Часы из весов программа mcs 51. Микроконтроллеры MCS–51. Cтруктурная схема, АЛУ, память данных. Команды логических операций

Система команд ОМЭВМ предоставляет большие возможности обработки данных, обеспечивает реализацию логических, арифметических операций, а также управление в режиме реалиного времени. Реализована побитовая, потетрадная (4 бита), побайтовая (8 бит) и 16-разрядная обработка данных.

БИС семейства MCS-51 - 8-разрядная ОМЭВМ: ПЗУ, ОЗУ, регистры специального назначения, АЛУ и внешние шины имеют байтовую организацию. Двухбайтовые данные используются только регистром-указателем (DPTR) и счетчиком команд (РС). Следует отметить, что регистр-указатель данных может быть использован как двухбайтовый регистр DPTR или как два однобайтовых регистра специального назначения DPH и DPL. Счетчик команд всегда используется как двухбайтовый регистр.

Набор команд ОМЭВМ имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы.

Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, всед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп:

Существуют следующие типы адресации операндов-источников:

  • Косвенно-регистровая адресация по сумме базового и индексного регистров

Таблица обозначений и символов, используемых в системе команд

Обозначение, символ Назначение
А Аккумулятор
Rn Регистры текущего выбранного банка регистров
r Номер загружаемого регистра, указанного в команде
direct Прямо адресуемый 8-битовый внутренний адрес ячейка данных, который может быть ячейкой внутреннего ОЗУ данных (0-127) или SFR (128-255)
@Rr Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных
data8 8-битовое непосредственное данное, входящее в КОП
dataH Старшие биты (15-8) непосредственных 16-битовых данных
dataL Младшие биты (7-0) непосредственных 16-битовых данных
addr11 11-битовый адрес назначения
addrL Младшие биты адреса назначения
disp8 8-битовый байт смещения со знаком
bit Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или SFR
a15, a14...a0 Биты адреса назначения
(Х) Содержимое элемента Х
((Х)) Содержимое по адресу, хранящемуся в элементе Х
(Х)[M] Разряд М элемента Х

+
-
*
AND
OR
XOR
/X
Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний. В таблице приведен перечень команд, упорядоченных по алфавиту.

Мнемоника Функция Флаги
Команда ACALL Абсолютный вызов подпрограммы
Сложение AC, C, OV
Сложение с переносом AC, C, OV
Команда AJMP Абсолютный переход
Логическое "И"
Логическое "И" для переменных-битов C
Сравнение и переход, если не равно C
Команда CLR A Сброс аккумулятора
Команда CLR Сброс бита C, bit
Команда CPL A Инверсия аккумулятора
Команда CPL Инверсия бита C, bit
Команда DA A Десятичная коррекция аккумулятора для сложения AC, C
Команда DEC <байт> Декремент
Команда DIV AB Деление C, OV
Команда DJNZ <байт>, <смещение> Декремент и переход, если не равно нулю
Команда INC <байт> Инкремент
Команда INC DPTR Инкремент указателя данных
Команда JB , Переход, если бит установлен
Команда JBC , Переход, если бит установлен и сброс этого бита
Команда JC Переход, если перенос установлен
Команда JMP @A+DPTR Косвенный переход
Команда JNB , Переход, если бит не установлен
Команда JNC Переход, если перенос не установлен
Команда JNZ Переход, если содержимое аккумулятора не равно нулю
Команда JZ Переход, если содержимое аккумулятора равно 0
Команда LCALL Длинный вызов
Команда LJMP Длинный переход
Переслать переменную-байт
Переслать бит данных C
Команда MOV DPTR,#data16 Загрузить указатель данных 16-битовой константой
Команда MOVC A,@A+() Переслать байт из памяти программ
Переслать во внешнюю память (из внешней памяти) данных
Система команд ОМЭВМ предоставляет большие возможности обработки данных, обеспечивает реализацию логических, арифметических операций, а также управление в режиме реалиного времени. Реализована побитовая, потетрадная (4 бита), побайтовая (8 бит) и 16-разрядная обработка данных. БИС семейства MCS-51 - 8-разрядная ОМЭВМ: ПЗУ, ОЗУ, регистры специального назначения, АЛУ и внешние шины имеют байтовую организацию. Двухбайтовые данные используются только регистром-указателем (DPTR) и счетчиком команд (РС). Следует отметить, что регистр-указатель данных может быть использован как двухбайтовый регистр DPTR или как два однобайтовых регистра специального назначения DPH и DPL. Счетчик команд всегда используется как двухбайтовый регистр. Набор команд ОМЭВМ имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы. Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, всед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений. Систему команд условно можно разбить на пять групп:
  • Арифметические команды;
  • Логические команды;
  • Команды передачи данных;
  • Команды битового процессора;
  • Команды ветвления и передачи управления.
Существуют следующие типы адресации операндов-источников:
  • Регистровая адресация
  • Прямая адресация
  • Косвенно-регистровая адресация
  • Непосредственная адресация
  • Косвенно-регистровая адресация по сумме базового и индексного регистров
Арифметические команды В наборе команд имеются следующие арифметические операции: сложение, сложение с учетом флага переноса, вычитание с заемом, инкременирование, декременирование, сравнение, десятичная коррекция, умножение и деление. В АЛУ производятся действия над целыми числами без знака. В двухоперандных операциях: сложение (ADD), сложение с переносом (ADDC) и вычитание с заемом (SUBB) аккумулятор является первым операндом и принимает результат операции. Вторым операндом может быть рабочий регистр выбранного банка рабочих регистров, регистр внутренней памяти данных с косвенно-регистровой и прямой адресацией или байт непосредственных данных. Указанные операции влияют на флаги: пеполнения, переноса, промежуточного переноса и флаг четности в слове состояния процессора (PSW). Использование разряда переноса позволяет многократно повысить точность при операциях сложения (ADDC) и вычитания (SUBB). Выполнение операций сложения и вычитания с учетом знака может быть осуществлено с помощью программного управления флагом переполнения (OV) регистра PSW. Флаг промежуточного переноса (АС) обеспечивает выполнение арифметических операций в двоично-десятичном коде. Операции инкременирования и декременирования на флаги не влияют. Операции сравнения не влияют ни на операнд назначения, ни на операнд источника, но они влияют на флаги переноса. Существуют три арифметические операции, которые выполняются только на аккумуляторе: две команды проверки содержимого аккумулятора А (JZ, JNZ), и команда десятичной коррекции при сложении двоично-десятичных кодов. При операции умножения содержимое аккумулятора А умножается на содержимое регистра В и результат размещается следующим образом: младший байт в регистре В, старший - в регистре А. В случае выполнения операции деления целое от деления помещается в аккумулятор А, остаток от деления - в регистр В. Логические команды с байтовыми переменными Система команд позволяет реализовать логические операции: "И", "ИЛИ", "ИСКЛЮЧАЮЩЕЕ ИЛИ" на регистре-аккумуляторе (А) и байте-источнике. Вторым операндом (байтом-источником) при этом может быть рабочий регистр в выбранном банке рабочих регистров; регистр внутреннего ОЗУ, адресуемый с помощью косвенно-регистровой адресации; прямоадресуемые ячейки внутреннего ОЗУ и регистры специального назначения; непосредственная величина. Указанные логические операции могут быть реализованы на любом прямоадресуемом регистре внутреннего ОЗУ или регистре специального назначения с использованием в качестве второго операнда содержимого аккумлятора А или непосредственных данных. Существуют логические операции, которые выполняются только на аккумуляторе: сброс и инвертирование всех восьми разрядов А; циклический сдвиг влево и впрво; циклический сдвиг влево и вправо с учетом флага переноса; обмен местами старшей и младшей тетрад (ниблов) внутри аккумулятора. Команды передачи данных Таблицы символов (кодов), зашитые в ПЗУ программы могут быть выбраны с помощью команд передачи данных с использованием косвенной адресации. Байт константы может быть передан в аккумулятор из ячейки памяти программ, адресуемой суммой базового регистра (PC или DPTR) и индексного регистра (содержимого А). Это обеспечивает, например, удобное средство реализации алгоритма преобразования кода ASCII в семисегментный код. Любая ячейка 256-байтового блока внешнего ОЗУ данных может быть выбрана с использованием косвенно-регистровой адресации через регистры указатели R0 или R1 (выбранного банка рабочих регистров). Ячейка внутри адресного пространства 64 Кбайт внешнего ОЗУ также может быть выбрана с использованием косвенно-регистровой адресации через регистр-указатель данных DPTR. Команды передачи между прямоадресуемыми регистрами позволяют заносить величину из порта в ячейку внутреннего ОЗУ без использования рабочих регистров или аккумулятора. В логическом процессоре любой прямоадресуемый бит может быть помещен в бит переноса и наоборот. Содержимое аккумулятора может быть обменено с содержимым рабочих регистров (выбранного банка) и с содержимым адресуемых с помощью косвенно-регистровой адресации ячеек внутреннего ОЗУ, а также с содержимым прямо-адресуемых ячеек внутреннего ОЗУ и с содержимым регистров специального назначения. Младший нибл (разряды 3-0) содержимого аккумулятора, может быть обменен с младшим ниблом содержимого ячеек внутреннего ОЗУ, выбираемых с помощью косвенно-регистровой адресации. Команды битового процессора Битовый процессор является частью архитектуры МК семейства MCS51 и его можно рассматривать как независимый процессор побитовой обработки. Битовый процессор выполняет набор команд, имеет свое побитово-адресуемое ОЗУ и свой ввод-вывод. Команды, оперирующие с битами, обеспечивают прямую адресацию 128 битов (0-127) в шестнадцати ячейках внутреннего ОЗУ (ячейки с адресами 20Н-2FH) и прямую побитовую адресацию регистров специального назначения, адреса которых кратны восьми. Каждый из отдельно адресуемых битов может быть установлен в "1", сброшен в "0", инвертирован, проверен. Могут быть реализованы переходы: если бит установлен; если бит не установлен; переход, если бит установлен, со сбросом этого бита; бит может быть перезаписан в (из) разряда переноса. Между любым прямоадресуемым битом и флагом переноса могут быть произведены логические операции "И", "ИЛИ", где результат заносится в разряд флага переноса. Команды побитовой обработки обеспечивают реализацию сложных функций комбинаторной логики и оптимизацию программ пользователя. Команды ветвления и передачи управления Адресное пространство памяти программ не имеет страничной организации, что позволяет свободно перемщать фрагменты программы внутри адресного пространства, при этом не требуется перезасылка (изменение) номера страницы. Перемещение отдельных фрагментов программы обеспечивает возможность использования перемещаемых программных модулей различными программами. Команды 16-разрядных переходов и вызовов подпрограмм позволяют осуществлять переход в любую точку адресного пространства памяти программ объемом 64 Кбайт. Команды 11-разрядных переходов и вызовов подпрограмм обеспечивают переходы внутри программного модуля емкостью 2 Кбайт. В системе команд имеются команды условных и безусловных переходов относительно начального адреса слеующей программы в пределах от (РС)-128 до (ЗС)+127. Команды проверки отдельных разрядов позволяют осуществлять условные переходы по состоянию "0" или "1" прямоадресуемых битов. Команды проверки содержимого аккумулятора (на ноль/не ноль) позволяют осуществлять условные переходы по содержимому А. Косвенно-регистровые переходы в системе команд обеспечивают ветвление относительно базового регистра (содержимого DPTR или РС) со смещением, находящимся в аккумуляторе А. Регистровая адресация Регистровая адресация используется для обращения к восьми рабочим регистрам выбранного банка рабочих регистров (эти же регистры могут быть выбраны с помощью прямой адресации и косвенно-регистровой адресации как обычные ячейки внутреннего ОЗУ данных). Регистровая адресация используется для обращения к регистрам А, В, АВ (сдвоенному регистру), DPTR и к флагу переноса С. Использование регистровой адресации позволяет получать двухбайтовый эквивалент трехбайтовых команд прямой адресации. Прямая адресация Прямая байтовая адресация используется для обращения к ячейкам внутренней памяти (ОЗУ) данных (0-127) и к регистрам специального назначения. Прямая побитовая адресация используется для обращения к отдельно адресуемым 128 битам, расположенным в ячейках с адресами 20H-2FH и к отдельно адресуемым битам регистров специального назначения. Старший бит байта кода прямого адрема выбирает одну из двух групп отдельно адремуемых битов, расположенных в ОЗУ или регистрах специального назначения. Прямо адресуемые биты с адресами 0-127 (00H-7FH) расположены в блоке из 16 ячеек внутреннего ОЗУ, имеющих адреса 20H-2FH. Указанные ячейки последовательно пронумерованы от младшего бита младшего байта до старшего бита старшего байта. Отдельно адресуемые биты в регистрах специального назначения пронумерованы следующим образом: пять старших разрядов адреса совпадают с пятью старшими разрядами адреса самого регистра, а три младших - определяют местоположение отдельного ибта внутри регистра. Косвенно-регистровая адресация Косвенно-регистровая адресация используется для обращения к ячейкам внутренннего ОЗУ данных. В качестве регистров-указателей используется регистры R10, R1 выбранного банка регистров. В командах PUSH и POP используется содержимое указателя стека (SP). Косвенно-регистровая адресация используется также для обращения к внешней памяти данных. В этом случае с помощью регистров-указателей R0 и R1 (выбранного банка рабочих регистров) выбирается ячейка из блока в 256 байт внешней памяти данных. Номер блока предварительно задается содержимым порта Р2. 16-разрядный указатель данных (DPTR) может быть использован для обращения к любой ячейке адресного пространства внешней памяти данных объемом до 64 Кбайт. Непосредственная адресация Непосредственная адресация позволяет выбрать из адресного пространства памяти программ константы, явно указанные в команде. Косвенно-регистровая адресация по сумме базового и индексного регистров Косвенно-регистровая адресация по сумме: базовый регистр плюс индексный регистр (содержимое аккумулятора А) упрощает просмотр таблиц, зашитых в памяти программ. Любой байт из таблицы может быть выбран по адресу, определяемому суммой содержимого DPTR или РС и содержимого А. Таблица обозначений и символов, используемых в системе команд
Обозначение, символ Назначение
А Аккумулятор
Rn Регистры текущего выбранного банка регистров
r Номер загружаемого регистра, указанног в команде
direct Прямо адресуемый 8-битовый внутренний адрес ячейка данных, который может быть ячейкой внутреннего ОЗУ данных (0-127) или SFR (128-255)
@Rr Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных
data8 8-битовое непосредственное да ное, ходящее в КОП
dataH Старшие биты (15-8) непосредственных 16-битовых данных
dataL Младшие биты (7-0) непосредственных 16-битовых данных
addr11 11-битовый адрес назначения
addrL Младшие биты адреса назначения
disp8 8-битовый байт смещения со знак м
bit Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или SFR
a15, a14...a0 Биты адреса назначения
(Х) Содержимое элемента Х
((Х)) Содержимое по адресу, хранящемуся в элементе Х
(Х)[M] Разряд М элемента Х
+ - * / AND OR XOR /X Операции: сложения вычитания умножения деления логического умножения (операция И) логического сложения (операция ИЛИ) сложения по модулю 2 (исключающее ИЛИ) инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний. В таблице приведен перечень команд, упорядоченных по алфавиту.

Мнемоника Функция Флаги
Команда ACALL Абсолютный вызов подпрограммы
Команда ADD A, <байт-источник> Сложение AC, C, OV
Команда ADDC A, <байт-источник> Сложение с переносом AC, C, OV
Команда AJMP Абсолютный переход
Команда ANL <байт-назначения>, <байт-источникa> Логическое "И"
Команда ANL C, <байт-источникa> Логическое "И" для переменных-битов
Команда CJNE <байт-назначения>, <байт-источник>, <смещение> Сравнение и переход, если не равно C
Команда CLR A Сброс аккумулятора
Команда CLR Сброс бита C, bit
Команда CPL A Инверсия ак умуля ора
Команда CPL Инверсия бита C, bit
Команда DA A Десятичная коррекция аккумулятора для ложения AC, C
Команда DEC <байт> Декремент
Команда DIV AB Деление C, OV
Команда DJNZ <байт>, <смещение> Декремент и переход, если не равно нулю
Команда INC <байт> Инкремент
Команда INC DPTR Инкремент указателя данных
Команда JB , Переход, если бит установлен
Команда JBC , Переход, если бит установлен и сброс этого бита
Команда JC Переход, если перенос установлен
Команда JMP @A+DPTR Косвенный переход
Команда JNB , Переход, если бит не установлен
Команда JNC Переход, если перенос не установлен
Команда JNZ Переход, если содержимое аккумулятора не равно нулю
Команда JZ Переход, если содержимое аккумулятора равно 0
Команда LCALL Длинный вызов
Команда LJMP Длинный переход
Команда MOV <байт-назначения>, <байт-источника> Переслать переменную-байт
Команда MOV <бит-назначения>, <бит-источника> Переслать бит данных C
Команда MOV DPTR,#data16 Загрузить указатель данных 16-битовой константой
Команда MOVC A,@A+() Переслать байт из памяти программ
Команда MOVX <байт приемника>, <байт источника> Переслать во внешнюю память (из внешней памяти) данных
Команда MUL AB Умножение C, OV
Команда NOP Нет операции PC
Команда ORL <байт-назначения>, <байт-источникa> Логическое "ИЛИ" для перемнных-байтов
Команда ORL C, <бит источникa> Логическое "ИЛИ" для переменных-битов C
Команда POP Чтение из стека
Команда PUSH Запись в стек
Команда RET Возврат из подпрограммы
Команда RETI Возврат из прерывания
Команда RL A Сдвиг содержимого аккумулятора влево
Команда RLC A Сдвиг содержимого аккумулятора влево через флаг переноса
Команда RR A Сдвиг содержимого аккумулятора вправо
Команда RRC A Сдвиг содержимого аккумулятора вправо через флаг переноса C
Команда SETB Установить бит C
Команда SJMP <метка> Короткий переход
Команда SUBB A, <байт источника> Вычитание с заемом AC, C, OV
Команда SWAP A Обмен тетрадами внутри аккумулятора
Команда XCH A, <байт> Обмен содержимого аккумулятора с переменной-байтом
Команда XCHD A,@R1 Обмен тетрадой
Команда XRL <байт-назначения>, <байт-источникa> Логическое "ИСКЛЮЧАЮЩЕЕ ИЛИ" для перемнных-байтов

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

ПЛАН ЛЕКЦИИ

1. Введение

2. Арифметические и логические инструкции

3. Команды передачи данных

4. Булевы операции

5. Инструкции переходов

1. Введение

Система команд MCS-51 поддерживает единый набор инструкций, который предназначен для выполнения 8-битовых алгоритмов управления исполнительными устройствами. Существует возможность использования быстрых методов адресации к внутреннему ОЗУ, осуществления битовых операций над небольшими структурами данных. Имеется развернутая система адресации однобитовых переменных как самостоятельного типа данных, позволяющая использовать отдельные биты в логических и управляющих командах булевой алгебры.

Режимы адресации : набор команд MCS-51 поддерживает следующие режимы адресации. Прямая адресация : операнд определяется 8-битовым адресом в инструкции. Прямая адресация используется только для младшей половины внутренней памяти данных и регистров SFR . Косвенная адресация : инструкция адресует регистр, содержащий адрес операнда. Данный вид адресации используется для внешнего и внутреннего ОЗУ. Для указания 8-битовых адресов могут использоваться регистры R0 и R1 выбранного регистрового банка или указатель стека SP . Для 16-битовой адресации используется только регистр указателя данных DPTR .

Регистровые инструкции : регистры R0–R7 текущего регистрового банка могут быть адресованы через конкретные инструкции, содержащие 3-битовое поле, указывающее номер регистра в самой инструкции. В этом случае соответствующее поле адреса в команде отсутствует. Операции с использованием специальных регистров : некоторые инструкции используют индивидуальные регистры (например, операции с аккумулятором, DPTR , и т. д.). В данном случае адрес операнда вообще не указывается в команде. Он предопределяется кодом операции.

Непосредственные константы : константа может находиться прямо в команде за кодом операции.

Индексная адресация : индексная адресация может использоваться только для доступа к программной памяти и только в режиме чтения. В этом режиме осуществляется просмотр таблиц в памяти программ. 16-битовый регистр (DPTR или программный счетчик) указывает базовый адрес требуемой таблицы, а аккумулятор указывает на точку входа в нее.

Набор команд имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы. Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, вслед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп: арифметические команды; логические команды; команды передачи данных; команды битового процессора; команды ветвления и передачи управления. Обозначения и символы, используемые в системе команд, приведены далее.

Таблица. Обозначения и символы, используемые в системе команд

Обозначение, символ

Назначение

Аккумулятор

Регистры текущего выбранного банка регистров

Номер загружаемого регистра, указанного в команде

direct

Прямо адресуемый 8-битовый внутренний адрес ячейки данных, который может быть ячейкой внутреннего ОЗУ данных (0–127) или регистром специальных функций SFR (128–255)

Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных

8-битовое непосредственное данное, входящее в код операции (КОП)

dataH

Старшие биты (15–8) непосредственных 16-битовых данных

dataL

Младшие биты (7­–0) непосредственных 16-битовых данных

11-битовый адрес назначения

addrL

Младшие биты адреса назначения

8-битовый байт смещения со знаком

Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или регистре специальных функций SFR

a15, a14...a0

Биты адреса назначения

Содержимое элемента Х

Содержимое по адресу, хранящемуся в элементе Х

Разряд М элемента Х


+

*
AND
OR
XOR
/X

Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний.

2. Арифметические и логические инструкции

Как п ример арифметической команды , операция сложения может быть выполнена одной из нижеследующих команд.

ADD A ,7 F 16 – прибавить к содержимому регистра А число 7 F 16 и результат сохранить в регистре А;

ADD A ,@ R 0 – прибавить к содержимому регистра А число, адрес которого (@ – commercial at ) хранится в регистре R 0 (косвенная адресация), и результат сохранить в регистре А;

ADD A,R7 – прибавить к содержимому регистра А содержимое регистра R 7 и результат сохранить в регистре А;

ADD A,#127 – прибавить к содержимому регистра А число, адрес ячейки хранения которого 127 (# – символ номера), и результат сохранить в регист ­- ре А.

Все арифметические инструкции выполняются за один машинный цикл за исключением команды INC DPTR (смещение указателя данных DPTR на следующий байт), требующей два машинных цикла, а также операций умножения и деления, выполняемых за 4 машинных цикла. Любой байт во внутренней памяти данных может быть инкрементирован и декрементирован без использования аккумулятора.

Инструкция MUL AB производит умножение (multiplication – умножение) данных в аккумуляторе на данные, находящиеся в регистре B, помещая произведение в регистры A (младшая половина) и B (старшая половина).

Инструкция DIV AB делит (division – деление) содержимое аккумулятора на значение в регистре B, оставляя остаток в B, а частное – в аккумуляторе.

Инструкция DA A предназначена для двоично-десятичных арифметических операций (арифметические операции над числами, представленными в двоично-десятичном коде). Она не делает преобразования двоичного числа в двоично-десятичное , а лишь обеспечивает правильный результат при сложении двух двоично-десятичных чисел.

Пример логической команды : операция логического И может быть выполнена одной из следующих команд:

ANL A ,7 F 16 – логическое умножение содержимого регистра А на число 7 F 16 и результат сохраняется в регистре А;

ANL A ,@ R 1 – логическое умножение содержимого регистра А на число, адрес которого хранится в регистре R 1 (косвенная адресация), и результат сохранить в регистре А;

ANL A,R6 – логическое умножение содержимого регистра А на содержимое регистра R 6, и результат сохранить в регистре А;

ANL A,#53 – логическое умножение содержимого регистра А на число, адрес ячейки хранения которого 53 16 , и результат сохранить в регистре А.

Все логические операции над содержимым аккумулятора выполняются за один машинный цикл, остальные – за два. Логические операции могут производиться над любым из нижних 128 байтов внутренней памяти данных или над любым регистром SFR (регистров специальных функций) в режиме прямой адресации без использования аккумулятора.

Операции циклического сдвига RL A, RLC A и т. д. перемещают содержимое аккумулятора на один бит вправо или влево. В случае левого циклического сдвига младший бит перемещается в старшую позицию. В случае правого циклического сдвига происходит обратное .

Операция SWAP A осуществляет обмен младшей и старшей тетрад в аккумуляторе.

3. Команды передачи данных

Команда MOV dest,src позволяет пересылать данные между ячейками внутреннего ОЗУ или областью регистров специальных функций SFR без использования аккумулятора. При этом работа с верхней половиной внутреннего ОЗУ может осуществляться только в режиме косвенной адресации, а обращение к регистрам SFR – только в режиме прямой адресации.

Во всех микросхемах MCS-51 стек размещается непосредственно в резидентной памяти данных и увеличивается вверх. Инструкция PUSH вначале увеличивает значение в регистре указателя стека SP , а затем записывает в стек байт данных. Команды PUSH и POP используются только в режиме прямой адресации (записывая или восстанавливая байт), но стек является всегда доступным при косвенной адресации через регистр SP . Таким образом, стек может использовать и верхние 128 байт памяти данных. Эти же соображения исключают возможность использования стековых команд для адресации регистров SFR .

Инструкции передачи данных включают в себя 16-битовую операцию пересылки MOV DPTR,#data16 , которая используется для инициализации регистра указателя данных DPTR при просмотре таблиц в программной памяти или для доступа к внешней памяти данных.

Операция XCH A,byte применяется для обмена данными между аккумулятором и адресуемым байтом. Команда XCHD A,@Ri аналогична предыдущей , но выполняется только для младших тетрад , участвующих в обмене операндов.

Для доступа к внешней памяти данных используется только косвенная адресация. В случае однобайтных адресов используются регистры R0 или R1 текущего регистрового банка, а для 16-разрядных – регистр указателя данных DPTR . При любом методе доступа к внешней памяти данных аккумулятор играет роль источника либо приемника информации.

Для доступа к таблицам, размещённым в программной памяти, используются команды:

MOVC A,@A+DPTR ;

MOVC A,@A+PC .

В качестве базового адреса таблицы используется содержимое соответственно регистра указателя данных DPTR или PC (программного счётчика), а смещение берется из A . Эти команды используются исключительно для чтения данных из программной памяти, но не для записи в нее.

4. Булевы операции

Микросхемы MCS-51 содержат в своем составе «булевый» процессор. Внутреннее ОЗУ имеет 128 прямо адресуемых бит. Пространство регистров специальных функций SFR может также поддерживать до 128 битовых полей. Битовые инструкции осуществляют условные переходы, пересылки, сброс, инверсии, операции «И» и «ИЛИ». Все указанные биты доступны в режиме прямой адресации.

Бит переноса CF в регистре специальных функций «слово состояния программы PSW » используется как однобитный аккумулятор булевого процессора.

5. Инструкции переходов

Адреса операций переходов обозначаются на языке ассемблера меткой либо реальным значением в пространстве памяти программ. Адреса условных переходов ассемблируются в относительное смещение – знаковый байт, прибавляемый к программному счетчику PC в случае выполнения условия перехода. Границы таких переходов лежат в пределах между минус 128 и 127 относительно первого байта, следующего за инструкцией. В регистре специальных функций «слово состояния программы PSW » отсутствует флажок нуля, поэтому инструкции JZ и JNZ проверяют условие «равно нулю» как тестирование данных в аккумуляторе.

Существует три вида команды безусловного перехода: SJMP , LJMP и AJMP – различающиеся форматом адреса назначения. Инструкция SJMP кодирует адрес как относительное смещение, и занимает два байта. Дальность перехода ограничена диапазоном от минус 128 до 127 байт относительно инструкции, следующей за SJMP .

В инструкции LJMP используется адрес назначения в виде 16-битной константы. Длина команды составляет три байта. Адрес назначения может располагаться в любом месте памяти программ.

Команда AJMP использует 11-битную константу адреса. Команда состоит из двух байт. При выполнении этой инструкции младшие 11 бит адресного счетчика замещаются 11-битным адресом из команды. Пять старших бит программного счетчика PC остаются неизменными. Таким образом, переход может производиться внутри 2К-байтного блока, в котором располагается инструкция, следующая за командой AJMP .

Существует два вида команды вызовы подпрограммы: LCALL и ACALL . Инструкция LCALL использует 16-битный адрес вызываемой подпрограммы. В данном случае подпрограмма может быть расположена в любом месте памяти программ. Инструкция ACALL использует 11-битный адрес подпрограммы. В этом случае вызываемая подпрограмма должна быть расположена в одном 2К-байтном блоке с инструкцией, следующей за ACALL . Оба варианта команды кладут на стек адрес следующей команды и загружают в программный счетчик PC соответствующее новое значение.

Подпрограмма завершается инструкцией RET , позволяющей вернуться на инструкцию, следующую за командой CALL . Эта инструкция снимает со стека адрес возврата и загружает его в программный счетчик PC . Инструкция RETI используется для возврата из подпрограмм обработки прерываний. Единственное отличие RETI от RET состоит в том, что RETI информирует систему о том, что обработка прерывания завершилась. Если в момент выполнения RETI нет других прерываний, то она идентична RET .

Инструкция DJNZ предназначена для управления циклами. Для выполнения цикла N раз надо загрузить в счетчик байт со значением N и закрыть тело цикла командой DJNZ , указывающей на начало цикла.

Команда CJNE сравнивает два своих операнда как беззнаковые целые и производит переход по указанному в ней адресу, если сравниваемые операнды не равны. Если первый операнд меньше, чем второй, то бит переноса CF устанавливается в «1».

Все команды в ассемблированном виде занимают 1, 2 или 3 байта.

УДК 681.5, 681.325.5 (075.8)

ББК 32.973.202-018.2 я 73

Щербина А. Н. Вычислительные машины, системы и сети. Микроконтроллеры и микропроцессоры в системах управления: у чеб. пособие / А.Н. Щербина, П.А. Нечаев- СПб.: Из-во Политехн. ун-та, 2012.-226 с.

Соответствует содержанию государственного образовательного стандарта направлений подготовки и специальностей в области управления в технических системах, электроэнергетики и электротехники и содержанию примерной учебной программы дисциплины «Вычислительные машины, системы и сети».

Рассмотрены фундаментальные вопросы логической организации микропроцессорных систем на примере базовой архитектуры микроконтроллерного семейства MCS-51 фирмы Intel. Описана технология программирования микроконтроллеров на языках Ассемблер и СИ.

Может быть полезным для студентов и преподавателей высших технических заведений, специалистов по автоматизации технологических процессов и производственного оборудования, а также для инженеров-проектировщиков микропроцессорных систем.

Также соответствует содержанию государственного образовательного стандарта дисциплин «Микроконтроллеры и микропроцессоры в системах управления» и «Электронные устройства автоматики» бакалаврской, инженерной и магистерской подготовки по направлению 140400 «Электроэнергетика и электротехника».

Печатается по решению редакционно-издательского совета

Санкт-Петербургского государственного политехнического университета.

© Щербина А. Н., Нечаев П. А., 2012

© Санкт-Петербургский государственный

политехнический университет, 2012

ISBN 978-5-7422-3553-8


Введение.. 7

Глава 1. Архитектура семейства MCS51. 10

1.1 Общие характеристики 10

1.2 Структурная схема 11



1.3 Назначение выводов микроконтроллера 8051 15

1.4 Организация памяти 17

1.4.1 Память программ (ПЗУ) 18

1.4.2 Память данных (ОЗУ) 19

1.4.3 Регистры специальных функций. 20

1.4.4 Регистр флагов (PSW) 23

1.5 Устройство управления и синхронизации 26

1.6 Организация портов ввода-вывода 27

1.6.1 Общие сведения. 27

1.6.2 Альтернативные функции. 27

1.7. Таймеры / счетчики микроконтроллеров семейства 8051. 28

1.7.1. Структура таймеров-счетчиков. 28

1.7.2 Режимы работы таймеров-счетчиков. 30

1.8. Последовательный порт 32

1.8.1. Структура последовательного порта. 32

1.8.2. Регистр управления/статуса приемопередатчика SCON.. 34

1.8.3. Регистр управления мощностью PCON.. 36

1.9. Система прерываний 37

1.9.1. Структура системы прерываний. 37

1.9.2 Выполнение подпрограммы прерывания. 40

Глава 2. Особенности микроконтроллера 80C51GB.. 42

2.1 Функциональные особенности 42

2.2 Порты I/O P0-P5 43

2.2.1 Функционирование портов ввода-вывода. 43

2.2.2 Запись в порт.. 46

2.3 Особенности системы прерываний 8XC51GB.. 49

Разрешение/запрещение прерываний. 50

Управление приоритетами прерываний. 51

Внешние прерывания. 54

2.3. Узел АЦП 56

2.4. Аппаратный сторожевой таймер 61

2.5. Обнаружение сбоя тактового генератора 63

2.6. Матрица программируемых счётчиков РСА 64

2.6.1. Структура PCA.. 64

2.6.2. Регистр режима счётчика РСА (CMOD) 66

2.6.3. Регистр управления счётчика РСА (CON) 67

2.6.4. Модули сравнения/фиксации. 68

2.7. Расширенный последовательный порт 76

2.8. Таймеры/счетчики 79

Расположение выводов микроконтроллеров группы 8XC51GB.. 86

Глава 3. Программирование MK 8051GB.. 89

3.1. Программная модель 89

3.2 Типы данных 93

3.3 Способы адресации данных 93

3.4 Система команд 95

3.4.1 Общая характеристика. 95

3.4.2 Типы команд. 96

3.4.3 Типы операндов. 97

3.4.4 Команды пересылки данных микроконтроллера. 98

3.4.5 Команды арифметических операций 8051. 101

3.4.6 Команды логических операций микроконтроллера 8051. 104

3.4.7 Команды операций над битами микроконтроллера 8051. 106

3.5 Отладка программ 111

Глава 4. Язык программирования ASM-51. 112

4.2 Запись текста программы 113

4.3 Алфавит языка. 114

4.4 Идентификаторы. 115

4.5 Числа 117

4.6 Директивы 118

4.7 Реализация подпрограмм на языке ASM51 122

4.7.1 Структура подпрограммы-процедуры на языке ASM51. 122

4.7.2 Передача переменных-параметров в подпрограмму. 123

4.7.3 Реализация подпрограмм-функций на языке ASM51. 123

4.7.4 Реализация подпрограмм обработки прерываний на языке ASM51. 124

4.8 Структурное программирование на языке ассемблера. 125

4.9 Особенности трансляции многомодульных программ.. 126

4.10 Использование сегментов 128

4.10.1 Разбиение памяти МК на сегменты.. 128

4.10.2 Абсолютные сегменты памяти. 129

4.10.2 Перемещаемые сегменты памяти. 131

Глава 5. Язык программирования С-51. 134

5.1 Общая характеристика языка 134

5.3 Структура программ С-51 136

5.3. Элементы языка программирования С-51 138

5.3.1. Символы.. 138

5.3.2. Лексические единицы, разделители и использование пробелов. 141

5.3.3 Идентификаторы.. 142

5.3.4 Ключевые слова. 143

5.3.5 Константы.. 143

5.4. Выражения в операторах языка 146

программирования C-51 146

5.5. Приоритеты выполнения операций 148

5.6. Операторы языка программирования C-51 149

5.6.1. Операторы объявления. 150

5.6.2 Исполняемые операторы.. 150

5.6.3 Оператор присваивания. 151

5.6.4 Условный оператор. 151

5.6.5 Структурный оператор {}. 152

5.6.6 Оператор цикла for. 152

5.6.7 Оператор цикла с проверкой условия до тела цикла while. 153

5.6.8 Оператор цикла с проверкой условия после тела цикла do while. 154

5.6.9 Оператор break. 155

5.6.10 Оператор continue. 155

5.6.11 Оператор выбора switch. 155

5.6.12 Оператор безусловного перехода goto. 157

5.6.13 Оператор выражение. 158

5.6.14 Оператор возврата из подпрограммы return. 158

5.6.15 Пустой оператор. 158

5.7. Объявление переменных в языке программирования C-51. 159

5.7.1. Объявление переменной. 159

5.7.3 Целые типы данных. 161

5.7.4 Числа с плавающей запятой. 162

5.7.5 Переменные перечислимого типа. 162

5.7.6. Объявление массивов в языке программирования C-51. 164

5.7.7. Структуры.. 165

5.7.8. Объединения (смеси) 166

5.8. Использование указателей в языке C-51 167

5.8.1. Объявление указателей. 167

5.8.2. Нетипизированные указатели. 168

5.8.3. Память зависимые указатели. 169

5.9. Объявление новых типов переменных 169

5.10. Инициализация данных 170

5.11. Использование подпрограмм в языке программирования С-51. 170

5.11.1. Определение подпрограмм.. 171

5.11.2. Параметры подпрограмм.. 173

5.11.3. Предварительное объявление подпрограмм.. 174

5.11.4 Вызов подпрограмм.. 176

5.11.5 Рекурсивный вызов подпрограмм.. 176

5.11.6 Подпрограммы обработки прерываний. 177

5.11.7 Области действия переменных и подпрограмм.. 178

5.12. Многомодульные программы 179

Глава 6. Подготовка программ в интегрированной среде разработки Keil μVision2. 182

6.1 Создание проекта на языке ASM-51 182

6.2 Пример создания проекта на языке C для учебного контроллера в интегрированной среде разработки Keil μVision2 188

Глава 7. Описание учебного контроллера.. 199

7.1. Структура контроллера 199

7.2. Адресное пространство 200

7.2.1. Распределение памяти. 200

7.2.2 Внешняя память. 201

7.2.3. Внутренняя память данных. 202

7.3. Распределение портов ввода-вывода 202

7.4. Последовательный порт………………………………...203

7.5. Работа с ЖКИ 205

7.6. Панели контроллера…………………………………………………213

ПРИЛОЖЕНИЕ П2 СТРУКТУРА ОТЧЁТА О ЛАБРОРАТОРНОЙ РАБОТЕ……..217

Приложение П3 Коды машинных команд. 217

Список литературы... 224


Введение

В освоении специальностей, связанных с автоматизацией технологических процессов и производств, изучение микроконтроллеров является одним из важных разделов.

В мире происходит непрерывное развитие и появление все новых и новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, но наибольшая доля мирового микропроцессорного рынка и по сей день остается за 8-разрядными устройствами. По всем прогнозам аналитических компаний на ближайшее время, лидирующее положение 8-разрядных микроконтроллеров на мировом рынке сохранится.

В настоящее время среди всех 8-разрядных микроконтроллеров семейство MCS-51 является несомненным лидером по количеству разновидностей и количеству компаний, выпускающих его модификации. Оно получило свое название от первого представителя этого семейства - микроконтроллера 8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке.

Достоинства семейства MCS-51:

· архитектура, являющаяся стандартом де-факто;

· чрезвычайная широта семейства и разнообразие возможностей;

· наличие высокопроизводительных и расширенных версий процессоров;

· значительное число свободно доступных программных и аппаратурных наработок;

· легкость аппаратного программирования, в т. ч. и внутрисхемного;

· дешевизна и доступность базовых чипов;

· наличие специализированных версий контроллеров для особых условий применения

· наличие версий контроллеров с пониженным уровнем электромагнитных помех;

· широкая известность среди разработчиков старшего поколения, как в мире, так и в странах СНГ;

· поддержка архитектуры ведущими учебными заведениями мира.

И, наконец, главное преимущество: освоив базовый чип семейства, легко начнеть работать с такими вычислительными «монстрами», как микроконтроллеры Cygnal, Dallas Semiconductor, Analog Devices, Texas Instruments.

В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. На сегодняшний день существует более 200 модификаций микроконтроллеров семейства 8051, выпускаемых почти 20-ю компаниями. Каждый год появляются все новые варианты представителей этого семейства.

Основными направлениями развития являются:

· увеличение быстродействия (повышение тактовой частоты и переработка архитектуры);

· снижение напряжения питания и энергопотребления;

· увеличение объема ОЗУ и FLASH памяти на кристалле с возможностью внутрисхемного программирования;

· введение в состав периферии микроконтроллера сложных устройств типа системы управления приводами, CAN и USB интерфейсов и т.п.

Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд. Большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - производителей без переделки принципиальной схемы устройства и программы.

Основными производителями разновидностей 51-го семейства в мире являются фирмы Philips, Siemens, Intel, Atmel, Dallas, Temic, Oki, AMD, MHS, Gold Star, Winbond, Silicon Systems и ряд других.

Характеристики аналогов микроконтроллеров семейства MCS-51 (Intel 8XC51FA, 8XC51GB, 80С152) с расширенными возможностями приведены в табл. В.1.

Таблица В.1

ОЗУ ПЗУ РСА АЦП WDT T/C Послед. Каналы Особенности
Atmel: AT89C2051
- - - - UART Flash 2 Кб
AT89C4051 - - - - UART Flash 4 Кб
AT89S4D12 128K - - - UART, SPI Flash 4 Кб
DALLAS Semiconductor: DS5000FP
- - - + UART Bootstrap loader
DS5001FP - - - + UART Bootstrap loader
DS8xC520 16K - - + 2xUART 2 DPTR
SIEMENS: C505C
16K - + + UART, CAN 8 DPTR
C515C 64K - + + UART+ SSC+CAN 4 ШИМ, 8 DPTR
Philips: *89C51RA+
- + - + UART 2 DPTR, 4 ур. прер., clock out, Flash 8K
P51XAG1x 8K - - + 2 UART
Intel: 8xC51RA
8K - + + UART 4 уровня IRQ, clock out
8XC196KC 64K 16K - + - UART 3 ШИМ
80C196KB 64K 8K - + - UART ШИМ

Глава 1. Архитектура семейства MCS51

8-разрядные однокристальные микроконтроллеры семейства MCS-51 приобрели большую популярность у разработчиков микропроцессорных систем контроля благодаря удачно спроектированной архитектуре. Архитектура микроконтроллера – это совокупность внутренних и внешних программно-доступных аппаратных ресурсов и системы команд. Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Микроконтроллеры, выполняющие все функции микроЭВМ с помощью единственной микросхемы, получили название однокристальных ЭВМ (ОЭВМ).

Фирма Intel выпустила около 50 моделей на базе операционного ядра микроконтроллера Intel 8051. Одновременно многие другие фирмы, такие как Atmel, Philips, начали производство своих микроконтроллеров, разработанных в стандарте MCS-51.

Общие характеристики

Основные характеристики семейства:

· 8-разрядный центральный процессор (ЦП), ориентированный на управление исполнительными устройствами;

· ЦП имеет встроенную схему 8-разрядного аппаратного умножения и деления чисел;

· наличие в наборе команд большого количества операций для работы с прямоадресуемыми битами даёт возможность говорить о процессоре для работы с битовыми данными (булевом процессоре);

· внутренняя (расположенная на кристалле) память программ масочного или репрограммируемого типа, имеющая для различных кристаллов объём от 4 до 32 Кб, в некоторых версиях она отсутствует;

· не менее чем 128 байтное резидентное ОЗУ данных, которое используется для организации, регистровых банков, стека и хранения пользовательских данных;

· не менее 32-х двунаправленных интерфейсных линий (портов), индивидуально настраиваемых на ввод или вывод информации;

· два 16-битных многорежимных счетчика/таймера, используемых для подсчёта внешних событий, организации временных задержек и тактирования коммуникационного порта;

· двунаправленный дуплексный асинхронный приемопередатчик (UART), предназначенный для организации каналов связи между микроконтроллером и внешними устройствами с широким диапазоном скоростей передачи информации. Имеются средства для аппаратно-программного объединения микроконтроллеров в связанную систему;

· двухуровневая приоритетная система прерываний, поддерживающая не менее 5 векторов прерываний от 4-х внутренних и 2-х внешних источников событий;

· встроенный тактовый генератор.

Структурная схема

Структурная схема контроллера представлена на рис.1.1 и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. По такой схеме построены практически все представители семейства MCS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов).

Блок управления и синхронизации (Timing and Control) - предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы. В состав блока управления входят:

устройство формирования временных интервалов;

логика ввода-вывода;

регистр команд;

регистр управления потреблением электроэнергии;

дешифратор команд, логика управления ЭВМ.

Рис. 1.1. Структурная схема контроллера I8051.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

регистров аккумулятора, регистров временного хранения TMP1 и TMP2;

ПЗУ констант;

сумматора;

дополнительного регистра (регистра В);

аккумулятора (ACC);

регистра состояния программ (PSW).

Регистр аккумулятор и регистры временного хранения - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига

Блок последовательного интерфейса и прерываний (ПИП) предназначен для организации ввода - вывода последовательных потоков информации и организации системы прерывания программ. В состав блока входят:

буфер ПИП;

логика управления;

регистр управления;

буфер передатчика;

буфер приемника;

приемопередатчик последовательного порта;

регистр приоритетов прерываний;

регистр разрешения прерываний;

логика обработки флагов прерываний и схема выработки вектора.

Счетчик команд (Program Counter) предназначен для формирования текущего 16-разрядного адреса внутренней памяти программ и 8/16-разрядного адреса внешней памяти программ. В состав счетчика команд входят 16-разрядные буфер РС, регистр РС и схема инкремента (увеличения содержимого на 1).

Память данных (RAM) предназначена для временного хранения информации, используемой в процессе выполнения программы.

Порты P0, P1, P2, P3 являются квазидвунаправленными портами ввода - вывода и предназначены для обеспечения обмена информацией ОЭВМ с внешними устройствами, образуя 32 линии ввода- вывода.

Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.

Память программ (EPROM) предназначена для хранения программ и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные, стираемые ультрафиолетовым излучением или FLASH ПЗУ.

Регистр указателя данных (DPTR) предназначен для хранения 16 - разрядного адреса внешней памяти данных.

Указатель стека (SP) представляет собой восьмиразрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой можно временно сохранить любую ячейку памяти.

1.3 Назначение выводов микроконтроллера 8051 (рис. 1.2)

· U ss - потенциал общего провода ("земли");

· U cc - основное напряжение питания +5 В;

· X1,X2 - выводы для подключения кварцевого резонатора;

· RST - вход общего сброса микроконтроллера;

· PSEN - разрешение внешней памяти программ, выдается только при обращении к внешнему ПЗУ;

· ALE - строб адреса внешней памяти;

· ЕА - отключение внутренней программной память; уровень 0 на этом входе заставляет микроконтроллер выполнять программу только из внешнего ПЗУ; игнорируя внутреннее(если последнее имеется);

Рис. 1.2. Назначение выводов 8051.

· P1 - восьмибитный квазидвунаправленный порт ввода/вывода, каждый разряд порта может быть запрограммирован как на ввод, так и на вывод информации, независимо от состояния других разрядов;

· P2 - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта используются для выдачи адресной информации при обращении к внешней памяти программ или данных (если используется 16-битовая адресация последней). Кроме того, выводы порта используются при программировании для ввода в микроконтроллер старших разрядов адреса;

· РЗ - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта могут выполнять ряд альтернативных функций, которые используются при работе таймеров, порта последовательного ввода-вывода, контроллера прерываний, и внешней памяти программ и данных;

· P0 - мультиплексируемый восьмибитный двунаправленный порт ввода-вывода информации, через этот порт в разные моменты времени выводятся младший байт адреса и данные.

Организация памяти

Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Структура памяти изображена на рис. 1.3.

Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access):

EA=V cc (напряжение питания) - доступ к внутреннему ПЗУ;

EA=V ss (потенциал земли) - доступ к внешнему ПЗУ.

Для кристаллов без ПЗУ(ROMless) вывод ЕА должен быть постоянно подключен к V ss .

Рис. 1.3. Организация памяти семейства MCS-51

Строб чтения внешнего ПЗУ - (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. Область нижних адресов памяти программ используется системой прерываний. Архитектура базовой микросхемы 8051обеспечивает поддержку пяти источников прерываний:

· двух внешних прерываний;

· двух прерываний от таймеров;

· прерывания от последовательного порта.

На рис. 1.4 изображена карта нижней области программной памяти.

Рис. 1.4. Карта нижней области программной памяти

Память программ (ПЗУ)

У микроконтроллеров семейства 8051, память программ и память данных являются самостоятельными и независимыми друг от друга устройствами, адресуемыми различными командами и управляющими сигналами.

Объем встроенной памяти программ, расположенной на кристалле микроконтроллера 8051 , равен 4 Кбайт (в семействе до 32). При обращении к внешней памяти программ все микроконтроллеры семейства 8051 всегда используют 16-разрадный адрес, что обеспечивает им доступ к 64 Кбайт ПЗУ. Микроконтроллер обращается к программной памяти при чтении кода операции и операндов (используя счетчик команд PC), а также при выполнении команд копирования байта из памяти программ в аккумулятор. При выполнении команд копирования данных адресация ячейки памяти программ, из которой будут прочитаны данные, может осуществляться с использованием как счетчика PC, так и специального двухбайтового регистра-указателя данных DPTR.

Память данных (ОЗУ)

Объем расположенной на кристалле памяти данных - 128 байт. Объем внешней памяти данных может достигать 64 Кбайт. Первые 32 байта организованы в четыре банка регистров общего назначения, обозначаемых соответственно банк 0 - банк 3. Каждый из них состоит из восьми регистров R0–R7. В любой момент программе доступен, при регистровой адресации, только один банк регистров, номер которого содержится в третьем и четвертом битах слова состояния программы PSW .

Адреса битовой области памяти микроконтроллера 8051

Таблица 1.1

Адрес байта (Hex) Адреса битов по разрядам
D7 D6 D5 D4 D3 D2 D1 D0
2F 7F 7E 7D 7C 7B 7A
2E
2D 6F 6E 6D 6C 6B 6A
2C
2B 5F 5E 5D 5C 5B 5A
2A
4F 4E 4D 4C 4B 4A
3F 3E 3D 3C 3B 3A
2F 2E 2D 2C 2B 2A
1F 1E 1D 1C 1B 1A
0F 0E 0D 0C 0B 0A
20h

Оставшееся адресное пространство может конфигурироваться разработчиком по своему усмотрению: в нем можно разместить стек, системные и пользовательские области данных. Обращение к ячейкам памяти данных возможно двумя способами. Первый способ - прямая адресация ячейки памяти. В этом случае адрес ячейки является операндом соответствующей команды. Второй способ - косвенная адресация с помощью регистров-указателей R0 или R1: перед выполнением соответствующей команды в один из них должен быть занесен адрес ячейки, к которой необходимо обратиться.

Для обращения к внешней памяти данных используется только косвенная адресация с помощью регистров R0 и R1 или с помощью 16-разрядного регистра-указателя DPTR.

Часть памяти данных представляет собой битовую область, в ней имеется возможность при помощи специальных битовых команд адресоваться к каждому разряду ячеек памяти. Адрес прямо адресуемых битов может быть записан также в виде (АдресБайта).(Разряд). Соответствие этих двух способов адресации можно определить по табл. 1.1.