Частота отказов оборудования. Частота отказов. Средняя частота отказов. Исключительно полезная информация

Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

Лекция № 3

Тема № 1. Показатели надежности ЭМС

Показатели надежности характеризуют такие важнейшие свойства систем, как безотказность , живучесть , отказоустойчивость , ремонтопригодность , сохраняемость , долговечность и являются количественной оценкой их технического состояния и среды, в которой они функционируют и эксплуатируются. Оценка показателей надежности сложных технических систем на различных этапах жизненного цикла используется для выбора структуры системы из множества альтернативных вариантов, назначения гарантийных сроков эксплуатации, выбора стратегии и тактики технического обслуживания, анализа последствий отказов элементов системы.

Аналитические методы оценки показателей надежности сложных технических систем управления и принятия решения базируются на положениях теории вероятности. В силу вероятностной природы отказов оценка показателей основана на использовании методов математической статистики. При этом статистический анализ проводится, как правило, в условиях априорной неопределенности относительно законов распределения случайных значений наработки системы, а также по выборкам ограниченного объема, содержащих данные о моментах отказа элементов системы при из испытаниях или в условиях эксплуатации.

Вероятность безотказной работы (ВБР) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Вероятность P (t ) – функция, убывающая см. рис.1 причем,

ВБР по статистическим данным об отказах оценивается выражением

(1)

где – статистическая оценка ВБР; – число изделий в начале испытаний, при большом числе изделий статистическая оценка практически совпадает с вероятностью P (t ) ; –число отказавших изделий за время t .

Рисунок 1. Кривые вероятности безотказной работы и вероятности отказов

Вероятность отказа Q ( t ) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые

(2)

Частота отказов a ( t ) – есть отношение отказавших изделий в единицу времени к первоначальному числу испытываемых изделий

(3)

где –число отказавших изделий в интервале времени Dt .

Частота отказов или плотность вероятности отказов может быть определена как производная по времени вероятности отказов

Знак (-) характеризует скорость снижения надежности во времени.

Средняя наработка до отказа – среднее значение продолжительности работы неремонтируемого устройства до первого отказа:

где – продолжительность работы (наработка) до отказа i -гo устройства; – число наблюдаемых устройств.

Пример. Наблюдения за эксплуатацией 10 электродвигателей выявили, что первый проработал до отказа 800 ч, второй – 1200 и далее соответственно; 900, 1400, 700, 950, 750, 1300, 850 и 1500 ч. Определить наработку двигателей до внезапного отказа,

Решение . По (5) имеем

Интенсивность отказов l ( t ) – условная плотность вероятности возникновения отказа, которая определяется как отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени

, (6)

где – число устройств, отказавших в период времени ; – число среднее число устройств, исправно работающих в период наблюдения; – период наблюдения.

Вероятность безотказной работы Р(t) через выразится

. (8)

Пример 1. При эксплуатации 100 трансформаторов в течение 10 лет произошло два отказа, причём каждый раз отказывал новый трансформатор. Определить интенсивность отказов трансформатора за период наблюдения.

Решение. По (6) имеем отк./год.

Пример2 . Изменение числа отказов BJI из-за производственной деятельности сторонних организаций по месяцам года представлено следующим образом:

Определить среднемесячную интенсивность отказов.

Решение. ; отк./ мес.

Ожидаемая расчетная интенсивность l = 7,0.

Средняя наработка на отказ – среднее значение наработки ремонтируемого устройства между отказами, определяемое как среднее арифметическое:

, (9)

где – наработка до первого, второго, n -го отказа; n – число отказов от момента начала эксплуатации до окончания наблюдения. Наработка на отказ, или среднее время безотказной работы, есть математическое ожидание :

. (10)

Пример. Трансформатор отказал, проработав около года. После устранения причины отказа он проработал еще три года и опять вышел из строя. Определить среднюю наработку трансформатора на отказ.

Решение . По (1.7) вычислим года.

Параметр потока отказов – среднее количество отказов ремонтируемого устройства в единицу времени, взятое для рассматриваемого момента времени:

(11)

где – число отказов i -го устройства по состоянию на рассматриваемые моменты времени – и t соответственно; N – число устройств; – рассматриваемый период работы, причём .

Отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки

Пример . Электротехническое устройство состоит из трех элементов. В течение первого года эксплуатации в первом элементе произошло два отказа, во втором – один, в третьем отказов не было. Определить параметр потока отказов.

Решение

Откуда по (1.8)

Среднее значение ресурса рассчитывают по данным эксплуатации или испытаний с использованием уже известного выражения для наработки:

.

Среднее время восстановления – среднее время вынужденного или регламентированного простоя, вызванного обнаружением и устранением одного отказа:

где – порядковый номер отказа; – среднее время обнаружения и устранения отказа.

Коэффициент готовности – вероятность того, что оборудование будет работоспособно в произвольно выбранный момент времени в промежутках между выполнениями планового технического обслуживания. При экспоненциальном законе распределения времени безотказной работы и времени восстановления коэффициент готовности

.

Коэффициент вынужденного простоя – это отношение времени вынужденного простоя к сумме времени исправной работы и вынужденных простоев.

Коэффициент технического использования – это отношение наработки оборудования в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, вызванных, техническим обслуживанием и ремонтами за тот же период эксплуатации:

.

Кроме того [ГОСТ 27.002-83] определяет показатели долговечности , в терминах которых следует указывать вид действий после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т.д.). Если предельное состояние обуславливает окончательное снятие объекта с эксплуатации, то показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы).

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный ресурс – наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный ресурс – суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Показатели ремонтопригодности и сохраняемости определяются следующим образом.

Вероятность восстановления работоспособного состояния – это вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного.

Среднее время восстановления работоспособного состо яния – это математическое ожидание времени восстановления работоспособного состояния.

Средний срок сохраняемости – это математическое ожидание срока сохраняемости.

Гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , выраженной в процентах.

Интенсивность отказов () называется вероятность отказа не ремонтируемого изделия в единицу времени при условии, что отказ до этого момента не возникал. Предположим, что некоторый элемент проработал в течение интервала времени от 0 до t. Какова вероятность того, что этот элемент откажет на интервале .

А-событие безотказной работы от 0 до t. В-событие безотказной работы от t до t 1 .

Для того чтобы элемент смог безотказно работать на интервале он должен безотказно проработать на интервале 0 до t.

Р(АВ)=Р(А)*Р(В/А) (1)

Р(А) =Р(0,t) – вероятность безотказной работы элемента на интервале от 0 до t.

Р(В/А) = Р(t,t 1) – условная вероятность события В, что условие А имело место.

Р(В/А)= Р(t,t 1)=Р(АВ)/Р(А); Р(АВ)= Р(0,t 1).

0, t= 0,t+ t, t 1 ,

Р(t,t 1)= Р(0,t 1)/ Р(0,t) (2)

Р(t,t 1)= Р(t 1)/ Р(t) (2а)

Вероятность отказа элемента на интервале (t, t 1):

Равенство (3) может быть переписано в виде: . Умножим числитель и знаменатель (4) на при .

Введем обозначение - интенсивность отказа.

Из равенства (5) с учетом (6) получим: , .

Из (7) следует что интенсивность отказа есть отношение вероятности отказа на интервал () при . Интенсивность отказов определяемая (7) стремится к интенсивности отказа определяемая равенством (6). В соответствии (6) величина может быть определена из графика функции надежности как отношение численного значения тангенса угла наклона касательной к кривой к численной ординаты функции надежности.

Если известна интенсивность отказа элементов, то можно рассчитать вероятность работы любой сколь угодно сложной системы. Незнание функции для составляющих элементов исключает возможность определить вероятность безотказной работы.

Чем менее точно известно для элементов тем больше ошибки в расчете безотказности изделия.

Интенсивность отказов может быть определена опытным путем на основе испытаний изделий.

Предположим Р(t) – есть отношение: , - число элементов, оставшихся безотказными. Тогда на малом отрезке и большом числе испытуемых образцов N.

где -число отказавших элементов на интервале времени, n(t)-число неотказавших элементов.

Экспериментальная кривая заменяется плавной кривой. Чем больше N и меньше интервал времени , тем точнее экспериментальная характеристика и заменяющая её плавная кривая, которая отражает действительную картину интенсивности отказов.

Эргодическая теория. На основании известной из теории вероятности эргодической теории среднее значение (мат. ожидание) при совокупном наблюдении ……….равна среднему значению по времени, определенной за одной системой (элементов).


В данном случае это означает, что изменение интенсивности отказа по времени для 1-го отдельно взятого элемента может быть описано тем же самым законом что и интенсивность, полученная при испытании однотипных элементов большой группы.

Вид функции показан 3 характерных участка:

I – участок приработки; II – нормальной эксплуатации; III – участок износовых отказов, могут возникать внезапные отказы.

Деление на участки является условным но оно позволяет рассмотреть работу элементов по участкам и для каждого участка применять свой закон распределения.

Общая формула безотказной работы позволяет определить Р если известна интенсивность отказа.

Если требуется определить вероятность безотказной работы . Равенство (12) справедливо при условии, что в момент времени t 1 элемент находился в работоспособном состоянии.

Частотой отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Так как число отказавших образцов в интервале времени может зависеть от расположения этого промежутка по оси времени, то частота отказов является функцией времени. Эта характеристика в дальнейшем обозначается α(t).

Согласно определению

где n(t) – число отказавших образцов в интервале времени от до ; N 0 – число образцов аппаратуры, первоначально установленных на испытание; – интервал времени.

Выражение (1.10) является статистическим определением частоты отказов. Этой количественной характеристике надежности легко дать вероятностное определение. Вычислим в выражении (1.10) n (t), т.е. число образцов, отказавших в интервале. Очевидно,

n(t) = -, (1.11)

где N(t) – число образцов, исправно работающих к моменту времени t; N(t + ) – число образцов, исправно работающих к моменту времени t + .

При достаточно большом числе образцов (N 0) справедливы соотношения:

N(t) = N 0 P(t);

N(t+ ) = N 0 P(t+ ). (1.12)

Подставляя выражение (1.11) в выражение (1.10) и учитывая выражение (1.12), получим:

,

а с учетом выражения (1.4) получим:

α(t) = Q / (t) (1.13)

Из выражения (1.13) видно, что частота отказов характеризует плотность распределения времени работы аппаратуры до ее отказа . Численно она равна взятой с обратным знаком производной от вероятности безотказной работы. Выражение (1.13) является вероятностным определением частоты отказов.

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени возникновения отказов существуют однозначные зависимости. Эти зависимости на основании (1.13) и (1.4) имеют вид:

. (1.15)

Частота отказов, являясь плотностью распределения, наиболее полно характеризует такое случайное явление, как время возникновения отказов. Вероятность безотказной работы, математическое ожидание, дисперсия и т.п. являются лишь удобными характеристиками распределения и всегда могут быть получены, если известна частота отказов α(t). В этом ее основное достоинство как характеристики надёжности.

Характеристика α(t) имеет также существенные недостатки. Эти недостатки становятся ясными при детальном рассмотрении выражения (1.10). При определении a(t) из экспериментальных данных фиксируется число отказавших образцов n(t) за промежуток времени при условии, что все отказавшие ранее образцы не восполняются исправными. Это означает, что частоту отказов можно использовать для оценки надежности только такой аппаратуры, которая после возникновения отказа не ремонтируется и в дальнейшем не эксплуатируется (например, аппаратуры разового использования, простейших элементов, не поддающихся ремонту, и т.п.). В противном случае частота отказов характеризует надежность аппаратуры лишь до первого ее отказа.

Оценить с помощью частоты отказов надежность аппаратуры длительного пользования, которая может ремонтироваться, затруднительно. Для этой цели необходимо иметь семейство кривых α(t), полученных: до первого отказа, между первым и вторым, вторым и третьим отказами и т.д. Следует, однако, заметить, что при отсутствии старения аппаратуры указанные частоты отказов будут совпадать. Поэтому α(t) хорошо характеризует надежность аппаратуры также в том случае, когда отказы подчиняются экспоненциальному распределению.

Надежность аппаратуры длительного использования можно характеризовать частотой отказов, полученной при условии замены отказавшей аппаратуры исправной. При этом внешне формула (1.10) не изменяется, однако меняется ее внутреннее содержание.

Частота отказов, полученная при условии замены отказавшей аппаратуры исправной (новой или восстановленной), иногда называется средней частотой отказов и обозначается .

Средней частотой отказов называется отношение числа отказавших образцов в единицу времени к числу испытываемых образцов при условии, что все образцы, вышедшие из строя, заменяются исправными (новыми или восстановленными).

Таким образом,

где n(t) – число отказавших образцов в интервале времени от до , N 0 – число испытываемых образцов (N 0 остается в процессе испытания постоянным, так как все отказавшие образцы заменяются исправными), – интервал времени.

Средняя частота отказов обладает следующими важными свойствами:

1) . Это свойство становится очевидным, если учесть, что ;

2) независимо от вида функции α(t) при средняя частота отказов стремится к некоторой постоянной величине;

3) главное достоинство средней частоты отказов как количественной характеристики надежности состоит в том, что она позволяет довольно полно оценить свойства аппаратуры, работающей в режиме смены элементов. К такой аппаратуре относятся сложные автоматические системы, предназначенные для длительного использования. Подобные системы после возникновения отказов ремонтируются и затем вновь эксплуатируются;

4) средняя частота отказов может быть также использована для оценки надежности сложных систем разового применения в процессе их хранения;

5) она также довольно просто позволяет определить число отказавших в аппаратуре элементов данного типа. Это свойство может быть использовано для вычисления необходимого количества элементов для нормальной эксплуатации аппаратуры в течение времени t. Поэтому является наиболее удобной характеристикой для ремонтных предприятий;

1) знание позволяет также правильно спланировать частоту профилактических мероприятий, структуру ремонтных органов, необходимое количество и номенклатуру запасных элементов.

К недостаткам средней частоты отказов следует отнести сложность определения других характеристик надежности, и в частности основной из них вероятности безотказной работы, при известной .

Сложная система состоит из большого числа элементов. Поэтому представляет интерес найти зависимость средней частоты отказов. Введем понятие суммарной частоты отказов сложной системы.

Суммарной частотой отказов называется число отказов аппаратуры в единицу времени, приходящееся на один ее экземпляр.

Часть 1.

Введение
Развитие современной аппаратуры характеризуется значительным увеличением ее сложности. Усложнение обуславливает повышение гарантии своевременности и правильности решения задач.
Проблема надежности возникла в 50-х годах, когда начался процесс быстрого усложнения систем, и стали вводиться в действие новые объекты. В это время появились первые публикации, определяющие понятия и определения, относящиеся к надежности [ 1 ] и была создана методика оценки и расчета надежности устройств вероятностно-статистическими методами.
Исследование поведения аппаратуры (объекта) во время эксплуатации и оценка ее качества определяет его надежность. Термин "эксплуатация" происходит от французского слова "exploitation", что означает получение пользы или выгоды из чего-либо.
Надежность - свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах.
Для количественного выражения надежности объекта и для планирования эксплуатации используются специальные характеристики - показатели надежности. Они позволяют оценивать надежность объекта или его элементов в различных условиях и на разных этапах эксплуатации.
Более подробно с показателями надежности можно ознакомиться в ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности.", ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения.", ГОСТ 13377-75 - "Надежность в технике. Термины и определения".

Определения
Надежность - свойство [далее - (сво-во)] объекта [далее - (ОБ)] выполнять требуемые функции, сохраняя свои эксплуатационные показатели в течение заданного периода времени.
Надежность представляет собой комплексное сво-во, сочетающее в себе понятие работоспособности, безотказности, долговечности, ремонтопригодности и сохранности.
Работоспособность - представляет собой состояние ОБ, при котором он способен выполнять свои функции.
Безотказность - сво-во ОБ сохранять свою работоспособность в течение определенного времени. Событие, нарушающее работоспособность ОБ, называется отказом. Самоустраняющийся отказ называется сбоем.
Долговечность - сво-во ОБ сохранять свою работоспособность до предельного состояния, когда его эксплуатация становится невозможной по техническим, экономическим причинам, условиям техники безопасности или необходимости капитального ремонта.
Ремонтопригодность - определяет приспособляемость ОБ к предупреждению и обнаружению неисправностей и отказов и устранению их путем проведения ремонтов и технического обслуживания.
Сохраняемость - сво-во ОБ непрерывно поддерживать свою работоспособность в течение и после хранения и технического обслуживания.

Основные показатели надежности
Основными качественными показателями надежности является вероятность безотказной работы, интенсивность отказов и средняя наработка до отказа.
Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t , отказ ОБ не возникнет. Этот показатель определяется отношение числа элементов ОБ, безотказно проработавших до момента времени t к общему числу элементов ОБ, работоспособных в начальный момент.
Интенсивность отказов l (t) - это число отказов n(t) элементов ОБ в единицу времени, отнесенное к среднему числу элементов Nt ОБ, работоспособных к моменту времени D t :
l (t )= n (t )/(Nt * D t ) , где
D t - заданный отрезок времени.
Например : 1000 элементов ОБ работали 500 часов. За это время отказали 2 элемента. Отсюда, l (t )= n (t )/(Nt * D t )=2/(1000*500)=4*10 -6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.
Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведена интенсивность отказов l (t) некоторых элементов.

Наименование элемента

Интенсивность отказов, *10 -5, 1/ч

Резисторы

Конденсаторы

Трансформаторы

Катушки индуктивности

Коммутационные устройства

Соединения пайкой

Провода, кабели

Электродвигатели


Надежность ОБ, как системы, характеризуется потоком отказов L , численно равное сумме интенсивности отказов отдельных устройств:
L = ål i
По формуле рассчитывается поток отказов и отдельных устройств ОБ, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов L определяется:
P (t )= exp (- D t ) , очевидно, что 0И 0< P (t )<1 и p (0)=1, а p (¥ )=0
Средняя наработка до отказа To - это математическое ожидание наработки ОБ до первого отказа:
To=1/ L =1/(ål i) , или , отсюда : L =1/To
Время безотказной работы равно обратной величине интенсивности отказов.
Например : технология элементов обеспечивает среднюю интенсивность отказов l i =1*10 -5 1/ч . При использовании в ОБ N=1*10 4 элементарных деталей суммарная интенсивность отказов l о= N * l i =10 -1 1/ч . Тогда среднее время безотказной работы ОБ To =1/ l о=10 ч. Если выполнить ОБ на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы ОБ увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Расчет надежности
Формулы позволяют выполнить расчет надежности ОБ, если известны исходные данные - состав ОБ, режим и условия его работы, интенсивности отказов его компонент (элементов). Однако при практических расчетах надежности есть трудности из-за отсутствия достоверных данных о интенсивности отказов для номенклатуры элементов, узлов и устройств ОБ. Выход из этого положения дает применение коэффициентного метода. Cущность коэффициентного метода состоит в том, что при расчете надежности ОБ используют не абсолютные значения интенсивности отказов l i , а коэффициент надежности ki , связывающий значения l i с интенсивностью отказов l b какого-либо базового элемента:
ki = l i / l b
Коэффициент надежности ki практически не зависит от условий эксплуатации и для данного элемента является константой, а различие условий эксплуатации ku учитывается соответствующими изменениями l b . В качестве базового элемента в теории и практике выбран резистор. Показатели надежности комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведен коэффициенты надежности ki некоторых элементов. В табл. 3 приведены коэффициенты условий эксплуатации ku работы для некоторых типов аппаратуры.
Влияние на надежность элементов основных дестабилизирующих факторов - электрических нагрузок, температуры окружающей среды - учитывается введением в расчет поправочных коэффициентов a . В табл. 4 приведены коэффициенты условий a работы для некоторых типов элементов. Учет влияния других факторов - запыленности, влажности и т.д. - выполняется коррекцией интенсивности отказов базового элемента с помощью поправочных коэффициентов.
Результирующий коэффициент надежности элементов ОБ с учетом поправочных коэффициентов:
ki"=a1*a2*a3*a4*ki*ku, где
ku - номинальное значение коэффициента условий эксплуатации
ki - номинальное значение коэффициент надежности
a1 - коэффициент учитывающий влияние электрической нагрузки по U, I или P
a2 - коэффициент учитывающий влияние температуры среды
a3 - коэффициент снижения нагрузки от номинальной по U, I или P
a4 - коэффициент использования данного элемента, к работе ОБ в целом

Условия эксплуатации

Коэффициент условий

Лабораторные условия

Аппаратура стационарная:

В помещениях

Вне помещений

Подвижная аппаратура:

Корабельная

Автомобильная

Поездная

Наименование элемента и его параметры

Коэффициент нагрузки

Резисторы:

По напряжению

По мощности

Конденсаторы

По напряжению

По реактивной мощности

По прямому току

По обратному напряжению

По температуре перехода

По току коллектора

По напряж. коллектор-эмиттер

По рассеиваемой мощности

Порядок расчета состоит в следующем:
1. Определяют количественные значения параметров, характеризующие нормальную работу ОБ.
2. Составляют поэлементную принципиальную схему ОБ, определяющую соединение элементов при выполнении ими заданной функции. Вспомогательные элементы, использующиеся при выполнении функции ОБ, не учитываются.
3. Определяются исходные данные для расчета надежности:

  • тип, количество, номинальные данные элементов
  • режим работы, температура среды и другие параметры
  • коэффициент использования элементов
  • коэффициент условий эксплуатации системы
  • определяется базовый элемент l b и интенсивность отказов l b "
  • по формуле: ki "= a 1* a 2* a 3* a 4* ki * ku определяется коэффициент надежности

4. Определяются основные показатели надежности ОБ, при логически последовательном (основном) соединении элементов, узлов и устройств:

  • вероятность безотказной работы : P(t)=exp{- l b*To*} , где
    Ni - число одинаковых элементов в ОБ
    n - общее число элементов в ОБ, имеющих основное соединение
  • наработка на отказ :
    To=1/{ l b*}

Если в схеме ОБ есть участки с параллельным соединением элементов, то сначала делается расчет показателей надежности отдельно для этих элементов, а затем для ОБ в целом.
5. Найденные показатели надежности сравниваются с требуемыми. Если не соответствуют, то принимаются меры к повышению надежности ОБ ().
6. Средствами повышения надежности ОБ являются:
- введение избыточности, которая бывает:

  • внутриэлементная - применение более надежных элементов
  • структурная - резервирование - общее или раздельное

Пример расчета:
Рассчитаем основные показатели надежности для вентилятора на асинхронном электродвигателе. Схема приведена на . Для пуска М замыкают QF, а затем SB1. KM1 получает питание, срабатывает и своими контактами КМ2 подключает М к источнику питания, а вспомогательным контактом шунтирует SB1. Для отключения М служит SB2.

В защите М используются FA и тепловое реле KK1 с КК2. Вентилятор работает в закрытом помещении при T=50 C в длительном режиме. Для расчета применим коэффициентный метод, используя коэффициенты надежности компонент схемы. Принимаем интенсивность отказов базового элемента l b =3*10 -8 . На основании принципиальной схемы и ее анализа, составим основную схему для расчета надежности (). В расчетную схему включены компоненты, отказ которых приводит к полному отказу устройства. Исходные данные сведем в .

Базовый элемент, 1/ч

l б

3*10 -8

Коэф. условий эксплуатации

Интенсивность отказов

l б ’

l б* ku =7,5*10 -8

Время работы, ч

Элемент принципиальной схемы

Элемент расчетной схемы

Число элементов

Коэф. надежности

Коэф. нагрузки

Коэф. электрической нагрузки

Коэф. температуры

Коэф. нагрузки по мощности

Коэф. использования

Произведение коэф. a

Коэф. надежности

S (Ni * ki ’)

Наработка до отказа, ч

1/[ l б ’* S (Ni*ki’)]=3523,7

Вероятность

е [- l б ’*To* S (Ni*ki’)] =0,24

По результатам расчета можно сделать выводы:
1. Наработка до отказа устройства: To=3524 ч.
2. Вероятность безотказной работы: p(t)=0,24. Вероятность того, что в пределах заданного времени работы t в заданных условиях работы не возникнет отказа.

Частные случай расчета надежности.

1. Объект (далее ОБ) состоит из n блоков, соединенных последовательно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P = p n
2. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P =1-(1- p ) 2
3. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Вероятность безотказной работы переключателя (П) p1. Найти вероятность безотказной работы P системы в целом.

Решение: P=1-(1-p)*(1-p1*p)
4. ОБ состоит из n блоков (), с вероятность безотказной работы каждого блока p. С целью повышения надежности ОБ произведено дублирование, еще такими-же блоками. Найти вероятность безотказной работы системы: с дублированием каждого блока Pa, с дублированием всей системы Pb.

Решение: Pa = n Pb = 2
5. ОБ состоит из n блоков (см. рис. 10). При исправном C вероятность безотказной работы U1=p1, U2=p2. При неисправном C вероятность безотказной работы U1=p1", U2=p2". Вероятность безотказной работы C=ps. Найти вероятность безотказной работы P системы в целом.

Решение: P = ps *+(1- ps )*
9. ОБ состоит из 2-х узлов U1 и U2. Вероятность безотказной работы за время t узлов: U1 p1=0.8, U2 p2=0.9. По истечении времени t ОБ несправен. Найти вероятность, что:
- H1 - неисправен узел U1
- H2 - неисправен узел U2
- H3 - неисправны узлы U1 и U2
Решение: Очевидно, имело место H0, когда оба узла исправны.
Событие A=H1+H2+H3
Априорные (первоначальные) вероятности:
- P(H1)=(1-p1)*p2 =(1-0.8)*0.9=0.2*0.9=0.18
- P(H2)=(1-p2)*p1 =(1-0.9)*0.8=0.1*0.8=0.08
- P(H3)=(1-p1)*(1-p2) =(1-0.8)*0.9=0.2*0.1=0.02
- A= i=1 å 3 *P(Hi)=P(H1)+P(H2)+P(H3) =0.18+0.08+0.02=0.28
Апостерионые (конечные) вероятности:
- P(H1/A)=P(H1)/A=0.18/0.28=0.643
- P(H2/A)=P(H2)/A=0.08/0.28=0.286
- P(H3/A)=P(H3)/A=0.02/0.28=0.071
10. ОБ состоит из m блоков типа U1 и n блоков типа U2. Вероятность безотказной работы за время t каждого блока U1=p1, каждого блока U2=p2. Для работы ОБ достаточно, чтобы в течение t работали безотказно любые 2-а блока типа U1 и одновременно с этим любые 2-а блока типа U2. Найти вероятность безотказной работы ОБ.
Решение: Событие A (безотказная работа ОБ) есть произведение 2-х событий:
- A1 - (не менее 2-х из m блоков типа U1 работают)
- A2 - (не менее 2-х из n блоков типа U2 работают)
Число X1 работающих безотказно блоков типа U1 есть случайная величина, распределенная по биномиальному закону с параметрами m, p1. Событие A1 состоит в том, что X1 примет значение не менее 2, поэтому:

P(A1 )=P{X1>2}=1-P(X1<2)=1-P(X1=0)-P(X1=1)=1-(g1 m +m*g2 m-1 *p1) , где g1=1-p1

аналогично: P(A2)=1-(g2 n +n*g2 n-1 *p2) , где g2=1-p2

Вероятность безотказной работы ОБ:

R =P(A)=P(A1)*P(A2)=* , где g1=1-p1, g2=1-p2

11. ОБ состоит из 3-х узлов (). В узле U1 n1 элементов с интенсивностью отказов l1. В узле U2 n2 элементов с интенсивностью отказов l2. В узле U3 n3 элементов с интенсивностью отказов l2, т.к. U2 и U3 дублируют друг друга. U1 выходит из строя если в нем отказало не менее 2-х элементов. U2 или U3, т.к. дублируются, выходят из строя если в них отказал хотя бы один элемент. ОБ выходит из строя если отказал U1 или U2 и U3 вместе. Вероятность безотказной работы каждого элемента p. Найти вероятность того, что за время t ОБ не выйдет из строя.
Вероятности выхода из строя U 2 и U 3 равны:

R2=1-(1-p2) n2 R3=1-(1-p3) n3

Вероятности выхода из строя всего ОБ:
R=R1+(1-R1)*R2*R3

Литература:

  • Малинский В.Д. и др. Испытания радиоаппаратуры, "Энергия", 1965 г.
  • ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности".
  • Широков А.М. Надежность радиоэлектронных устройств, М, Высшая школа, 1972 г.
  • ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения".
  • ГОСТ 13377-75 - "Надежность в технике. Термины и определения".
  • Козлов Б.А., Ушаков И.А. Справочник по расчету надежности аппаратуры радиоэлектроники и автоматики, М, Сов. Радио, 1975 г.
  • Перроте А.И., Сторчак М.А. Вопросы надежности РЭА, М, Сов. Радио, 1976 г.
  • Левин Б.Р. Теория надежности радиотехнических систем, М, Сов. Радио, 1978 г.
  • ГОСТ 16593-79 - "Электроприводы. Термины и определения".

И. Брагин 08.2003 г.