Интерфейс подключения sas. Беспрецедентная совместимость последовательных интерфейсов. Среднее время задержки

В современных компьютерных системах для подключения основных жестких дисков используются интерфейсы SATA и SAS. Как правило, первый вариант устраивает домашние рабочие станции, второй – серверные, поэтому технологии между собой не конкурируют, отвечая разным требованиям. Значительная разница в стоимости и объеме памяти заставляет пользователей задаваться вопросом, чем отличается SAS от SATA, и искать компромиссные варианты. Посмотрим, так ли это целесообразно.

SAS (Serial Attached SCSI) – последовательный интерфейс подключения устройств хранения данных, разработанный на основе параллельного SCSI для исполнения того же набора команд. Используется преимущественно в серверных системах.

SATA (Serial ATA) – последовательный интерфейс обмена данными, базирующийся на основе параллельного PATA (IDE). Применяется в домашних, офисных, мультимедийных ПК и ноутбуках.

Если говорить о HDD, то, несмотря на различающиеся технические характеристики и разъемы, кардинальных расхождений между устройствами нет. Обратная односторонняя совместимость дает возможность подключать к серверной плате диски и по одному, и по второму интерфейсу.

Стоит заметить, что оба варианта подключения реальны и для SSD, но весомое отличие SAS от SATA в этом случае будет в стоимости накопителя: первый может быть дороже в десятки раз при сопоставимом объеме. Поэтому сегодня такое решение если уже и не редкое, то в достаточной мере взвешенное, и предназначено для быстрых центров обработки данных корпоративного уровня.

Сравнение

Как мы уже знаем, SAS находит применение в серверах, SATA – в домашних системах. На практике это означает, что к первым одновременно обращается много пользователей и решается множество задач, со вторыми же имеет дело один человек. Соответственно, серверная нагрузка намного выше, поэтому диски должны быть достаточно отказоустойчивыми и быстрыми. Протоколы SCSI (SSP, SMP, STP), реализованные в SAS, позволяют обрабатывать больше операций ввода/вывода одновременно.

Непосредственно для HDD скорость обращения определяется в первую очередь скоростью вращения шпинделя. Для desktop-систем и ноутбуков необходимо и достаточно 5400 – 7200 RPM. Соответственно, найти SATA-диск с 10000 RPM почти невозможно (разве что посмотреть серию WD VelociRaptor, предназначенную, опять же, для рабочих станций), а все, что выше, – абсолютно недостижимо. SAS HDD раскручивает минимум 7200 RPM, стандартом можно считать 10000 RPM, а достаточным максимумом – 15000 RPM.

Считается, что диски с последовательным SCSI надежнее, у них выше показатели наработки на отказ. На практике стабильность достигается больше за счет функции проверки контрольных сумм. Накопители SATA же страдают от «тихих ошибок», когда данные записываются частично либо повреждены, что приводит к появлению bad-секторов.

На отказоустойчивость системы работает и главное достоинство SAS – два дуплексных порта, позволяющих подключить одно устройство по двум каналам. Обмен информацией в этом случае будет вестись одновременно в обоих направлениях, а надежность обеспечивается технологией Multipath I/O (два контроллера страхуют друг друга и разделяют нагрузку). Очередь помеченных команд выстраивается глубиной до 256. У большинства дисков SATA один полудуплексный порт, а глубина очереди по технологии NCQ – не более 32.

Интерфейс SAS предполагает использование кабелей длиной до 10 м. К одному порту через расширители можно подключить до 255 устройств. SATA ограничивается 1 м (2 м для eSATA), и поддерживает подключение только одного устройства по типу «точка – точка».

Перспективы дальнейшего развития – то, в чем разница между SAS и SATA тоже ощущается достаточно остро. Пропускная способность интерфейса SAS достигает 12 Гбит/с, а производители анонсируют поддержку скорости обмена данными 24 Гбит/с. Последняя ревизия SATA остановилась на 6 Гбит/с и эволюционировать в этом отношении не будет.

Накопители SATA в пересчете на стоимость 1 Гб обладают очень привлекательным ценником. В системах, где скорость доступа к данным не имеет решающего значения, а объем хранимой информации велик, целесообразно использовать именно их.

Таблица

SAS SATA
Для серверных систем Преимущественно для настольных и мобильных систем
Использует набор команд SCSI Использует набор команд ATA
Минимальная скорость вращения шпинделя HDD 7200 RPM, максимальная – 15000 RPM Минимум 5400 RPM, максимум 7200 RPM
Поддерживается технология проверки контрольных сумм при записи данных Большой процент ошибок и bad-секторов
Два дуплексных порта Один полудуплексный порт
Поддерживается Multipath I/O Подключение по типу «точка – точка»
Очередь команд до 256 Очередь команд до 32
Можно использовать кабели до 10 м Длина кабелей не более 1 м
Пропускная способность шины до 12 Гбит/с (в перспективе – 24 Гбит/с) Пропускная способность 6 Гбит/с (SATA III)
Стоимость накопителей выше, иногда значительно Дешевле в пересчете на цену за 1 Гб

Интерфейс SAS.

Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA , устройств, управляемых набором команд SCSI . Обладая обратной совместимостью с SATA , он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.

Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).

Рис. 1.

Некоторые команды сопровождаются дополнительно "блоком параметров", который следует за блоком дескриптора команды, но передается уже как "данные".

Типичная система с интерфейсом SAS состоит из следующих компонентов:

1) Инициаторы. Инициатор - это устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов.

2) Целевые устройства . Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом.

3) Подсистема доставки данных . Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS.

3.1) Расширители. Расширители SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS, например, позволяет соединить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

SAS поддерживает подключение устройств с интерфейсом SATA. SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий. SAS использует команды SCSI для управления и обмена данными с целевыми устройствами. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом. В отличии от SCSI, SAS не нуждается в терминации шины пользователем. Интерфейс SCSI использует общую шину - все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. В SCSI скорость передачи информации по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка. SAS поддерживает очень большое количество устройств, в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине. SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с). Такая скорость может быть достигнута при передаче информации на каждом соединении, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.

SATA использует набор команд ATA и поддерживает жёсткие диски и накопители на оптических дисках, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры и принтеры. SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN идентификаторами (World Wide Name). Устройства SATA (версии 1) не поддерживали очередей команд, в то время как устройства SAS поддерживают теггированные очереди команд. Устройства SATA с версии 2 поддерживают Native Command Queuing (NCQ).

Аппаратура SAS поддерживает связь с целевыми устройствами по нескольким независимым линиям , что повышает отказоустойчивость системы (интерфейс SATA такой возможности не имеет). В то же время, интерфейс SATA версии 2 использует дубликаторы портов для достижения аналогичной возможности.

SATA преимущественно используется в некритических приложениях, например в домашних компьютерах. Интерфейс SAS, благодаря своей надёжности, может быть использован в критически важных серверах. Выявление ошибок и обработка ошибочных ситуаций определено в SAS гораздо лучше чем в SATA. SAS считают надмножеством SATA, и не конкурирует с ним.

Разъёмы SAS гораздо меньше разъёмов традиционного параллельного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей типоразмером 2,5 дюйма. SAS поддерживает передачу информации со скоростью от 3 Гбит/с до 10 Гбит/с. Существует несколько вариантов разъёмов SAS:

SFF 8482 - вариант, совместимый с разъёмом интерфейса SATA;

SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств; позволяет подключить до 4 устройств;

SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств; поддерживает скорость 10 Гбит/с;

SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств; поддерживает скорость 10 Гбит/с.

Разъём SFF 8482 позволяет подключать устройства SATA к контроллерам SAS, что избавляет от необходимости устанавливать дополнительный контроллер SATA только потому, что необходимо, к примеру, подключить устройство для записи дисков DVD. Наоборот, устройства SAS не могут подключаться к интерфейсу SATA, и на них устанавливается разъём, предотвращающий их подключение к интерфейсу SATA.

На протяжении более 20 лет параллельный шинный интерфейс был самым распространенным протоколом обмена данных для большинства систем хранения цифровых данных. Но с ростом потребности в пропускной способности и гибкости систем стали очевидными недостатки двух самых распространенных технологий параллельного интерфейса: SCSI и ATA. Отсутствие совместимости между параллельными интерфейсами SCSI и ATA - разные разъемы, кабели и используемые наборы команд - повышает стоимость содержания систем, научных исследований и разработок, обучения и квалификации новых продуктов.

На сегодняшний день параллельные технологии пока еще устраивают пользователей современных корпоративных систем с точки зрения производительности, но растущие потребности в более высоких скоростях, более высокой сохранности данных при передаче, уменьшении физических размеров, а также в более широкой стандартизации ставят под сомнение способность параллельного интерфейса без излишних затрат поспевать за быстро растущей производительностью ЦПУ и скоростью накопителей на жестких дисках. Кроме того, в условиях жесткой экономии, предприятиям становится все труднее изыскивать средства на разработку и содержание разнотипных разъемов задних панелей серверных корпусов и внешних дисковых массивов, проверку на совместимость разнородных интерфейсов и инвентаризацию разнородных соединений для выполнения операций «ввод/вывод».

Использование параллельных интерфейсов также связано с рядом других проблем. Параллельная передача данных по широкому шлейфовому кабелю подвержена перекрестным наводкам, которые могут создавать дополнительные помехи и приводить к ошибкам сигнала - чтобы не угодить в эту ловушку, приходится снижать скорость сигнала или ограничивать длину кабеля, или делать и то, и другое. Терминация параллельных сигналов также связана с определенными трудностями - приходится завершать каждую линию в отдельности, обычно эту операцию выполняет последний накопитель, чтобы не допустить отражения сигнала в конце кабеля. Наконец, большие кабели и разъемы, применяемые в параллельных интерфейсах, делают эти технологии малопригодными для новых компактных вычислительных систем.

Представляем SAS и SATA

Последовательные технологии, такие как Serial ATA (SATA) и Serial Attached SCSI (SAS), позволяют преодолеть архитектурные ограничения, присущие традиционным параллельным интерфейсам. Свое название эти новые технологии получили от способа передачи сигнала, когда вся информация передается последовательно (англ. serial), единым потоком, в отличие от множественных потоков, которые используются в параллельных технологиях. Главное преимущество последовательного интерфейса заключается в том, что, когда данные передаются единым потоком, они движутся гораздо быстрее, чем при использовании параллельного интерфейса.

Последовательные технологии объединяют многие биты данных в пакеты и затем передают их по кабелю со скоростью, в 30 раз превышающей скорость параллельных интерфейсов.

SATA расширяет возможности традиционной технологии ATA, обеспечивая передачу данных между дисковыми накопителями со скоростью 1,5 Гбайт в секунду и выше. Благодаря низкой стоимости в пересчете на гигабайт емкости диска SATA будет оставаться господствующим дисковым интерфейсом в настольных ПК, серверах начального уровня и сетевых системах хранения информации, где стоимость является одним из главных соображений.

Технология SAS, преемница параллельного интерфейса SCSI, опирается на проверенную временем высокую функциональность своего предшественника и обещает значительно расширить возможности современных систем хранения данных масштаба предприятия. SAS обладает целым рядом преимуществ, не доступных традиционным решениям в области хранения данных. В частности, SAS позволяет подключать к одному порту до 16 256 устройств и обеспечивает надёжное последовательное соединение «точка-точка» со скоростью до 3 Гб/с.

Кроме того, благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel). Это очень полезная функция в тех случаях, когда требуется разместить большое количество избыточных накопителей в компактной системе, например, в низкопрофильном блэйд-сервере.

SAS улучшает адресацию и подключение накопителей благодаря аппаратным расширителям, которые позволяют подключить большое количество накопителей к одному или нескольким хост контроллерам. Каждый расширитель обеспечивает подключение до 128 физических устройств, каковыми могут являться другие хост контроллеры, другие SAS расширители или дисковые накопители. Подобная схема хорошо масштабируется и позволяет создавать топологии масштаба предприятия, с лёгкостью поддерживающие многоузловую кластеризацию для автоматического восстановления системы в случае сбоя и для равномерного распределения нагрузки.

Одно из важнейших преимуществ новой последовательной технологии заключается в том, что интерфейс SAS будет также совместим с более экономичными накопителями SATA, что позволит проектировщикам систем использовать в одной системе накопители обоих типов, не тратя дополнительные средства на поддержку двух разных интерфейсов. Таким образом интерфейс SAS, представляя собой следующее поколение технологии SCSI, позволяет преодолеть существующие ограничения параллельных технологий в том, что касается производительности, масштабируемости и доступности данных.

Несколько уровней совместимости

Физическая совместимость

Разъем SAS является универсальным и по форм-фактору совместим с SATA. Это позволяет напрямую подключать к системе SAS как накопители SAS, так и накопители SATA и таким образом использовать систему либо для жизненно важных приложений, требующих высокой производительности и оперативного доступа к данным, либо для более экономичных приложений с более низкой стоимостью в пересчете на гигабайт.

Набор команд SATA является подмножеством набора команд SAS, что обеспечивает совместимость устройств SATA и контроллеров SAS. Однако SAS накопители не могут работать с контроллером SATA, поэтому они снабжены специальными ключами на разъёмах, чтобы исключить вероятность неверного подключения.

Кроме того, сходные физические параметры интерфейсов SAS и SATA позволяют использовать новую универсальную заднюю панель SAS, которая обеспечивает подключение как накопителей SAS, так и накопителей SATA. В результате отпадает необходимость в использовании двух разных задних панелей для накопителей SCSI и ATA. Подобная конструктивная совместимость выгодна как производителям задних панелей, так и конечным пользователям, ведь при этом снижаются затраты на оборудование и проектирование.

Совместимость на уровне протоколов

Технология SAS включает в себя три типа протоколов, каждый из которых используется для передачи данных разных типов по последовательному интерфейсу в зависимости от того, к какому устройству осуществляется доступ. Первый - это последовательный SCSI протокол (Serial SCSI Protocol SSP), передающий команды SCSI, второй - управляющий протокол SCSI (SCSI Management Protocol SMP), передающий управляющую информацию на расширители. Третий - туннельный протокол SATA (SATA Tunneled Protocol STP), устанавливает соединение, которое позволяет передавать команды SATA. Благодаря использованию этих трех протоколов интерфейс SAS полностью совместим с уже существующими SCSI приложениями, управляющим ПО и устройствами SATA.

Такая мультипротокольная архитектура, в сочетании с физической совместимостью разъемов SAS и SATA, делает технологию SAS универсальным связующим звеном между устройствами SAS и SATA.

Выгоды совместимости

Совместимость SAS и SATA дает целый ряд преимуществ проектировщикам систем, сборщикам и конечным пользователям.

Проектировщики систем могут благодаря совместимости SAS и SATA использовать одни и те же задние панели, разъемы и кабельные соединения. Модернизация системы с переходом от SATA к SAS фактически сводится замене дисковых накопителей. Напротив, для пользователей традиционных параллельных интерфейсов переход от ATA к SCSI означает замену задних панелей, разъемов, кабелей и накопителей. К числу других экономичных преимуществ совместимости последовательных технологий следует отнести упрощенную процедуру сертификации и управление материальной частью.

VAR реселлеры и сборщики систем получают возможность легко и быстро изменять конфигурацию заказных систем, просто устанавливая в систему соответствующий дисковый накопитель. Отпадает необходимость работать с несовместимыми технологиями и использовать специальные разъемы и разные кабельные соединения. Более того, дополнительная гибкость в том, что касается выбора оптимального соотношения цены и производительности, позволит VAR реселлерам и сборщикам систем лучше дифференцировать свои продукты.

Для конечных пользователей совместимость SATA и SAS означает новый уровень гибкости в том, что касается выбора оптимального соотношения цены и производительности. Накопители SATA станут наилучшим решением для недорогих серверов и систем хранения данных, в то время как накопители SAS обеспечат максимальную производительность, надежность и совместимость с управляющим ПО. Возможность модернизации с переходом от накопителей SATA к накопителям SAS без необходимости приобретать для этого новую систему значительно упрощает процесс принятия решения о покупке, защищает инвестиции в систему и снижает общую стоимость владения.

Совместная разработка протоколов SAS и SATA

20 января 2003 года Ассоциация производителей SCSI Trade Association (STA) и Рабочая группа Serial ATA (SATA) II Working Group объявили о сотрудничестве в целях обеспечения совместимости технологии SAS с дисковыми накопителями SATA на системном уровне.

Сотрудничество этих двух организаций, а также совместные усилия поставщиков систем хранения данных и комитетов по стандартам направлены на выработку еще более точных директив в области совместимости, что поможет проектировщикам систем, ИТ специалистам и конечным пользователям осуществлять еще более тонкую настройку своих систем с целью достижения оптимальной производительности и надёжности и снижения общей стоимости владения.

Спецификация SATA 1.0 была утверждена в 2001 году, и сегодня на рынке представлены продукты SATA от различных производителей. Спецификация SAS 1.0 была утверждена в начале 2003 года, а первые продукты должны появиться на рынке в первой половине 2004 года.

Второй интерфейс внешней памяти – SCSI (Small Computer System Interface – системный интерфейс малых компьютеров) был разработан и принят ANSI в 1986 г. (он получил позднее название SCSI-1). Скорость передачи данных при использовании этого 8-разрядного параллельного интерфейса составляла (при тактовой частоте шины 5 МГц) 4 Мбайта/с в асинхронном режиме и 5 Мбайт/с в синхронном режиме. В отличие от интерфейса IDE/ATA, к интерфейсу SCSI можно подключать не только внутренние, но и внешние устройства: принтеры, сканеры и т.д. Максимальное количество подключаемых к шине SCSI устройств было равно 8, а максимальная длина кабеля – 6 м.

Разработкой стандартов и поддержкой интерфейса SCSI занимается комитет T10 INCITS, т.е. той же организации, которая разрабатывает стандарты IDE (ATA). В 1996 г. для продвижения стандарта SCSI была создана Торговая ассоциация SCSI – STA (SCSI Trade Association). В эту ассоциацию входят около тридцати фирм-производителей компьютерной техники.

В следующих стандартах SCSI – SCSI-2 (1994 г.) и SCSI-3 (1995 г.) введен общий набор команд CCS (Common Command Set) – 18 базовых команд, необходимых для поддержки любого устройства SCSI, добавлена возможность хранения в устройстве очередей команд, полученных с компьютера и их обработка в соответствии с заданными приоритетами. Кроме этого, в этих стандартах, наряду с 8-разрядной, определена и 16-разрядная шина, тактовая частота увеличена до 20 МГц и скорость передачи данных – до 20 Мбайт/с.

Развитием стандарта SCSI-3 являются используемые в настоящее время стандарты Ultra3 SCSI (1999 г.), для которого определена частота шины 40 МГц и скорость передачи 160 Мбайт/с и Ultra320 SCSI (2002 г.) – частота шины 80 МГц и скорость передачи 320 Мбайт/с.

Обмен данными по этим стандартам реализуется с помощью метода LDVS (так же, как в шине PCI Express). Максимальное количество подключаемых устройств для Ultra3 SCSI и Ultra320 SCSI равно 16, а максимальная длина кабеля – 12 м.

Разработан также стандарт Ultra640 SCSI (2003 г.) с частотой шины 160 МГц и со скоростью 640 Мбайт/с, но этот стандарт не получил широкого распространения, в связи с тем, что из-за малой длины кабеля к нему нельзя подключить более двух устройств.

Связь между устройством SCSI и шиной ввода/вывода выполняется с помощью специального адаптера (контроллера) SCSI, вставляемого в разъем PCI, или встроенного в материнскую плату. Кроме адаптера SCSI (рис. 1.3.8а), называемого хост-адаптером (host adapter) каждое устройство имеет свой встроенный адаптер, который позволяет ему взаимодействовать с шиной SCSI. Если устройство – последнее в цепочке устройств шины SCSI, после него подключается специальное устройство – терминатор (terminator) для того чтобы исключить отражение сигналов, передающихся по шине (рис. 1.3.8б).


В Ultra3 SCSI и Ultra320 SCSI используются два типа разъемов: 68-контактный (рис. 1.3.8в) и 80-контактный (рис. 1.3.8г). Второй тип разъема, помимо линий передачи данных и команд, содержит также линии электропитания устройств и обеспечивает возможность «горячего» подключения устройства к компьютеру.

Рис. 1.3.8. Устройства SCSI: а) адаптер SCSI: 1 – разъемы для подключения внешних устройств; 2 – разъем для подключения внутреннего устройства; 3 – контроллер SCSI;

б) шина SCSI: 1 – разъем для подключения адаптера; 2 – разъемы для подключения устройств; 3 – терминатор; в) 68-контактный разъем SCSI; г) 80-контактный разъем SCSI

Данные при использовании SCSI передаются параллельно, так же, как и в IDE (ATA). По тем же причинам, что и в IDE (ATA), была начата разработка последовательно подключаемого SCSI – SAS (Serial Attached SCSI). Интерфейс SAS является совместимым с интерфейсом SATA и в тоже время использует команды SCSI, возможность «горячего» подключения внешних устройств, а также возможность подключения, помимо жестких и оптических дисководов, других периферийных устройств, например, принтера или сканера. В настоящее время интерфейс SAS постепенно заменяет интерфейс SCSI в компьютерах и периферийных устройствах.

Первая спецификация SAS – SAS 1.0 была выпущена Комитетом T10 в 2003 году. В ней была определена скорости передачи данных 1,5 и 3 Гбита/с для подключения устройств внутри системного блока компьютера с максимальной длиной кабеля 1 м и внешнего подключения устройств с максимальной длиной кабеля 8 м.

В 2005 году была выпущена спецификация SAS 1.1, в которой были исправлены ошибки спецификации SAS 1.0.

В спецификации SAS 2.0 (2009 г.) добавлена скорость 6 Гбит/с и максимальная длина кабеля увеличена до 10 м.

Обмен данными в SAS, так же, как и в SCSI, реализуется с помощью метода LDVS.

Две дифференциальные сигнальные пары (приемная и передающая) образуют в SAS физический канал. Один или несколько физических каналов, в свою очередь, образуют порт. Количество физических каналов в порту обозначается с помощью цифры, за которой следует символ «x». Так, обозначение 4x означает, что порт содержит 4 канала (8 сигнальных пар). Каждый порт имеет уникальный 64-битовый адрес, присваиваемый производителем оборудования SAS. Устройство с интерфейсом SAS может иметь один или несколько портов. Порт, имеющий только один канал, называется узким портом (narrow port), а порт, имеющий два и более каналов, называется широким портом (wide port).

Так два порта со скоростью по 3 Гбит/с можно использовать либо как два отдельных каналов связи с разными устройствами, либо как единый канал связи со скоростью 6 Гбит/с. Кроме того, в спецификации SAS 2.0 добавлена возможность разбиения порта со скоростью 6 Гбит/с на два канала со скоростью по 3 Гбит/с.

При подключении устройств в SAS используются разъемы, стандартизированные Комитетом по малым форм-факторам – Small Form Factor (SFF) Committee. Этот комитет разрабатывает и готовит спецификации по разъемам, используемым в различных устройствах. Каждый разъем идентифицируется префиксом «SFF-», за которым следует четырехзначный номер разъема, начинающийся с цифры 8.

Основными разъемами, используемыми в SATA являются:

· разъем SFF-8482 для подключения внутреннего устройства (рис. 1.3.9а);

· разъем SFF-8484 – разъем 4x для подключения внутренних устройств (рис. 1.3.9б);

· разъем SFF-8087 – разъем 4x (miniSAS) для подключения внутренних устройств (рис. 1.3.9в);

· разъем SFF-8470 – разъем 4x для подключения внешних устройств (рис. 1.3.9г);

· разъем SFF-8088 – разъем 4x (miniSAS) для подключения внешних устройств (рис. 1.3.9д).

Интерфейс SAS поддерживает набор команд, совместимый с набором команд SATA, поэтому к расширителю SAS можно подключать устройства SATA (для этого обычно используется разъем SFF-8482).

Наиболее распространенный кабель для подключения внешних устройств SAS с разъемами SFF-8088 на концах кабеля приведен на рис. 1.3.9е. Для подключения внешних устройств по интерфейсу eSATA можно использовать кабель, на одном конце которого разъем SFF-8088, а на другом – 4 разъема eSATA (рис. 1.3.9ж).

Рис. 1.3.9. Разъемы SAS: а) 29-контактный штекер разъема SAS для внутреннего устройства (SFF-8482) б) 32-контактный 4x штекер разъема SAS для подключения внутренних устройств (SFF-8484); в) 26-контактный 4x штекер разъема mini-SAS для внутренних устройств (SFF-8087); г) 26-контактный 4x штекер разъема SAS для внешнего устройства (SFF-8470); д) 26-контакный 4x штекер разъема mini-SAS для внешнего устройства (SFF-8088); е) кабель SFF-8088 – SFF-8088; ж) кабель SFF-8088 – 4 eSATA

Система с интерфейсом SAS состоит из следующих компонент:

· инициатор (Initiator) – порождает запросы на обслуживание для целевых устройств и получает подтверждения об исполнении запросов (реализуется в виде микросхемы на материнской плате или на карте, подключенной к шине материнской платы);

· целевое устройство (Target Device) – содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса (может быть как отдельным жёстким диском, так и целым набором дисков).

· подсистема доставки данных (Service Delivery Subsystem) – осуществляет передачу данных между инициаторами и целевыми устройствами (состоит из кабелей и расширителей SAS).

· расширитель SAS (SAS Expander) – подключает несколько устройств SAS к одному порту инициатора.

В настольных компьютерах расширитель SAS выполняется в виде карты, которая подключается к шине PCI Express, и содержит контроллер SAS, выполняющий функции инициатора, а также один или несколько внутренних и/или внешних гнезд разъемов SAS, к которым подключаются устройства с интерфейсом SAS или SATA (eSATA) (рис. ?????а и рис. ?????б).

Дисководы SAS (eSATA) могут быть помещены в корпус (рис. ?????в). Такое устройство называется дисковым массивом. Помимо дисководов, дисковый массив содержит встроенную плату расширителя SAS (рис. ?????г), разъем электропитания, а также гнездо для подключения к управляющему компьютеру (входного гнезда) и 1 или 2 гнезда для подключения к другим компьютером (входные гнезда). Наличие этих гнезд позволяет нескольким компьютером совместно использовать данные на дисководах дискового массива.

Пример подключения дисководов eSATA к компьютеру с использованием кабеля, изображенного на рис. 1.3.9ж, и компьютеров к дисковому массиву с использованием кабеля, изображенного на рис. 1.3.9е, приведен на рис. рис. ?????д.

Рис. ??????. Средства SAS: а) карта для подключения двух внутренних устройств:

1 – контроллер (инициатор) SAS; 2 – гнезда SF-8087; б) карта для подключения двух внешних устройств: 2 – гнезда SF-8088; 1 – контроллер (инициатор) SAS; в) дисковый массив на 15 дисководов SAS (eSATA); г) расширитель SAS дискового массива;

д) пример использования SAS для подключения внешних дисководов: 1 – дисководы eSATA; 2 – дисковый массив, подключенный к двум компьютерам

Аппаратная реализация SAS, как и ранее SCSI, на компьютере обходится дороже, чем реализация ATA и SATA (eSATA). Это связано, во-первых, с тем, что контроллер ATA и SATA, как правило, встроен в материнскую плату, а материнские платы для настольных компьютеров с встроенным интерфейсом SCSI и SAS практически не выпускаются, поэтому необходимо приобретение карты контроллера SCSI или SAS. Во-вторых, устройства с интерфейсом SAS имеют большие возможности, чем устройства ATA и SATA (eSATA). Например, дисководы SAS могут быть двухпортовыми, т.е. их можно либо подключить к двум компьютерам, либо выполнять обмен данными с компьютером на вдвое болей скорости по сравнению с использованием одного порта. Однако это приводит к более высокой стоимости дисководов SAS.

Поэтому основной областью применения SAS, как и SCSI, являются мощные компьютеры (сервера) с повышенными требованиями к скорости обмена, надежности и безопасности данных.

За счет использования расширителей, подсистема доставки данных SAS предлагает больше возможностей, чем система SATA (eSATA). Кроме того, в этой подсистеме можно использовать и более дешевые устройства SATA (eSATA).

Отдельная система, состоящая из связанных между собой компьютеров, периферийных устройств, расширителей SAS и кабелей SAS, SATA и eSATA, называется доменом. Максимальное количество расширителей и устройств в домене равно 16256. Система SAS может состоять из нескольких доменов, причем отдельные инициаторы и устройства могут входить в два соседних домена.

В домене могут использоваться два типа расширителей: расширитель-коммутатор и оконечный расширитель.

Расширитель-коммутатор (fanout expander) (рис. ?????а) выполняет в домене SAS маршрутизацию потоков данных от инициаторов к целевым устройствам домена. В домене должен быть только один расширитель-коммутатор.

Оконечный расширитель (edge expander) (рис. ?????б) подключается либо к расширителю-коммутатору, либо к другому оконечному расширителю и используется для маршрутизации потоков данных подключенных к нему устройств и расширителей. Максимальное количество обслуживаемых оконечным расширителем устройств равно 128.

Устройства могут подключаться как к расширителю-коммутатору, так и к оконечному расширителю. Если в домене не задействован расширитель-коммутатор, то количество оконечных расширителей должно быть не более 2.

При включении электропитания все устройства системы SAS обмениваются друг с другом своими адресами, и система переходит в активное состояние, при котором выполняется обмен командами, пакетами данных и управляющими сообщениями. Добавление в систему нового устройства («горячее» подключение) или отключение устройства приводит к генерации управляющего сообщения, при получении которого все расширители перестраивают свою схему маршрутизации и оповещают инициаторы об изменении конфигурации системы.

Пример конфигурации доменов SAS приведен на рис. рис. ?????в.

Рис. ?????. Использование SAS в серверах: а) 12-портовый расширитель-коммутатор с гнездами SFF-8470 (вид спереди и сзади); б) 12-портовый оконечный расширитель с гнездами SFF-8470 (вид спереди и сзади); в) пример доменов SAS:

1 – серверы-инициаторы с картами расширения SAS; 2 - оконечные расширители SAS;

3 – однопортовые дисководы с интерфейсом SAS; 4 – расширитель-коммутатор SAS;

5 – дисководы с интерфейсом eSATA; 6 – двухпортовые дисководы с интерфейсом SAS;

7 – дисковый массив с встроенным расширителем SAS

В современных компьютерных системах для подключения основных жестких дисков используются интерфейсы SATA и SAS. Как правило, первый вариант устраивает домашние рабочие станции, второй – серверные, поэтому технологии между собой не конкурируют, отвечая разным требованиям. Значительная разница в стоимости и объеме памяти заставляет пользователей задаваться вопросом, чем отличается SAS от SATA, и искать компромиссные варианты. Посмотрим, так ли это целесообразно.

SAS (Serial Attached SCSI) – последовательный интерфейс подключения устройств хранения данных, разработанный на основе параллельного SCSI для исполнения того же набора команд. Используется преимущественно в серверных системах.

SATA (Serial ATA) – последовательный интерфейс обмена данными, базирующийся на основе параллельного PATA (IDE). Применяется в домашних, офисных, мультимедийных ПК и ноутбуках.

Если говорить о HDD, то, несмотря на различающиеся технические характеристики и разъемы, кардинальных расхождений между устройствами нет. Обратная односторонняя совместимость дает возможность подключать к серверной плате диски и по одному, и по второму интерфейсу.

Стоит заметить, что оба варианта подключения реальны и для SSD, но весомое отличие SAS от SATA в этом случае будет в стоимости накопителя: первый может быть дороже в десятки раз при сопоставимом объеме. Поэтому сегодня такое решение если уже и не редкое, то в достаточной мере взвешенное, и предназначено для быстрых центров обработки данных корпоративного уровня.

Разница между SAS и SATA

Как мы уже знаем, SAS находит применение в серверах, SATA – в домашних системах. На практике это означает, что к первым одновременно обращается много пользователей и решается множество задач, со вторыми же имеет дело один человек. Соответственно, серверная нагрузка намного выше, поэтому диски должны быть достаточно отказоустойчивыми и быстрыми. Протоколы SCSI (SSP, SMP, STP), реализованные в SAS, позволяют обрабатывать больше операций ввода/вывода одновременно.

Непосредственно для HDD скорость обращения определяется в первую очередь скоростью вращения шпинделя. Для desktop-систем и ноутбуков необходимо и достаточно 5400 – 7200 RPM. Соответственно, найти SATA-диск с 10000 RPM почти невозможно (разве что посмотреть серию WD VelociRaptor, предназначенную, опять же, для рабочих станций), а все, что выше, – абсолютно недостижимо. SAS HDD раскручивает минимум 7200 RPM, стандартом можно считать 10000 RPM, а достаточным максимумом – 15000 RPM.

Считается, что диски с последовательным SCSI надежнее, у них выше показатели наработки на отказ. На практике стабильность достигается больше за счет функции проверки контрольных сумм. Накопители SATA же страдают от «тихих ошибок», когда данные записываются частично либо повреждены, что приводит к появлению .

На отказоустойчивость системы работает и главное достоинство SAS – два дуплексных порта, позволяющих подключить одно устройство по двум каналам. Обмен информацией в этом случае будет вестись одновременно в обоих направлениях, а надежность обеспечивается технологией Multipath I/O (два контроллера страхуют друг друга и разделяют нагрузку). Очередь помеченных команд выстраивается глубиной до 256. У большинства дисков SATA один полудуплексный порт, а глубина очереди по технологии NCQ – не более 32.

Интерфейс SAS предполагает использование кабелей длиной до 10 м. К одному порту через расширители можно подключить до 255 устройств. SATA ограничивается 1 м (2 м для eSATA), и поддерживает подключение только одного устройства по типу «точка – точка».

Перспективы дальнейшего развития – то, в чем разница между SAS и SATA тоже ощущается достаточно остро. Пропускная способность интерфейса SAS достигает 12 Гбит/с, а производители анонсируют поддержку скорости обмена данными 24 Гбит/с. Последняя ревизия SATA остановилась на 6 Гбит/с и эволюционировать в этом отношении не будет.

Накопители SATA в пересчете на стоимость 1 Гб обладают очень привлекательным ценником. В системах, где скорость доступа к данным не имеет решающего значения, а объем хранимой информации велик, целесообразно использовать именно их.

Сравнительная таблица

SAS SATA
Для серверных систем Преимущественно для настольных и мобильных систем
Использует набор команд SCSI Использует набор команд ATA
Минимальная скорость вращения шпинделя HDD 7200 RPM, максимальная – 15000 RPM Минимум 5400 RPM, максимум 7200 RPM
Поддерживается технология проверки контрольных сумм при записи данных Большой процент ошибок и bad-секторов
Два дуплексных порта Один полудуплексный порт
Поддерживается Multipath I/O Подключение по типу «точка – точка»
Очередь команд до 256 Очередь команд до 32
Можно использовать кабели до 10 м Длина кабелей не более 1 м
Пропускная способность шины до 12 Гбит/с (в перспективе – 24 Гбит/с) Пропускная способность 6 Гбит/с (SATA III)
Стоимость накопителей выше, иногда значительно Дешевле в пересчете на цену за 1 Гб

Звоните или прямо на сайте! Наши специалисты с удовольствием помогут Вам!