Дипломная работа: Организация сети передачи голоса по IP протоколу на базе распределенной локальной вычислительной сети АГУ. IP-телефония. Принципы пакетной передачи речи. Уровни архитектуры IP-телефонии. Три основных сценария IP-телефонии Ведение передач

Как уже отмечалось, передача голоса по протоколу IP (voice over IP - VoIP) является решением скорее 3-го уровня OSI, а не 2-го уровня. Данная функция позволяет VoIP работать автономно в сетях Frame Relay и ATM. Но, что наиболее важно, VoIP работает в обычных локальных сетях, вплоть до настольных ПК. В этом смысле VoIP является скорее приложением, чем службой и это учитывалось в процессе эволюции протоколов VoIP.

Все протоколы VoIP делятся на две категории: централизованные и распределенные. Централизованные модели придерживаются архитектуры клиент/сервер, а распределенные основаны на взаимодействии узлов одноранговой сети. Все технологии VoIP используют обшую среду для передачи голоса в виде пакетов RTP по протоколу IP, а также поддерживают множество кодеков для сжатия данных. Разница заключается в способе передачи сигналов и месте обслуживания логики и режима вызова: в конечных точках или на центральном сервере. У обеих архитектур есть свои достоинства и недостатки. Распределенные модели хорошо масштабируются и являются более гибкими (надежными), так как у них отсутствует центральный узел, который может выйти из строя. И наоборот, централизованные модели управления вызовами отличаются более простым управлением и поддержкой традиционных дополнительных услуг (таких как конференции), но могут иметь ограничения по масштабируемости, определяемые мощностью центрального сервера. В настоящее время разрабатываются гибридные и межсетевые модели, где реализуются преимущества этих подходов.

Самая старая архитектура, Н.323, и самая новая - протокол инициирования сеанса (Session Initiation Protocol - SIP), принадлежат к распределенным схемам управления вызовами VoIP. К методам централизованного управления вызовами относится протокол управления шлюзами среды передачи (Media Gateway Control Protocol - MGCP) и фирменные протоколы, такие как Skinny Station Protocol, разработанный Cisco Systems. Краткое описание каждого из этих протоколов приводится ниже.

Технология голосовых кодеров/декодеров (кодеков) за последние несколько лет значительно продвинулась вперед благодаря достижениям в области архитектуры построения цифровых систем обработки сигналов (Digital Signal Processor - DSP), а также исследованиям в области распознавания человеческой речи. Новые кодеки не просто выполняют аналого-цифровое преобразование. В них применяются сложные прогнозирующие модели для анализа входного голосового сигнала и последующей передачи голоса с использованием минимальной полосы пропускания. В этом разделе будет приведено несколько примеров голосовых кодеков и используемой ими полосы пропускания. Во всех случаях речь передается RTP-пакетами по протоколу IP.

Простая импульсно-кодовая модуляция голоса (Pulse Code Modulated - PCM) описывается стандартом ITU-T G.711. Он допускает две основные разновидности РСМ со скоростью 64 Кбит/сек: по mu-закону и по А-закону. В обоих этих методах для достижения 12-13-битового линейного качества РСМ на 8 битах используется логарифмическое сжатие. Однако они отличаются менее значительными особенностями сжатия (mu-закон имеет небольшое преимущество при низкоуровневом соотношении "сигнал-шум"). Исторически сложилось так, что использование указанных методов соответствовало географическим границам: в Северной Америке используют модуляцию по mu-закону, а в Европе - по А-закону. Преобразование mu-закона сжатия в А-закон выполняет страна, использующая модуляцию по mu-закону. При поиске неисправностей в системах РСМ несовпадение видов модуляции приводит к неестественно звучащей, но, тем не менее, внятной речи.

Другим часто применяемым методом сжатия является адаптивная дифференциальная импульсно-кодовая модуляция (Adaptive Differential Pulse Code Modulation - ADPCM). Типичным случаем использования ADPCM является кодирование по стандарту ITU-T G.726 с использованием 4-битовых квантов, обеспечивающих скорость передачи 32 Кбит/сек. В отличие от РСМ, 4 бита кодируют не амплитуду речи, а только разницу в амплитуде и скорость изменения амплитуды, используя довольно примитивное линейное прогнозирование.

РСМ и ADPCM являются примерами кодеков по форме сигнала, в методах сжатия которых применяются избыточные характеристики формы сигнала. В новых способах сжатия, разработанных за последние 10-15 лет, используется, кроме того, знание исходных особенностей формирования речи. В таких методах применяются способы обработки сигналов, которые сжимают речь, посылая только упрощенную параметрическую информацию об исходной форме звукового сигнала и голосового тракта. Для передачи этой информации требуется меньшая полоса пропускания. Эти способы могут быть объединены в общую группу кодеков по источнику. В нее входят такие разновидности, как линейное прогнозируемое кодирование (Linear Predictive Coding - LPC), линейный прогноз, возбуждаемый кодовым словом (Code Excited Linear Prediction - CELP) и многоимпульсное многоуровневое квантование (Multipulse, Multilevel Quantization - MP-MLQ).

Перечисленные выше виды кодеков можно разделить на подкатегории. Например, к методам CELP можно отнести версию с малой задержкой, называемую LD-CELP (low delay CELP), а также более сложные методы моделирования голосового тракта с алгебраическими преобразованиями сопряженных структур. Такие кодеки обозначаются как CSA-CELP (conjugate structure algebraic CELP). Данный список можно продолжать до бесконечности, но сетевым разработчикам важно знать только области применения этих подходов в сетях и приложениях.

Сложные предсказывающие кодеки опираются на математическую модель человеческого голосового аппарата и вместо того, чтобы отправлять сжатую речь, посылают ее математическое представление, позволяющее получателю ее сгенерировать. Однако для отладки такого оборудования требуются серьезные исследования. Например, некоторые из первых кодеков хорошо воспроизводили голоса своих разработчиков и активно внедрялись - до тех пор, пока не обнаружилось, что они не очень хорошо воспроизводят женскую речь и азиатские диалекты. Тогда в конструкцию этих кодеков были внесены изменения с учетом более широкого диапазона типов человеческого голоса.

Союз ITU стандартизировал наиболее распространенные методы в телефонии кодирования и пакетирования речи, приняв приведенные ниже стандарты.

G.711. Кратко описанный ранее РСМ-метод голосового кодирования со скоростью передачи 64 Кбит/сек. Кодирование голоса по стандарту G.711 всегда обеспечивает правильный формат для передачи голоса в цифровом виде по открытой телефонной сети или через мини-АТС.

G.726. Метод кодирования ADPCM со скоростями передачи 40, 32, 24 и 16 Кбит/сек. Речь, кодированная методом ADPCM, также может передаваться между сетями с пакетной передачей речи, открытыми телефонными сетями и сетями на основе мини-АТС при условии, что последние поддерживают ADPCM.

G.729. Метод CELP-сжатия, позволяющий кодировать речь в потоки со скоростью передачи 8 Кбит/сек. Две разновидности этого стандарта (G.729 и G.729 Annex А) значительно различаются по сложности вычислений, но оба обеспечивают примерно такое же хорошее качество речи, как и метод ADPCM со скоростью 32 Кбит/сек.

G.723.1. Метод, который может быть использован для сжатия голоса и других аудиокомпонентов мультимедийных сообщений с очень низкой битовой скоростью передачи. Являясь частью общего семейства стандартов Н.324, этот кодер имеет две битовые скорости передачи: 5,3 и 6,3 Кбит/сек. Более высокая скорость основана на технологии MP-MLQ и обеспечивает более высокое качество; более низкая основана на методе CELP и обеспечивает хорошее качество, а также предоставляет системным разработчикам дополнительную гибкость.

Поскольку кодеки все больше полагаются на субъективно настраиваемые методики сжатия, стандартные объективные показатели качества, такие как суммарное искажение гармоник и отношение сигнал/шум, имеют меньшее отношение к качественным показателям кодека. Распространенным тестом для определения эффективности голосовых кодеков является средняя экспертная оценка (Mean Opinion Score - MOS). Из- за того, что качество голоса и звука обычно оценивается субъективно и зависит от слушателя, в этом методе важен широкий диапазон слушателей и образцов речи. Тесты MOS проводятся на группе слушателей, которые дают голосовым образцам оценки от 1 (плохо) до 5 (отлично). Затем оценки усредняются и получается средняя экспертная оценка. MOS-тестирование также применяется для сравнения качества работы одного и того же кодека в различных условиях, таких как уровни фоновых шумов, способы кодирования и декодирования и т.п. Впоследствии эти данные могут использоваться для сравнения с другими кодеками.

В табл. 19.1 приведены оценки по методу MOS для нескольких кодеков ITU-T, а также показана связь между несколькими низкоскоростными кодеками и стандартом РСМ.

1 Для Texas Instruments DSP 54х.

В этой таблице приведена информация, полезная для сравнения различных реализаций распространенных голосовых кодеков. Относительная полоса пропускания и сложность обработки, выраженная в миллионах операций в секунду (Millions of Instructions Per Second - MIPS) определяют области применения различных кодеков. В целом, высшая средняя экспертная оценка соответствует более сложным кодекам или большей полосе пропускания.

Литература:

Руководство по технологиям объединенных сетей, 4-е издание. : Пер. с англ. - М.: Издательский дом «Вильяме», 2005. - 1040 с.: ил. – Парал. тит. англ.

Многие люди считают, что передача голоса по интернет-протоколу (VoIP) и IP-телефония – это одно и тоже. Но на самом деле есть разница в этих понятиях. Выражаясь простым языком, IP-телефония – это телефонная связь через Интернет, а технология VoIP — это передача голоса через IP, также по этому же принципу работает IP-наблюдение или связь при трансляции видео онлайн.

Что такое VoIP?

VoIP – это передача голосового сигнала через интернет. Протокол определяет, как голос путешествует по сети, подобно тому, как протокол передачи гипертекста (HTTP) определяет, каким образом данные следует понимать, передается, форматируются и отображаются в веб-сервере и веб-браузере.

В более широком понимании, IP-телефония представлена в качестве общей концепции, а VoIP как средство для реализации этой концепции. Система IP-телефонии может, например, быть IP-PBX, VoIP, же имеет свои стандарты (SIP, H.323 и т.д.) наряду со многими другими вещами (например, CRM).

Также VoIP является цифровым транспортным средством для передачи телефонных звонков. В зависимости от предпочтений потребителей, она может предлагать дешевые или бесплатные звонки и добавлять новые функции для голосовой связи.

Что такое IP-телефония?

IP-телефония – это телефонная связь по протоколу IP. Под IP-телефонией подразумевается набор коммуникационных протоколов, технологий и методов, обеспечивающих традиционные для телефонии набор номера, дозвон и двустороннее голосовое общение, а также видеообщение по сети Интернет.

Основная цель IP-телефонии заключается в повышении производительности, поэтому её широко используют в бизнес-среде. Такие функции как запись разговора, переадресация, режим ожидания становятся незаменимы для эффективного ведения бизнеса.

Есть много других способов, чтобы определить разницу в этих терминах. Некоторые описывают значение IP-телефонии, как способ эффективного и надежного использования интернет-протоколов, это достигается за счет использования мощности VoIP.

Разница довольно тонкая, не так ли? Тем не менее, использование двух взаимозаменяемых терминов может быть приемлемо во многих контекстах.

Как получить бесплатные звонки через интернет?

Есть много способов, чтобы совершать бесплатные звонки по интернету. Самый простой способ - это загрузить приложение в планшет или смартфон. Это очень удобно, так как использовать телефон можно привычным образом. Это могут быть такие приложения как Viber, Skype, Facebook Messenger, Google Voice, BlackBerry Messenger (BBM), и WhatsApp. С помощью них можно звонить своим знакомым и друзьям бесплатно по всему миру.

Также существуют специальные сервисы, через которые можно звонить в любую страну. Одно из таких приложений – VOIPSCAN.

Как видите, понятия VoIP и IP достаточно близкие, но тем не менее разница в них есть, если разобраться. Надеемся, что этой статьёй мы помогли вам разобраться в этих терминах и вы уже на пути реализации качественных и бесплатных звонков.

IP-телефония – технология, использующая сеть с пакетной коммутацией на базе протокола IP (например, Интернет). Понятие VoIP используется за рубежом. Интернет-телефония – частный случай IP-телефонии, когда в качестве каналов передачи пакетов телефонного трафика используются каналы сети Интернет.

Принципы пакетной передачи речи.

"Классические" телефонные сети основаны на технологии коммутации каналов, которая для каждого телефонного разговора требует выделенного физического соединения. Следовательно, один телефонный разговор представляет собой одно физическое соединение физических каналов. В этом случае аналоговый сигнал шириной 3,1 кГц передаётся на ближайшую АТС, где мультиплексируется по технологии временного разделения с сигналами, которые поступают от других абонентов, подключённых к этой АТС. Далее групповой сигнал передаётся по сети межстанционных каналов. Достигнув АТС назначения, сигнал демультиплексируется и доходит до адресата. Основным недостатком телефонных сетей с коммутацией каналов является неэффективное использование полосы канала – во время пауз в речи канал не несёт никакой полезной нагрузки.

В сетях пакетной коммутации по каналам связи передаются единицы информации (пакеты, кадры, ячейки), которые не зависят от физического носителя, но в любом случае они передаются по разделяемой сети, более того по отдельным виртуальным каналам, не зависящим от физической среды. Каждый пакет идентифицируется заголовком, который может содержать информацию об используемом им канале, его происхождении (адрес источника) и пункте назначения (адрес получателя). Любой терминал и компьютер в сети имеет свой уникальный IP-адрес, и передаваемые пакеты марщрутизируются к получателю в соответствии с его адресом. Данные передаются одновременно между многими пользователями по одной и той же линии. Если возникают какие-то проблемы в сети, на маршруте, то пакеты могут изменять маршрут. При этом протокол IP не требует выделенного канала для сигнализации.

Процесс передачи голоса по IP сети состоит из нескольких этапов. Вначале осуществляется оцифровка голоса. Эти оцифрованные данные анализируются и обрабатываются с целью уменьшения физического объема данных, при этом происходит компрессия данных, подавляются фоновый шум и ненужные паузы. Затем последовательность данных разбивается на пакеты и к ней добавляется протокольная инфомация (адрес получателя, порядковый номер пакета, дополнительные данные для коррекции ошибок).

Когда голосовые пакеты приходят на терминал получателя, в первую очередь, проверяется их порядковая последовательность, т. к. IP сети не гарантируют время доставки и пакеты могут прийти в разное время. Для восстановления исходной последовательности и синхронизации происходит временное накопление пакетов. Если какие-то пакеты потерялись, а передача голоса очень критична ко времени доставки, то включается алгоритм аппроксимации, позволяющий на основе полученных пакетов приблизительно восстановить потерянные, либо игнорировать их. Полученная последо- вательность данных декомпрессируется и преобразуется в аудио-сигнал.

В настоящее время в IP-телефонии существует два основных способа передачи голосовых пакетов по IP сети: через глобальную сеть Интернет (Интернет-телефония); используя сети передачи данных на базе выделенных каналов (IP-телефония).

Уровни архитектуры IP-телефонии.

Архитектура технологии Voice over IP может быть упрощенно представ- лена в виде двух плоскостей. Нижняя плоскость – это базовая сеть с маршрутизацией пакетов IP, верхняя плоскость – это открытая архитектура управления обслуживанием вызовов (запросов связи).

Нижняя плоскость представляет собой комбинацию известных протоколов Интернет: это – RTP, который функционирует поверх протокола UDP, расположенного, в свою очередь, в стеке протоколов TCP/IP над протоколом IP. Таким образом, иерархия RTP/UDP/IP представляет собой своего рода транспортный механизм для речевого трафика.

Верхняя плоскость – управление обслуживанием вызова предусматривает принятие решений о том, куда вызов должен быть направлен, и каким образом должно быть установлено соединение между абонентами. Инструмент такого управления – телефонные системы сигнализации, начиная с систем, поддерживаемых декадно-шаговыми АТС и предусматривающих объединение функций маршрутизации и функций создания коммутируемого разговорного канала в одних и тех же декадно-шаговых искателях. Далее принципы сигнализации эволюционировали к системам сигнализации по выделенным сигнальным каналам, к многочастотной сигнализации, к протоколам общеканальной сигнализации №7 и к передаче функций маршрутизации в соответствующие узлы обработки услуг Интеллектуальной сети.

В сетях с коммутацией пакетов ситуация более сложна. Сеть с маршрутизацией пакетов IP принципиально поддерживает одновременно целый ряд разнообразных протоколов маршрутизации. Такими протоколами на сегодня являются: RIP, IGRP, EIGRP, IS-IS, OSPF, BGP и др. Точно так же и для IP-телефонии разработан целый ряд протоколов. Наиболее распространенным является протокол, специфицированный в рекомендации Н.323 ITU-T, в частности, потому, что он стал применяться раньше других протоколов, которых, к тому же, до внедрения Н.323 вообще не существовало. Другой протокол плоскости управления обслуживанием вызова – SIP – ориентирован на то, чтобы сделать оконечные устройства и шлюзы более интеллектуальными и поддерживать дополнительные услуги для пользователей. Еще один протокол – SGCP – разрабатывался, начиная с 1998 года, для того, чтобы уменьшить стоимость шлюзов за счет реализации функций интеллектуальной обработки вызова в централизованном оборудовании. Протокол IPDC очень похож на SGCP, но имеет много больше, чем SGCP, механизмов эксплуатационного управления (ОАМ&Р). В конце 1998 года рабочая группа MEGACO комитета IETF разработала протокол MGCP, базирующийся, в основном, на протоколе SGCP, но с некоторыми добавлениями в части ОАМ&Р. Рабочая группа MEGACO не остановилась на достигнутом, продолжала совершенствовать протокол управления шлюзами и разработала более функциональный, чем MGCP, протокол MEGACO. Его адаптированный к Н.323 вариант (под названием Gateway Control Protocol) ITU-T предлагает в рекомендации Н.248.

Классификация сетей IP-телефонии. Сеть IP-телефонии представляет собой совокупность оконечного оборудования, каналов связи и узлов коммутации. Сети IP-телефонии строятся по тому же принципу, что и сети Интернет. Однако в отличие от сетей Интернет, к сетям IP-телефонии предъявляются особые требования по обеспечению качества передачи речи. Одним из способов уменьшения времени задержки речевых потоков в узлах коммутации является сокращение количества узлов коммутации, участвующих в соединении. Поэтому при построении крупных транспортных сетей, в первую очередь, организуется магистраль, которая обеспечивает транзит трафика между отдельными участками сети, а оконечное оборудование (шлюзы) включается в ближайший узел коммутации (рисунок 5.1).

Рисунок 5.1 – Пример построения сети с использованием магистрали

В выделенных сетях (рисунок 5.2) связь между оконечными устройствами осуществляется по выделенным каналам, и пропускная способность этих каналов используется только для передачи речевых пакетов. Чаще всего провайдеры IP-телефонии не строят собственную инфраструктуру, а арендуют каналы у провайдеров первичной сети.

Главное преимущество выделенной сети – это высокое качество передачи речи, так как такие сети предназначены только для передачи речевого трафика. Для обеспечения гарантированного качества предоставляемых услуг в этих сетях, кроме протокола IP, применяются и другие транспортные протоколы ATM и Frame Relay.

Рисунок 5.2 – Пример построения сети IP-телефонии

Рассмотрим три наиболее часто используемых сценария IP-телефонии:

– "компьютер – компьютер";

– "компьютер – телефон";

– "телефон – телефон".

Компоненты модели IP-телефонии по сценарию «компьютер-компьютер» показаны на рисунке 5.3.

В этом сценарии аналоговые речевые сигналы от микрофона абонента А преобразуются в цифровую форму с помощью аналого-цифрового преобразователя (АЦП), обычно при 8000 отсчетов/с, 8 битов/отсчет, в итоге – 64 Кбит/с. Отсчеты речевых данных в цифровой форме затем сжимаются кодирующим устройством для сокращения нужной для их передачи полосы в отношении 4:1, 8:1 или 10:1. Выходные данные после сжатия формируются в пакеты, к которым добавляются заголовки протоколов, после чего пакеты передаются через IP-сеть в систему IP-телефонии, обслуживающую абонента Б. Когда пакеты принимаются системой абонента Б, заголовки протокола удаляются, а сжатые речевые данные поступают в устройство, развертывающее их в первоначальную форму, после чего речевые данные снова преобразуются в аналоговую форму с помощью цифро-аналогового преобразователя (ЦАП) и попадают в телефон абонента Б.

Рисунок 5.3 – Сценарий IP-телефонии "компьютер – компьютер"

Для обычного соединения между двумя абонентами системы IP-телефонии на каждом конце одновременно реализуют как функции передачи, так и функции приема. Под IP-сетью, изображенной на рисунке, подразумевается либо глобальная сеть Интернет, либо корпоративная сеть предприятия Intranet.

Следующий сценарий – «телефон – компьютер» – находит применение в разного рода справочно-информационных службах Интернет, в Call-центрах или в службах технической поддержки. Пользователь, подключившийся к cepвepy WWW какой-либо компании, имеет возможность обратиться к оператору справочной службы. Этот сценарий в ближайшие несколько лет будет, по всей вероятности, более активно востребован деловым сектором.

Рассмотрим две модификации этого сценария IP-телефонии:

– от компьютера (пользователя IP-сети) к телефону (абоненту ТфОП), в частности, в связи с предоставлением пользователям IP-сетей доступа к телефонным услугам, в том числе, к справочно-информационным услугам и к услугам Интеллектуальной сети;

– от абонента ТфОП к пользователю IP-сети с идентификацией вызываемой стороны на основе нумерации по Е.164 или IP-адресации.

В первой модификации сценария «компьютер – телефон» предполагается, что установление соединения инициирует пользователь IP-сети. Шлюз для взаимодействия сетей ТфОП и IP может быть реализован в отдельном устройстве или интегрирован в существующее оборудование ТфОП или IP-сети.

В соответствии со второй модификацией сценария «компьютер – телефон» соединение устанавливается между пользователем IP-сети и абонентом ТфОП, но инициирует его создание абонент ТфОП.

Рассмотрим несколько подробнее пример. При попытке вызвать справочно-информационную службу, используя услуги пакетной телефонии и обычный телефон, на начальной фазе абонент А вызывает близлежащий шлюз IP-телефонии. От шлюза к абоненту А поступает запрос ввести номер, к которому должен быть направлен вызов (например, номер службы), и личный идентификационный номер (PIN) для аутентификации и последующего начисления платы, если это служба, вызов которой оплачивается вызывающим абонентом. Основываясь на вызываемом номере, шлюз определяет наиболее доступный путь к данной службе. Кроме того, шлюз активизирует свои функции кодирования и пакетизации речи, устанавливает контакт со службой, ведет мониторинг процесса обслуживания вызова и принимает информацию о состояниях этого процесса (например, занятость, посылка вызова, разъединение и т.п.) от исходящей стороны через протокол управления и сигнализации. Разъединение с любой стороны передается противоположной стороне по протоколу сигнализации и вызывает завершение установленных соединений и освобождение ресурсов шлюза для обслуживания следующего вызова. Для организации соединений от службы к абонентам используется аналогичная процедура.

Эффективность объединения услуг передачи речи и данных является основным стимулом использования IP-телефонии по сценариям «компьютер-компьютер» и «компьютер-телефон», не нанося при этом никакого ущерба интересам операторов традиционных телефонных сетей.

Сценарий «телефон – телефон» в значительной степени отличается от остальных сценариев IP-телефонии своей социальной значимостью, поскольку целью его применения является предоставление обычным абонентам ТфОП альтернативной возможности междугородной и международной телефонной связи. В этом режиме современная технология IP-телефонии предоставляет виртуальную телефонную линию через IP-доступ.

Как правило, обслуживание вызовов по такому сценарию IP-телефонии выглядит следующим образом. Поставщик услуг IP-телефонии подключает свой шлюз к коммутационному узлу или станции ТфОП, а по сети Интернет или по выделенному каналу соединяется с аналогичным шлюзом, находящимся в другом городе или другой стране.

Как показано на рисунке 5.4, поставщики услуг IP-телефонии предоставляют услуги «телефон – телефон» путём установки шлюзов IP-телефонии на входе и выходе IP-сетей. Абоненты подключаются к шлюзу поставщика через ТфОП, набирая специальный номер доступа. Абонент получает доступ к шлюзу, используя персональный идентификационный номер (PIN) или услугу идентификации номера вызывающего абонента (Calling Line Identification). После этого шлюз просит ввести телефонный номер вызываемого абонента, анализирует этот номер и определяет, какой шлюз имеет лучший доступ к нужному телефону. Как только между входным и выходным шлюзами устанавливается контакт, дальнейшее установление соединения к вызываемому абоненту выполняется выходным шлюзом через его местную телефонную сеть.

Рисунок 5.4 – Соединение абонентов ТфОП через транзитную IP-сеть по сценарию "телефон – телефон"

Полная стоимость такой связи будет складываться для пользователя из расценок ТфОП на связь с входным шлюзом, расценок Интернет-провайдера на транспортировку и расценок удалённой ТфОП на связь выходного шлюза с вызванным абонентом.

Основная литература:1, 2, 4.

Дополнительная литература: 15,16

Контрольные вопросы:

1. Что вы понимаете под термином IP-телефония и Интернет-телефония?

2. Каковы принципы пакетной передачи речи?

3. Уровни архитектуры IP-телефонии?

4. В чем заключается классификация сетей IP-телефонии?

5. Какие основные сценарии организации IP-телефонии вы знаете?

На первом этапе осуществляется оцифровка голоса. Затем оцифрованные данные анализируются и обрабатываются с целью уменьшения физического объема данных, передаваемых получателю. Как правило, на этом этапе происходит подавление ненужных пауз и фонового шума, а также компрессирование.

На следующем этапе полученная последовательность данных разбивается на пакеты и к ней добавляется протокольная информация - адрес получателя, порядковый номер пакета на случай, если они будут доставлены не последовательно, и дополнительные данные для коррекции ошибок. При этом происходит временное накопление необходимого количества данных для образования пакета до его непосредственной отправки в сеть.

Операторы сетей с пакетной коммутацией получают преимущества, присущие разделяемой инфраструктуре электросвязи по самой ее природе. Проще говоря, они могут продать больше, чем в действительности имеют, основываясь на статистическом анализе работы сети. Поскольку предполагается, что абоненты не будут круглосуточно и ежедневно задействовать всю оплаченную полосу, можно обслужить больше абонентов, не расширяя магистральную инфраструктуру. Оборот и прибыль при этом увеличиваются.

Иными словами, абонент, оплативший полосу 64 кбит/с, использует канал в среднем лишь на 25%. Следовательно, оператор способен продать имеющийся у него ресурс в четыре раза большему числу пользователей, не перегружая свою сеть. Такой сценарий выгоден обеим сторонам - и клиенту, и продавцу, - поскольку оператор увеличивает свои доходы и уменьшает абонентскую плату за счет снижения издержек. Это выигрышное решение уже признано в мире передачи данных, а теперь начинает использоваться и на рынке телефонии.

Полоса пропускания напрямую зависит от загруженности сети Интернет пакетами, содержащими данные, голос, графику и т.д., а значит, задержки при прохождении пакетов могут быть самыми разными. При использовании выделенных каналов исключительно для голосовых пакетов можно гарантировать фиксированную (или почти фиксированную) скорость передачи. Ввиду широкого распространения сети Интернет особый интерес вызывает реализация системы Интернет-телефонии, хотя следует признать, что в этом качество телефонной связи оператором не гарантируется.

Для того, чтобы осуществить междугородную (международную) связь с помощью телефонных серверов, организация или оператор услуги должны иметь по серверу в тех местах, куда и откуда планируются звонки. Стоимость такой связи на порядок меньше стоимости телефонного звонка по обычным телефонным линиям. Особенно велика эта разница для международных переговоров.

Общий принцип действия телефонных серверов Интернет-телефонии таков: с одной стороны, сервер связан с телефонными линиями и может соединиться с любым телефоном мира. С другой стороны, сервер с Интернетом и может связаться с любым компьютером в мире. Сервер принимает стандартный телефонный сигнал, оцифровывает его (если он исходно не цифровой), значительно сжимает, разбивает на пакеты и отправляет через Интернет по назначению с использованием протокола IP. Для пакетов, приходящих из сети на телефонный сервер и уходящих в телефонную линию, операция происходит в обратном порядке. Обе составляющие операции (вход сигнала в телефонную сеть и его выход из телефонной сети) происходит практически одновременно, что позволяет обеспечить полнодуплексный разговор.

Поскольку оператор представляет некоторый сервис и берет за него деньги, он обязан гарантировать его качество. Даже если клиент согласен (хотя в условиях жесткой конкуренции на рынке телекоммуникаций это маловероятно) время от времени мириться с не очень высоким уровнем качества, он может предъявить претензии в случае серьезных или длительных проблем. Как бы то ни было, оператор вынужден следить за качеством предоставляемых услуг, для чего в случае их масштабного предоставления ему требуется соответствующая аппаратура и программное обеспечение, которое достаточно дорого и имеется не во всех точках сети.

С точки зрения масштабируемости IP-телефония представляется вполне законченным решением. Во-первых, поскольку соединение на базе протокола IP может начинаться (и заканчиваться) в любой точке сети от абонента до магистрали. Соответственно, IP-телефонию в сети можно вводить участок за участком, что, кстати, на руку и с точки зрения миграции. Для решения IP-телефонии характерна определенная модульность: количество и мощность различных узлов - шлюзов, gatekeeper («привратников» - так в терминологии VoIP именуются серверы обработки номерных планов) - можно наращивать практически независимо, в соответствии с текущими потребностями.

Технология VoIP реализует задачи и решения, которые с помощью технологии PSTN реализовать будет труднее, либо дороже.

  • Возможность передавать более одного телефонного звонка в рамках высокоскоростного телефонного подключения. Поэтому технология VoIP используется в качестве простого способа для добавления дополнительной телефонной линии дома или в офисе.
  • Свойства, такие как
  • конференция,
  • переадресация звонка,
  • автоматический перенабор,
  • определение номера звонящего,

предоставляются бесплатно или почти бесплатно, тогда как в традиционных телекоммуникационных компаниях обычно выставляются в счёт.

  • Безопасные звонки, со стандартизованным протоколом (такие как SRTP). Большинство трудностей для включения безопасных телефонных соединений по традиционным телефонным линиям, такие как оцифровка сигнала, передача цифрового сигнала, уже решены в рамках технологии VoIP. Необходимо лишь произвести шифрование сигнала и его идентификацию для существующего потока данных.
  • Независимость от месторасположения. Нужно только интернет-соединение для подключения к провайдеру VoIP. Например, операторы центра звонков с помощью VoIP-телефонов могут работать из любого офиса, где есть в наличии эффективное быстрое и стабильное интернет-подключение.
  • Доступна интеграция с другими через интернет, включая видеозвонок , обмен сообщениями и данными во время разговора, аудиоконференции , управление адресной книгой и получение информации о том, доступны ли для звонка другие абоненты.
  • Дополнительные телефонные свойства - такие как маршрутизация звонка, всплывающие окна, альтернативный GSM -роуминг и внедрение IVR - легче и дешевле внедрить и интегрировать. Тот факт, что телефонный звонок находится в той же самой сети передачи данных, что и персональный компьютер пользователя, открывает путь ко многим новым возможностям.

Дополнительно: возможность подключения прямых номеров в любой стране мира (DID).

Мобильные номера

Кодирование вносит дополнительную задержку порядка 15-45 мс, возникающую по следующим причинам:

  • использование буфера для накопления сигнала и учёта статистики последующих отсчётов (алгоритмическая задержка);
  • математические преобразования, выполняемые над речевым сигналом, требуют процессорного времени (вычислительная задержка).

Подобная задержка появляется и при декодировании речи на другой стороне.

Задержку кодека необходимо учитывать при расчёте сквозных задержек (см. ). Кроме того, сложные алгоритмы кодирования/декодирования требуют более серьёзных затрат вычислительных ресурсов системы.

Проведённый в различных исследовательских группах анализ качества передачи речевых данных через Интернет показывает, что основным источником возникновения искажений, снижения качества и разборчивости синтезированной речи является прерывание потока речевых данных, вызванное:

  • потерями пакетов при передаче по сети связи;
  • превышением допустимого времени доставки пакета с речевыми данными.

Это требует решения задачи оптимизации задержек в сети и создание алгоритмов компрессии речи, устойчивых к потерям пакетов (восстановления потерянных пакетов).

Кодеки

Применяемые алгоритмы сжатия голоса при передаче по IP-сети довольно разнообразны. Некоторые практически не сжимают голос, оставляя его на уровне импульсно-кодовой модуляции (то есть 64 килобит в секунду), другие кодеки позволяют сжимать цифровой голосовой поток в 8 и более раз за счёт эффективных алгоритмов кодирования. Существует немало хороших свободных кодеков, использование которых не требует лицензирования. Для других же требуется достижения соответствующей лицензионной сертификации между производителем оборудования (программного обеспечения) и авторами метода сжатия.

Кодек Скорость передачи,
кбит/с
Алгоритмическая
задержка, миллисекунд
Занимаемый поток, кбит/с
IP-пакеты Ethernet-фреймы
G.711 160 64 20 64,8 80
G.723.1 (6.3) 24 6,3 37,5 6,9 17,1
G.723.1 (5.3) 20 5,3 37,5 5,9 16
G.726-32 160 32 20 32,8 42,7
G.726-24 160 24 20 24,8 34,7
G.726-16 160 16 20 16,8 26,7
G.729 (8) 20 8 25 8,8 18,7
G.729 (6.4) 16 6,4 25 7,2 17,1

Оптимизация задержек в сети

Основными преимуществами IP-телефонии является снижение требований к полосе пропускания, что обеспечивается учётом статистических характеристик речевого трафика:

  • блокировкой передачи пауз (диалоговых, слоговых, смысловых и др.), которые могут составлять до 40-50 % времени занятия канала передачи (VAD);
  • высокой избыточностью речевого сигнала и его сжатием (без потери качества при восстановлении) до уровня 20-40 % исходного сигнала (см. аудиокодек).

В то же время для VoIP критичны задержки пакетов в сети, хотя технология обладает некоей толерантностью (устойчивостью) к потерям отдельных пакетов. Так, потеря до 5 % пакетов не приводит к ухудшению разборчивости речи.

При передаче телефонного трафика по технологии VoIP должны учитываться жёсткие требования стандарта ISO 9000 к качеству услуг, характеризующие:

  1. качество установления соединения, определяемое в основном быстротой установления соединения,
  2. качество соединения, показателем которого являются сквозные (воспринимаемые пользователем) задержки и качество воспринимаемой речи.

Общая приемлемая задержка по стандарту - не более 250 миллисекунд . Причины задержек в передаче голосовых данных по сети IP, в большой степени связаны с особенностями транспорта пакетов. Протокол TCP обеспечивает контроль доставки пакетов, однако достаточно медленный и потому не используется для передачи голоса. UDP быстро отправляет пакеты, однако восстановление потерянных данных не гарантируется, что приводит к потеряным частям разговора при восстановлении (обратном преобразовании) звука. Немалые проблемы приносит джиттер (отклонения в периоде поступления-приёмки пакетов), появляющийся при передаче через большое число узлов в нагруженной IP-сети. Недостаточно высокая пропускная способность сети (например при одновременной нагрузке несколькими пользователями), серьёзно влияет не только на задержки (то есть рост джиттера), но и приводит к большим потерям пакетов

Для решения подобных проблем предлагается комлекс мер :

  • использование алгоритимического восстановления потерянных частей голоса (усреднение по соседним данным)
  • приоритизация трафика во время транспорта в одной сети при помощи пометки IP-пакетов в поле Type of Service
  • использование изменяемого джиттер-буфера необходимой длины, который позволяет накапливать пакеты и выдавать их снова с нормальной периодичностью
  • отключение проксирования медиа-данных на узком месте сети, то есть достижение прямого обмена речью между узлом звонящего и вызываемого абонента при посредничестве промежуточных серверах только на этапе установления и завершения вызова
  • применение кодеков с меньшей алгоритмической задержкой (для уменьшения нагрузки на процессор, осуществляющий АЦП и ЦАП)

Безопасность соединения

Большинство потребителей VoIP-решений ещё не поддерживают криптографическое шифрование, несмотря на то, что наличие безопасного телефонного соединения намного проще внедрить в рамках VoIP-технологии, чем в традиционных телефонных линиях. В результате, при помощи анализатора трафика относительно несложно установить прослушивание VoIP-звонков, а при некоторых ухищрениях даже изменить их содержание.

Тот, кто вторгается с использованием анализатора сетевых пакетов, имеет возможность перехватить VoIP-звонки, если пользователь не находится в рамках защищённой виртуальной сети VPN . Эта уязвимость в безопасности может привести к атакам со сбоями (отказами в обслуживании) у пользователя или у кого-то, чей номер принадлежит той же сети. Эти отказы в обслуживании могут полностью уничтожить телефонную сеть, нагрузив её мусорным трафиком и создав постоянный сигнал «занято» и увеличив количество разъединений абонентов .

Однако данная проблема касается и традиционной телефонии, так как абсолютно защищённых способов связи не существует .

Потребители могут обезопасить свою сеть, ограничив доступ в виртуальную локальную сеть данных, спрятав свою сеть с голосовыми данными от пользователей. Если потребитель поддерживает безопасный и правильно конфигурируемый межсетевой интерфейс-шлюз с контролируемым доступом, это позволит обезопасить себя от большинства хакерских атак. Есть несколько ресурсов с открытым кодом (open source solutions), выполняющих анализ трафика VoIP-разговоров. Невысокий уровень безопасности предоставляется в рамках патентованных аудиокодеков, которые нельзя найти в списках источников с открытым кодом, однако, такая «безопасность через непонятность» не зарекомендовала себя, как эффективное средство в других областях. Некоторые вендоры используют также сжатие, чтобы перехват информации было труднее выполнить. Есть мнение, что настоящая безопасность сети требует проведения полного криптографического шифрования и криптографической аутентификации, которые не доступны широкому потребителю. Однако, по некоторым параметрам IP-телефония выигрывает у традиционной в плане безопасности .

Существующий сейчас стандарт безопасности SRTP и новый ZRTP протокол доступен на некоторых моделях IP-телефонов (Cisco , SNOM), аналоговых телефонных адаптерах (Analog Telephone Adapters, ATAs), шлюзах , а также на различных софтфонах . Можно использовать IPsec , чтобы обеспечить безопасность P2P VoIP с помощью применения альтернативного шифрования (opportunistic encryption). Программа Skype не использует SRTP, но там используется система шифрования, которая прозрачна для Skype-провайдера .

Решение Voice VPN (которое представляет собой сочетание технологии VoIP и Virtual Private Network) предоставляет возможность создания безопасного голосового соединения для VoIP-сетей внутри компании, путем применения IPSec шифрования к оцифрованному потоку голосовых данных.

Так же возможно произвести многоуровневое шифрование и полную анонимизацию всего VoIP трафика (голоса, видео, служебной информации и т. д.) с помощью сети I2P , программу-маршрутизатор для работы с которой можно установить на ПК, смартфон, нетбук, ноутбук и т. д. Эта сеть представляет из себя полностью децентрализованную, анонимную среду передачи данных, где каждый пакет данных подвергается четырёхуровневому шифрованию с использованием различных алгоритмов шифрования с максимальными размерами ключа. Сеть I2P использует туннельную передачу данных, где входящий и исходящий трафик идут через разные туннели, каждый из которых зашифрован разными ключами, при этом туннели периодически перестраиваются с изменением ключей шифрования. Все это приводит к невозможности прослушать и проанализировать проходящий поток третьей стороной. При этом на потоковой передаче туннелирование и шифрование не сказывается, так как используется специально созданная для потоковых служб библиотека, поэтому данные приходят строго в заданном порядке, без потерь и дублированний .

Идентификация звонящего

Поддержка услуги определения номера вызывающего (Caller ID) у разных провайдеров может отличаться, хотя большинство VoIP-провайдеров сейчас предлагают услугу «определение идентификатора звонящего (caller ID)» с именем на исходящие звонки. Когда звонок идёт на номер местной сети от какого-то VoIP-провайдера, услуга определения caller ID не поддерживается .

В некоторых случаях, VoIP-провайдеры могут позволить звонящему имитировать какой-то не принадлежащий ему caller ID, потенциально давая возможность демонстрировать такой ID, который фактически не является номером звонящего. Коммерческое VoIP-оборудование и программное обеспечение обычно легко даёт возможность изменять информацию caller ID. Несмотря на то, что эта услуга может обеспечить огромную свободу действий, она также даёт возможность для злоупотреблений.

Статистика трафика

Любое VoIP соединение имеет целый ряд параметров, общепринятых как точные показатели оценки качества соединения. Кроме того большинство существующих операторов IP-телефонии при оказании услуг позволяют даже выбирать узел через который пройдет звонок не только руководствуясь ценой, но и дополнительным статистическими параметрами, характеризующими качество связи:

  • ASR/ABR - отношение количества обслуженных звонков к числу попыток позвонить в процентах. Характеризует наилучший дозвон.
  • ACD - средняя продолжительность звонков через узел на данное направление; % - процент состоявшихся звонков с длительностью меньше 30 секунд. Характеризует наиболее устойчивую связь во время разговора.

Иногда операторами связи для оценки направления применяются и другие статистические параметры: эрланг , посленаборная задержка (PDD), процент потери пакетов (QoS), максимальное нарастание вызовов в секунду (Calls per seconds, CPS).

Подробную информацию о каждом конкретном вызове станция/сервер IP-телефонии записывает в виде CDR -записей (подробных записей о вызове). Каждая запись содержит номер звонящего (А-номер) и вызываемого (Б-номер), абонентов, IP-адреса (или доменные имена), время и продолжительность вызова, а также инициатора и причину завершения. Подробные записи о вызовах (Call Detail Record), зачастую выгружаются на биллинговую систему для анализа и последующей блокировки учётной записи звонящего, при необходимости авторизации вызовов (RADIUS). Такой метод проверки обычно характерен для postpaid-систем оплаты.

Также применяется онлайн-учёт в биллинге посредством процедуры Accounting в протоколе RADIUS , что удобно в системах prepaid-оплаты.

Примечания

См. также

Ссылки

  • Мониторинг и отладка VoIP-сетей с помощью сетевого анализатора
  • Атака на VoIP: Перехват и Подслушивание
  • «Хронические болезни» VoIP (он-лайн презентация, 16 мин)
Вещание
Доступ
Сервисы