяч монахов Европы потеряли работу. Кому нужен переписчик книг, если станок может печатать их в несколько раз быстрее? Это была третья информационная революция , когда Книгу Стали Печатать. Параллельно с этим все больше народа училось читать и писать и уже где-то к середине прошлого века с повальной безграмотностью было покончено. Правда, какое-то время все еще было хорошо, потому как средства для производства и передачи информации все еще контролировались власть имущими.

Четвертая информационная революция грянула, когда пришли Компьютер Настольный и Сеть Глобальная. В 80-х это было еще экзотикой, но уже в 90-х этим мало кого можно было удивить. Сейчас каждый, кто хочет, может постить котиков и писать в свою ленту ФБ экспертные оценки по глобальной геополитике. Эта общедоступность средств производства и передачи информации привела к тому, что количество информации стало расти по экспоненте. Парадокс состоит в том, что «информация» это далеко не всегда «смысл», поэтому обратная медаль общедоступности - это увеличение информационного хаоса и деградация человеческих способностей к восприятию и построению связных картин мира.

Таким образом, всеобщая грамотность и доступность средств производства информации пока привела к еще большим проблемам, чем в те годы, когда информации было мало. Честь и хвала ребятам из Кремниевой долины, которые придумали компьютеры и сделали сеть общедоступной. С другой стороны эти ребята пока не нашли способ справиться с растущим информационным хаосом, а изобретаемые ими прибамбасы зачастую имеют весьма комичное применение. Например, повальное увлечение селфи, бесконечная ярмарка тщеславия в инстаграмме, миллион и маленькая тележка экспертов всех мастей в фейсбуке.

Она еще не произошла и не факт, что произойдет. Но тот, кто ее устроит, станет если не вторым Гуттенбергом, то наверняка не меньшим, чем Стив Джобс. В чем должна состоять суть Пятой Информационной Революции? Перечислю несколько пунктов.

Динамическое Знание. Один из главных недостатков нынешних технологий создания и хранения знания это отставание от реальной ситуации. Скажем, ученый провел серию натурных экспериментов, зафиксировав их в массиве данных. Нужно время на первичную обработку, анализ, формирование результатов. За это время реальная ситуация изменилась и полученный массив данных не отвечает полностью тому, что действительно происходит в реальности. Еще более простой пример - Google Earth, который компилируется на основе спутниковых снимков. При этом некоторые снимки уже не отражают реальной ситуации на площадке. Технологические предпосылки к ликвидации этого лага есть. Фиксация, обработка и складирование данных, которые отстают от реальности не на недели и месяцы, а на минуты и секунды.

Компьютеры, Рождающие Смыслы . Пока компьютеры это большие калькуляторы, которые способны обсчитывать значительные объемы данных. Постановка задач и написание алгоритмов целиком зависит от человека. Необходимы качественно новые фильтрационные вычислительные системы, которые смогут из потоков получать смыслы. Возможно, это будут искины, возможно такое ПО по-прежнему будет работать в связке с человеком-оператором. В любом случае, это будут компьютеры, которые из огромных потоков данных смогут не только отфильтровывать информацию, но и осмысливать ее и давать человеку знание и смыслы.

Метаязык. Одна из проблем, которую человечество таки и не решило, запустив информационную революцию — увеличение «пропускной мощности» коммуникативных способностей самого человека. Мы можем хранить, передавать и обрабатывать на компьютерах огромное количество информации. При этом по-прежнему общаемся с помощью речи и создаем линейные тексты, основанные на языках, которым сотни лет. Ситуация аналогична той, если бы на старую материнскую плату компьютера вешали новые процессоры и память. Можно сколько угодно менять на скоростные процессоры и модули памяти, но шина есть шина, больше чем она есть пропустить не может. Скорость обработки не увеличится.

Второй момент. Существуют сотни языков, тысячи знаковых систем, миллионы книг, статей и заметок. Порожденная нами информация о мире дефрагментирована и слабо связана. Специалисты из разных отраслей подчас не имеют единой терминологической базы для общения друг с другом. Есть области знаний, которые практически не связаны друг с другом, хотя описывают одни и те же предметы. Для того, чтобы связать разрозненные массивы данных и создать один знаменатель для знаковых систем, нужен Метаязык. С его помощью, скажем, ученый-геолог сможет без проблем подвязывать к своим выкладкам информацию из материалов этнографических экспедиций. Зачем, спросите вы? А разве маршруты миграции племен не могут указывать на наличие тех или иных природных ископаемых? Подобных примеров можно привести десятки.
Попытки решить проблему с помощью технологий подобных Big Data вряд ли приведет к качественному скачку. Первый раз я услышал о Data Warehouse еще в середине 90-х и что с тех пор что-то сильно поменялось? Способности многочисленных аналитиков и синктанков прогнозировать будущее хорошо показали Brexit и Трамп. Да, в чем-то прогресс есть, но мы все равно не можем толком предсказать даже, казалось бы, вполне обсчитываемые события.

Нужна принципиально новая «база» — новые языки, которые заменят те языки, и знаковые системы, на которых человечество общается сейчас. Символы в этих языках будут намного более смыслоемкими и образовывать большее количество комбинаций, что позволит создавать более компактную информацию. В своих рассказах я описывал таких людей. Ниже приведен отрывок из рассказа «Трафик-трекер» .

«…Трафикер тоже «давит кнопки». На экране его «ладошки» мелькают кубики со странными символами. Они складываются в цепи и кубы, исчезают и появляются вновь. Со стороны это выглядит как игра-головоломка. Отчасти это правда. «Сайскрит» или «кибернетический санскрит» — сам по себе головоломка для тех, кто продолжает пользоваться примитивными линейными алфавитами. Слова и предложения из него содержат на два-три порядка больше информации, чем обычные тексты такой же длины. Это модифицированная версия «джимала», языка, на котором «работает» Кибернетический Глобус. Сейчас он пишет на нем запросы по базам данных Глобуса, а те через полчаса запустят на него нужный поток данных…»

Конечно, это вариант маловероятный. Попытки создания искусственных языков типа эсперанто не были успешными. Да и артикуляционный аппарат тоже дело такое, попробуйте выучить в зрелом возрасте иностранный язык.

Так что скорее вероятен вариант, когда «новые» языки создаст искусственный интеллект. Искины будут способны упаковывать огромные массивы информации с помощью гораздо более сложных знаковых систем, чем те, которыми мы пользуемся сейчас. Подвижки в этом плане уже есть. Относительно недавно по сети прошла новость о том, что нейронная сеть Google, которая обеспечивает сервис переводов Google Translate, изобрела собственный внутренний язык для перевода с одного языка на другой.

Вот тогда и произойдет настоящая информационная революция, которая будет способна изменить сами подходы к постижению вещей и вызвать ряд качественных скачков практически во всех областях человеческой деятельности. А до тех пор пока это не произошло мы будем довольствоваться «революциями» типа выхода очередной игрушки от Apple и процессорами в 100500 ядер.

Конец ХХ века называют новым информационным веком и связывают с четвертой информационной революцией - распространением компьютеров и Интернета. Большинство этих эпитетов восходят к понятию «постиндустриальное общество», популяризированному десятилетие назад гарвардским социологом Д. Беллом. Оно описывает характерные черты информационного века.

В США, например, уже в 1985 в сфере информационной индустрии работало около 50% всех рабочих и служащих. А в материалах, распространявшихся в Конгрессе США при рассмотрении национальной информационной инфраструктуры, говорилось о том, что около 2/3 работающих в стране связаны с информационной деятельностью, а остальные заняты в производстве, сильно зависящем от неё.

К концу 80-х гг. ХХ в. обработка, передача информации и операции с нею были основным занятием каждого четвёртого работающего в США, или даже каждого третьего, если считать учителей и других работников сферы образования. Аналогичным образом с началом последнего десятилетия ХХ в. более 40% всех новых капиталовложений в производство и оборудование было сделано в сфере информационных технологий (компьютеры, фотокопировальные и факсимильные аппараты и тому подобное), что в два раза больше, чем 10 лет назад. Бывший министр финансов США У. Майкл Блюменталь так резюмировал это в 1988 в статье, озаглавленной «Мировая экономика и изменения в технологии»: «Информация,- писал он, - стала рассматриваться как ключ к современной экономической деятельности - базовый ресурс, имеющий сегодня такое же значение, какое в прошлом имели капитал, земля и рабочая сила». Объём имеющейся у нас информации с каждым днём увеличивается всё быстрее. За последнее столетие мы добавили к общей сумме знаний больше, чем за всю предыдущую историю человечества



Существующая в развитых странах информационная индустрия, по объёмам производства и номенклатуре выпускаемой продукции сопоставимая с важнейшими отраслями хозяйства, потребовала создания соответствующего рынка. Мировой рынок средств информатизации уже к 1990 достиг 660 млрд. долларов. Из них около 50% приходилось на компьютеры. Только за 1995 в мире было произведено около 60 млн. персональных компьютеров. Информационная деятельность во всем мире стала одной из самых прибыльных сфер приложения капитала.

Кодирование информации

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Следовательно, прежде всего необходимо договориться об определенном способе представления информации, т.е. ввести некоторые обозначения и правила их использования (порядок записи, возможности комбинации знаков и др.). Когда все это аккуратно определено, используя указанные соглашения, информацию можно записывать, причем с уверенностью, что она будет однозначно воспринята. Вследствие важности данного процесса он имеет специальное название - кодирование информации.

Кодирование информации необычайно разнообразно. Указания водителю автомобиля по проезду дороги кодируются в виде дорожных знаков, а также специальных индикаторных устройств (светофоров и всевозможных светящихся табло около них). Музыкальное произведение кодируется с помощью знаков нотной грамоты, для записи шахматных партий и химических формул также созданы специализированные нотации (системы записи). Менее стандартными, но легко интуитивно понимаемыми являются комбинации изображений солнышка и облаков, компактно описывающие погоду. Весьма специфическую азбуку флажков придумали моряки. Устная речь человека, которая служит одним из важных каналов передачи информации, состоит из стандартного набора звуков (имеющего свои особенности для каждого национального языка) в различных сочетаниях. Любой грамотный компьютерный пользователь знает о существовании кодировок символов ASCII, Unicode и некоторых других. Правила записи чисел в десятичной системе - это тоже способ кодирования, предназначенный для произвольных чисел. Географическая карта по определенным правилам кодирует информацию о рельефе местности и относительном расположении объектов, электрическая схема или сборочный чертеж - о соединении деталей. Высота столбика термометра или отклонение стрелки амперметра на фоне нарисованной шкалы представляют данные о температуре или силе тока и т.д.

Понятие кодирования используется в информатике необычайно широко, причем существуют даже разные уровни кодирования информации. Например, из практики известна проблема с выбором кодировки русских текстов; это своего рода теоретическая проблема - какие коды выбрать для каждой буквы.

Теория кодирования информации является одной из дисциплин, которые входят в состав информатики. Она занимается вопросами экономичности (архивация, ускорение передачи данных), надежности (обеспечение восстановления переданной информации в случае повреждения) и безопасности (шифрование) кодирования информации.

Закодированная информация всегда имеет под собой какую-либо объективную основу, поскольку информация есть отражение тех или иных свойств окружающего нас мира. В то же время, одну и ту же информацию можно закодировать разными способами: число записать в десятичной или двоичной системе, данные о выпуске продукции по годам представить в виде таблицы или диаграммы, текст лекции записать на магнитофон или сохранить в печатном виде, собрание сочинений классика перевести и издать на всех языках народов мира. Существует два принципиально отличных способа представления информации: непрерывный и дискретный .

Если некоторая величина, несущая информацию, в пределах заданного интервала может принимать любое значение, то она называется непрерывной . Наоборот, если величина способна принимать только конечное число значений в пределах интервала, она называется дискретной . Хорошим примером, демонстрирующим различия между непрерывными и дискретными величинами, могут служить целые и вещественные числа. В частности, между значениями 2 и 4 имеется всего одно целое число, но бесконечно много вещественных (включая знаменитое ).

Для наглядного представления о сути явления дискретности можно также сравнить таблицу значений функции и ее график, полученный путем соединения соответствующих точек плавной линией.

Очевидно, что с увеличением количества значений в таблице (интервал дискретизации сокращается) различия существенно уменьшаются, и дискретизированная величина все лучше описывает исходную (непрерывную). Наконец, когда имеется настолько большое количество точек, что мы не в состоянии различить соседние, на практике такую величину можно считать непрерывной.

Компьютер способен хранить только дискретно представленную информацию. Его память, как бы велика она ни была, состоит из отдельных битов, а значит, по своей сути дискретна.

В заключение заметим, что сама по себе информация не является непрерывной или дискретной: таковыми являются лишь способы ее представления. Например, давление крови можно с одинаковым успехом измерять аналоговым или цифровым прибором.

Принципиально важным отличием дискретных данных от непрерывных является конечное число их возможных значений. Благодаря этому каждому из них может быть поставлен в соответствие некоторый знак (символ) или, что для компьютерных целей гораздо лучше, определенное число. Иными словами, все значения дискретной величины могут быть тем или иным способом пронумерованы.

Примечание . Рассмотрим такую, казалось бы, “неарифметическую” величину, как цвет, обычно представляемую в компьютере как совокупность интенсивности трех базовых цветов RGB. Тем не менее, записанные вместе, все три интенсивности образуют единое “длинное” число, которое формально вполне можно принять за номер цвета.

Значение сформулированного выше положения трудно переоценить: оно позволяет любую дискретную информацию свести к единой универсальной форме - числовой. Не случайно поэтому в последнее время большое распространение получил термин “цифровой”, например, цифровой фотоаппарат. Заметим, что для цифрового фотоаппарата важно не столько существование дискретной светочувствительной матрицы из миллионов пикселей (в конце концов “химическая” фотопленка также состояла из отдельных зерен), сколько последующая запись состояния ячеек этой матрицы в числовой форме.

В свете сказанного выше вопрос об универсальности дискретного представления данных становится очевидным: дискретная информация любой природы сводится тем или иным способом к набору чисел. Кстати, данное положение лишний раз подчеркивает, что каким бы “мультимедийным” не выглядел современный компьютер, “в глубине души” он по-прежнему “старая добрая ЭВМ”, т.е. устройство для обработки числовой информации.

Таким образом, проблема кодирования информации для компьютера естественным образом распадается на две составляющие: кодирование чисел и способ кодирования, который сводит информацию данного вида к числам.

В вычислительной технике существует своя система кодирования - она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски -binarydigit, или, сокращенно,bit (бит).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т. п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

Тремя битами можно закодировать восемь различных значений:

000 001 010 01l 100 101 110 111

Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе.