Как выбрать оптимальный режим работы умножителя частоты. Умножитель частоты с фапч. Назначение, принцип действия и основные параметры

ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ

Коммуникация, связь, радиоэлектроника и цифровые приборы

ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ 17. Транзисторный умножитель частоты 17. Диодные умножители частоты 17. Назначение принцип действия и основные параметры Умножители частоты в структурной схеме радиопередатчика см.

Лекция 1 7 . ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ

1 7 .2. Транзисторный умножитель частоты

1 7 . 4 . Контрольные вопросы

17.1. Назначение, принцип действия и основные параметры

Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:

(17.1)

где п — коэффициент умножения частоты в целое число раз.

Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1, б ).

Рис. 17.1. Умножители частоты.

По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.

Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n ; выходная мощность n -й гармоники Р n , входная мощность 1-й гармоники Р 1 , коэффициент преобразования К пр = Р n / Р 1 ; коэффициент полезного действия  = Р n / Р 0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.

Недостаток умножителей частоты (рис. 17.1, а ) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования К пр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.

17.2. Транзисторный умножитель частоты

Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.

Необходимо только выходную цепь генератора настроить на n -ю гармонику и выбрать значение угла отсечки  =120  / n , соответствующее максимальному значению коэффициента  n ( ). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике  1 ( ) следует заменить на коэффициент по n -й гармонике  n ( ). Контур в выходной цепи, настроенный в резонанс с n -и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.

Рис. 17.2. Схема транзисторного умножителя частоты.

Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.

17.3. Диодные умножители частоты

Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р - n -перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При  =0,5 и  0 =0,5 В для нелинейной емкости варактора получим:

, (17.2)

где и - обратное напряжение, приложенное к p - n -переходу.

График нелинейной функции (17.2) показан на рис. 17.3.

Рис. 17.3. График нелинейной функции (17.2).

Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:

, (17.3)

Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.

Рис. 17.4. Диодные умножители частоты с варакторами.

В схеме диодного умножителя параллельного вида (рис. 17.4, а ) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного  и выходного n  сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).

Рис. 17.5.Зависимость сопротивления контура от частоты.

Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n  , - только n -ю гармонику. В результате ток, протекающий через варактор, имеет вид:

, (17.4)

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.

Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.

Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой  в сигнал с частотой n  , т.е. умножение частоты.

Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б ), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного  и выходного n  сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n  , - только n -ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:

, (17.5)

где U 0 - постоянное напряжение смещения на варакторе.

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой  в сигнал с частотой n  , т.е. умножение частоты.

Варакторные умножители частоты в ДЦВ диапазоне при n =2 и 3 имеют высокий коэффициент преобразования К пр = P n / P 1 = 0,6…0,7. При больших величинах п в СВЧ диапазоне значение К пр уменьшается до 0,1 и ниже.

17.4. Контрольные вопросы

1. Каким образом осуществляется умножение частоты колебаний?

2. Нарисуйте схему транзисторного умножителя частоты.

3. Поясните, почему с помощью нелинейной емкости можно производить умножение частоты колебаний.

4. Нарисуйте схемы диодного умножителя частоты последовательного и параллельного типа. В чем состоят различия между ними?

Довольно часто при построении схем разнообразных генераторов и синтезаторов частот возникает необходимость в преобразовании сигналов одной частоты в сигналы большей частоты. Это можно сделать при помощи описанных в разделе Смесители схем смесителей (обеспечив преобразование вверх). Однако, когда требуется кратное преобразование (в два, три и более раз), удобнее и эффективнее использовать схемы так называемых умножителей частоты . Как следует из названия, такие схемы обеспечивают кратное преобразование (умножение) частоты входного сигнала.

Диодные умножители частоты характеризуются рядом положительных черт, которые обусловливают довольно широкое применение таких устройств (особенно на высоких и сверхвысоких частотах). К наиболее важным относятся: низкий уровень тепловых и фазовых шумов, способность работать на очень высоких частотах (вплоть до частот субмиллиметрового диапазона), а также относительная простота конструкции.

В настоящее время на практике применяется три принципиально отличающихся методики умножения частоты в диодных умножителях:

  • варакторное умножение (умножение на нелинейной емкости);
  • удвоение на схеме двухполупериодного выпрямления;
  • диодное преобразование формы импульсов с последующим выделением нужной гармоники.

Работа умножителей частоты характеризуется рядом параметров: коэффициент умножения , входная (\(P_{вх}\)) и выходная (\(P_{вых N}\)) мощности , КПД (\(\eta = P_{вых N}/P_{вх}\) , иногда его называют эффективностью умножителя или коэффициентом передачи по мощности ), полоса рабочих частот и т.д.

Варакторные умножители частоты - это устройства, главным рабочим элементом которых является умножительный варикап (варактор) - полупроводниковый диод, который используется как нелинейная емкость с малыми потерями. Преобразование частоты происходит за счет искажения формы сигнала на нелинейно зависящей от напряжения емкости варактора и последующего выделения нужной гармонической составляющей. Структурные схемы двух основных типов варакторных умножителей представлены на рис. 3.6-35.

Рис. 3.6-35. Последовательная (а) и параллельная (б) структурные схемы варакторных умножителей частоты

Эти структурные схемы содержат: источник входного сигнала, варактор, нагрузку и фильтры \(Ф1\), \(Ф2\). Фильтры служат для фильтрации гармоник в нагрузке и источнике входного сигнала, а также для согласования нагрузки и источника с варакторным умножителем. Первый фильтр \(Ф1\) настраивается на частоту входного сигнала (это может быть, например, фильтр нижних частот с частотой среза незначительно превышающей частоту входного сигнала), а второй фильтр \(Ф2\) - на частоту нужной гармоники (это должен быть достаточно узкополосный полосовой фильтр, точные требования к полосе пропускания обоих фильтров определяются спектром умножаемого сигнала). При таких характеристиках через варактор протекают лишь две гармоники тока (конечно, любые реальные фильтры неидеальны, поэтому на самом деле будут присутствовать и все другие гармоники, но они будут существенно подавлены).

Мощность сигнала, подведенная к умножителю, частично теряется в варакторе и фильтрах. Некоторая доля преобразованной мощности рассеивается в элементах схемы. Поэтому коэффициент передачи по мощности варакторных умножителей частоты меньше единицы. Обычно стремятся получить максимальные выходную мощность и КПД, т.е. добиться режима, оптимального по энергетическим показателям.

Варакторные умножители находят наибольшее применение в диапазоне СВЧ (сантиметровые, миллиметровые и субмиллиметровые длины волн). Их основное достоинство состоит в том, что с их помощью могут быть созданы достаточно мощные генераторы на те диапазоны частот, в которых нельзя добиться приемлемых параметров от генераторов на диодах Ганна или лавинно-пролетных диодах (например, ввиду невозможности непосредственной генерации диода Ганна или лавинно-пролетного диода на нужной частоте или ввиду повышенного уровня шумов генераторов на ЛПД).

В реальных умножителях сантиметрового диапазона (по выходной частоте) при коэффициенте умножения равном двум достигается КПД порядка 60...70 %. При увеличении коэффициента умножения КПД падает, так в утроителях он уже не превышает 40...50 %, а в умножителе частоты на восемь падает до 10...12 %. Указанные значения могут быть несколько увеличены при применении ряда специальных методик, таких как: работа в режиме с частичным отпиранием варактора и введение дополнительных (т.н. “холостых ”) контуров в схему умножителя (рис. 3.6-35).

В обычном умножителе варактор все время находится в режиме обратного смещения (цепи задания режима по постоянному току на рис. 3.6-35 не показаны), причем, с точки зрения уменьшения потерь в варакторе, выгодно максимально увеличивать напряжение смещения вплоть до уровня, граничащего с напряжением пробоя. Снижение потерь, казалось бы, означает большую выходную мощность и КПД умножителя. Тем не менее, это не всегда так - очень важен характер вольт-фарадной характеристики \(C(U)\) применяемого варактора. Дело в том, что нелинейность именно этой характеристики является основополагающим физическим эффектом, лежащим в основе работы варакторного умножителя. Так, например, если зависимость емкости диода от приложенного обратного напряжения близка к квадратичной, то наиболее эффективным будет применение такого диода в удвоителях частоты, а если степень нелинейности выше, то он неплохо справится и с умножением на больший коэффициент. Но самым важным является не характер, а глубина данной нелинейности, т.е. абсолютные величины коэффициентов \(b, c, d, ... \) в формуле, отражающей разложение зависимости \(C(U)\) в ряд Тейлора: \(C(U) = C_0 + aU + bU^2 + cU^3 + ... \). Усилить нелинейность удается в режиме с частичным открыванием \(p\)-\(n\)-перехода варактора .

Если варактор в течение всего периода входного сигнала закрыт, то для умножения частоты используется только барьерная емкость перехода. При открывании диода к барьерной добавляется диффузионная емкость, которая меняется от напряжения значительно сильнее, и вольт-фарадная характеристика становится более нелинейной. Однако при открывании существенно возрастают потери за счет прямого тока диода. Таким образом, существует некий критерий, определяющий возможность использования режима с частичным открыванием в том либо ином варакторном умножителе частоты. Данный критерий определяется исходя из частотных свойств варактора и частот входного и выходного сигналов. Дело в том, что в функционирующем в режиме с частичным открыванием варакторе с увеличением частот сигналов будет изменяться характер потерь. При малых частотах преобладающими будут рекомбинационные потери, с увеличением частоты они падают, но существенными становятся потери инерционные. В некотором диапазоне частот оба вида потерь могут оказаться достаточно малы, и как следствие - общая добротность варактора превысит единицу, что и обусловливает целесообразность применения режима с частичным открыванием. Граничные частоты оцениваются следующими соотношениями: \(f_{вх} > 1/\tau_{эфф}\), \(f_{вых N} < 1/\tau_{выкл}\), где \(f_{вх}\), \(f_{вых N}\) - частоты входного и выходного сигналов, \(\tau_{эфф}\) - эффективное время жизни неосновных носителей в базе диода, \(\tau_{выкл}\) - время выключения диода.

В высокочастотных варакторах применяются специальные меры по снижению \(\tau_{выкл}\), которое может составлять десятые доли наносекунд. Для этого уменьшают толщину базы и выполняют ее с неравномерной концентрацией примесей (см. Диоды с накоплением заряда).

Методика дополнения варакторного умножителя так называемыми холостыми контурами позволяет увеличить КПД для умножителей с коэффициентом умножения больше двух. Она основана на дополнительном преобразовании на том же варакторе сигнала 2-й, 3-й... гармоники в полезный выходной сигнал. Пояснить сказанное можно на примере утроителя с дополнительным контуром, настроенным на 2-ю гармонику. Если схема включения данного контура такова, что он не является нагрузкой для 2-й гармоники (работает на холостом ходу), т.е. потери на этой гармонике будут малы (отсюда и название - утроитель с холостым контуром, настроенным на 2-ю гармонику), то взаимодействие колебаний 1-й и 2-й гармоник на нелинейной емкости будет приводить к преобразованию части мощности 2-й гармоники в мощность 3-й.

При увеличении выходной мощности за счет холостого контура растет и мощность потерь - ведь теперь в диоде рассеивается мощность трех составляющих тока, а не двух, как в простом умножителе. Несмотря на это, КПД может увеличиться, если выходная мощность возрастает в большей мере, чем потери. На практике для утроителя с холостым контуром на 2‑ю гармонику достижим КПД порядка 70% вместо обычных 40...50 %. В умножителях большей кратности возможно применение нескольких холостых контуров, однако их реализация на сверхвысоких частотах существенно усложняет конструкцию и настройку умножителя при незначительном росте его эффективности. Поэтому обычно ограничиваются одним, реже - двумя холостыми контурами.

Описанное выше варакторное умножение частоты относится к классическому, используемому сравнительно давно и часто способу выделения гармоник на нелинейном элементе. Основные достоинства и недостатки данного метода следующие:

  • возможность генерации существенных мощностей на частотах, которые являются рекордно высокими для любых полупроводниковых генераторов СВЧ;
  • высокий КПД, особенно в режиме с частичным открыванием и при введении холостых контуров;
  • поскольку варакторные умножители являются резонансной системой им свойственна узкополосность и трудность перестройки по частоте;
  • при работе на низких частотах резонансная система становится слишком громоздкой, а требуемая для выделения нужной гармоники добротность реализуется с трудом.

В последнее время все большее распространение получают умножители частоты, в которых резонансный способ выделения гармоник не используется. Одной из разновидностей являются умножители, основанные на эффекте удвоения частоты на схеме двухполупериодного выпрямления .

Для двухполупериодного выпрямителя характерно, что частота пульсаций выходного напряжения в два раза превышает частоту входного напряжения (анализ работы таких выпрямителей приведен в разделе Выпрямители). Именно это свойство используется при работе удвоителей частоты. На рис. 3.6-36, 3.6-37 приведены схемы двух простых удвоителей, основанных на двухполупериодной схеме выпрямления со средней точкой и на мостовой схеме.

Рис. 3.6-36. Удвоитель частоты на основе двухполупериодного выпрямителя со средней точкой

Рис. 3.6-37. Удвоитель частоты на основе мостового выпрямителя

В приведенных схемах удвоителей могут применяться диоды самых различных типов (кремниевые, германиевые или арсенид-галлиевые диоды с \(p\)-\(n\)-переходом, диоды с накоплением заряда , диоды с переходом Шоттки , СВЧ диоды), параметры этих диодов будут полностью определять частотные и мощностные свойства удвоителя. Например, использование диодов с барьером Шоттки, которые имеют малое прямое падение напряжения, позволяет подавать на вход достаточно слабые сигналы, а если использовать диоды СВЧ, то и рабочий диапазон устройства смещается в область сверхвысоких частот (рабочий диапазон частот определяется также частотными свойствами трансформаторов).

В качестве трансформаторов на входе и выходе умножителя могут использоваться обыкновенные резонансные контуры, однако наилучшие параметры достижимы при применении широкополосных симметрирующих трансформаторов аналогичных тем, которые используются в широкополосных диодных смесителях . Такие трансформаторы обеспечивают лучшее согласование по входу и выходу, а также обладают высокой широкополосностью, что позволяет применять удвоитель частоты для сигналов очень широкого диапазона частот без какой-либо перестройки. Существует много вариантов включения широкополосных трансформаторов, правильный выбор позволяет обеспечить требуемый для конкретного устройства входной импеданс. На рис. 3.6-38, 3.6-39 приведен ряд примеров удвоителей частоты с широкополосными трансформаторами.

Рис. 3.6-38. Удвоитель частоты на основе мостового выпрямителя с широкополосными симметрирующими трансформаторами (коэффициент трансформации 1:4 или 1:1)

Рис. 3.6-39. Удвоитель частоты на основе двухполупериодного выпрямителя с широкополосным симметрирующим трансформатором (коэффициент трансформации 1:4) на входе

Заметим, что в схеме на рис. 3.6-39 выходной трансформатор отсутствует, его заменил дроссель \(L1\). Это практически не оказывает влияния на параметры умножителя, зато упрощает его конструкцию.

При необходимости обеспечить умножение частоты в 4, 8 и т.д. раз удвоители на схемах выпрямления могут включаться последовательно. При этом, однако, следует иметь в виду, что их КПД не очень высок (порядка 20 % для двухдиодного удвоителя). Поэтому между каскадами удвоения, как правило, включаются промежуточные усилительные каскады.

Таким образом, основными свойствами удвоителей на схемах двухполупериодного выпрямления являются:

  • простота построения и высокая широкополосность, особенно при применении широкополосных согласующих трансформаторов;
  • отсутствие громоздких резонансных систем, что позволяет выполнять удвоители компактными и использовать на низких частотах;
  • низкий КПД и, как следствие, необходимость в промежуточном усилении при многокаскадном включении.

Кроме двух описанных выше методик для умножения частоты могут применяться самые разнообразные схемы, которые работают по принципу изменения формы входного синусоидального сигнала на цепи с существенными нелинейными свойствами и последующим выделением нужной гармоники . Такой принцип очень близок к варакторному умножению частоты, в основе которого также лежит нелинейная цепь (варактор), однако он обеспечивает гораздо меньший КПД, поскольку типовые ключевые цепи, обеспечивающие изменение формы сигнала, обычно характеризуются достаточно высокими потерями, а реализуемый ими характер нелинейности вызывает появление слишком большого числа разнообразных гармоник. Основным же достоинством данных умножителей является простота принципиальной схемы и настройки. Также как и варакторные умножители, умножители с изменением формы сигнала являются резонансными устройствами и при изменении частоты должны подвергаться перестройке.

Пример схемы простого утроителя построенного по описанному принципу приведен на рис. 3.6-40.

Рис. 3.6-40. Утроитель частоты 10/30 МГц на диодах

Также как и в описанных выше умножителях на выпрямляющих схемах, большинство параметров данного умножителя определяются типом применяемых в нем диодов. Оптимальным обычно является выбор диодов с барьером Шоттки соответствующей мощности.

Принцип работы схемы состоит в следующем. Входной фильтр \(L1\), \(C1\) обеспечивает согласование импеданса следующего за ним диодного преобразователя с выходом предыдущего каскада, кроме этого, он предотвращает проникновение высокочастотных гармоник сигнала на вход умножителя. Диодный преобразователь \(VD1-VD4\), \(L2\) служит для преобразования входного синусоидального сигнала в прямоугольный. Выходные цепи \(C2\), \(L3\), \(C3\), \(L4\) выделяют из прямоугольного сигнала нужную гармонику и обеспечивают согласование импедансов на выходе умножителя. Очень важным достоинством данной схемы является уникально низкий фазовый шум, что может быть решающим фактором для некоторых случаев применения умножителей частоты.

Если провести математический анализ простого прямоугольного сигнала, окажется, что в нем присутствуют только гармоники с нечетными номерами (1-я, 3-я, 5-я, 7-я и т.д.). Таким образом, приведенная на рис. 3.6-40 схема при соответствующей настройке резонансных контуров может использоваться для умножения частоты на 3, 5, 7, ... . Для обеспечения четного умножения необходимо другое преобразование формы сигнала, например, в сигнал треугольной формы. Следует иметь в виду, что с повышением коэффициента умножения существенно снижается и без того достаточно невысокий КПД умножителя частоты.

Схема еще одного простого умножителя частоты приведен на рис. 3.6-41. Его работа также основана на преобразовании формы синусоидального сигнала в прямоугольный сигнал с последующим выделением нечетной гармоники.

электронное (реже электромагнитное) устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение f вых /f вх (f вх и f вых – частоты колебаний соответственно на входе и выходе У. ч.) называется коэффициента умножения частоты m (m ≥ 2 ; может достигать нескольких десятков). Характерная особенность У. ч. – постоянство т при изменении (в некоторой конечной области) f вх , а также параметров У. ч. (например, резонансных частот колебательных контуров (См. Колебательный контур) или Резонаторов, входящих в состав У. ч.). Отсюда следует, что если f вх по каким-либо причинам получила приращение Δf вх (достаточно малое), то приращение Δf вых частоты f вых таково, что Δf вх /f вх = Δf вых /f вых, т. е. относительная нестабильность частоты колебаний при умножении остаётся неизменной. Это важное свойство У. ч. позволяет использовать их для повышения частоты стабильных колебаний (обычно получаемых от кварцевого задающего генератора (См. Задающий генератор)) в различных радиопередающих, радиолокационных, измерительных и др. установках.

Наиболее распространены У. ч., состоящие из нелинейного устройства (например, Транзистора, варактора, или Варикапа, катушки с ферритовым сердечником; электронной лампы (См. Электронная лампа)) и электрического фильтра (См. Электрический фильтр) (одного или нескольких). Нелинейное устройство изменяет форму входных колебаний, вследствие чего в Спектре колебаний на его выходе появляются составляющие с частотами, кратными f вх. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой mf вх , подавляя (не пропуская) остальные. Поскольку такое подавление в реальных фильтрах не является полным, на выходе У. ч. остаются нежелательные (т. н. побочные) составляющие, т. е. гармоники с номерами, отличными от m. Задача облегчается, если нелинейное устройство порождает практически только m- ю гармонику f вх, – в этом случае иногда обходятся без фильтра (известны подобные У. ч. на туннельных диодах (См. Туннельный диод) и специальных электроннолучевых приборах). При m > 5 бывает энергетически выгоднее использовать многокаскадные У. ч. (в них выходные колебания одного каскада служат входными для другого).

Находят применение также У. ч., действие которых основано на синхронизации автогенератора (см. Генерирование электрических колебаний). В последних возбуждаются колебания с частотой f 0 = mf вх , которая становится в точности равной mf вх под действием поступающих на его вход колебаний с частотой f вх. Недостаток таких У. ч. – сравнительно узкая полоса значений f вх, при которых возможна синхронизация. Кроме указанных, некоторое распространение получили радиоимпульсные У. ч., в которых на вход электрического фильтра подаются радиоимпульсы определённой формы, вырабатываемые под действием входных колебаний с частотой f вх.

Основная проблема при создании У. ч. – уменьшение фазовой нестабильности выходных колебаний (обусловленной случайным характером изменения их фазы), приводящей к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе. Строгий расчёт У. ч. связан с интегрированием нелинейных дифференциальных уравнений.

Лит.: Жаботинский М. Е., Свердлов Ю. Л., Основы теории и техники умножения частоты, М., 1964; Ризкин И. Х., Умножители и делители частоты, М., 1966; Бруевич А. Н., Умножители частоты, М., 1970; Радиопередающие устройства на полупроводниковых приборах, М., 1973.

И. Х. Ризкин.

  • - влектронный умножитель, - электронное устройство для усиления потока электронов на основе вторичной электронной эмиссии...
  • - специальный трансформатор, увеличивающий частоту переменного тока, вырабатываемого генератором, либо специальная ламповая схема, служащая для получения токов высокой частоты...

    Морской словарь

  • - электронное устройство для усиления тока первичных электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав нек-рых электровакуумных приборов, либо используется как самостоят...

    Естествознание. Энциклопедический словарь

  • - фотоумножитель, - усилитель слабых фототоков, действие к-poro осн. на вторичной электронной эмиссии; разновидность фотоэлектронного прибора. Осн. узлы ФЭУ: фотокатод, эмитирующий электроны под действием оптич...

    Большой энциклопедический политехнический словарь

  • - см. Вторично-электронный умножитель...

    Большой энциклопедический политехнический словарь

  • - электронное устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение fвых/fвх называется коэффициента умножения частоты m ...
  • - электровакуумный прибор, в котором поток электронов, эмитируемый Фотокатодом под действием оптического излучения, усиливается в умножительной системе в результате вторичной электронной эмиссии...

    Большая Советская энциклопедия

  • - электронное устройство для усиления потока электронов на основе вторичной электронной эмиссии...

    Большая Советская энциклопедия

  • - радиоэлектронное устройство для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний...
  • - усилитель слабых фототоков, действие которого основано на вторичной электронной эмиссии. Конструктивные узлы ФЭУ: фотокатод, диноды и анод-коллектор...

    Большой энциклопедический словарь

  • - умножи/тель-дете/ктор,...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - УМНОЖИ́ТЕЛЬ, умножителя, муж. В выражении: умножитель частоты - трансформатор, увеличивающий частоту переменного...

    Толковый словарь Ушакова

  • - ...

    Орфографический словарь-справочник

  • - умнож"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - умножатель, фото,...

    Словарь синонимов

"Умножитель частоты" в книгах

Свободные частоты

Из книги Google. Прошлое. Настоящее. Будущее автора Лау Джанет

Свободные частоты Трудно передать восторг Ларри Пейджа, когда пришло известие, что Федеральная комиссия США по связи (Federal Communications Commission, FCC) одобрила использование свободных частот, не задействованных в трансляции телевизионных или радиопередач: Не за горами тот день,

Как контролировать частоты

Из книги Просите – и получите автора Моранси Пьер

Как контролировать частоты Этот усилитель успеха всего лишь дополняет объяснения, представленные мной в разделе о питании. Поскольку все во Вселенной вибрирует, вам следует заняться изучением внешних воздействий на ваш энергетический уровень. Какой смысл

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты

Из книги автора

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это

9. ЧАСТОТЫ МОСКВЫ

Из книги Энциклопедия безопасности автора Громов В И

9. ЧАСТОТЫ МОСКВЫ Большинство из предлагаемых вашему вниманию частот можно прослушивать с помощью сканирующего приемника (сканера). Мы рекомендуем проверенные и надежные сканеры японской фирмы AOR Ltd модели AR-3000 (стационарный) или AR-8000 (портативный). Их, а так же любую

Умножитель частоты

автора Коллектив авторов

Умножитель частоты Умножитель частоты – это радиоэлектронное устройство, предназначенное для увеличения частоты периодических электрических колебаний в целое число раз. В задачи этого электрического аппарата входит увеличение частоты приводимых к нему

Фотоэлектронный умножитель

Из книги Большая энциклопедия техники автора Коллектив авторов

Фотоэлектронный умножитель Фотоэлектронный умножитель – электровакуумный прибор, в котором поток электронов, эмитируемый фотокатодом под воздействием оптического излучения, в результате вторичной электронной эмиссии усиливается в умножительной системе; ток в цепи

Девиация частоты

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

Умножитель частоты

Из книги Большая Советская Энциклопедия (УМ) автора БСЭ

1.3.2. Частоты

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

1.3.2. Частоты При проведении эксперимента в сельских условиях сигнал с портативного трансивера был получен другим корреспондентом, находящимся в 22 м от меня – принят на идентичную радиостанцию, настроенную на те же частоты.При экспериментировании замечена интересная

В передающих и приемных трактах систем связи, а также в некоторых измерительных устройствах широко применяется нелинейное преобразование гармонического колебания, в результате которого частота этого колебания увеличивается в k раз, k – целое положительное число. Такое нелинейное преобразование называется умножением частоты, а устройство, его реализующее, – умножителем частоты.

Таким образом, умножитель частоты – это устройство, которое увеличивает в k раз частоту гармонического колебания. Если на вход умножителя подается сигнал , то на выходе формируется сигнал , причем некоторые умножители увеличивают в k раз и начальную фазу, т.е. .

Умножители частоты используются при формировании колебаний с высокой стабильностью частоты. Это относится прежде всего к формированию высокочастотных колебаний при кварцевой стабилизации частоты задающего генератора. Собственная частота кварца определяется выражением , b – толщина пластинки кварца. Для частоты более 50 МГц пластинка должна иметь толщину порядка сотых долей миллиметра. Такие пластинки изготовить очень трудно, они имеют слабую механическую прочность. Поэтому такой метод стабилизации используют в генераторах с частотой до 5 МГц, в отдельных случаях до 50 МГц. Колебания более высоких частот получают с помощью умножителей частоты.

В качестве умножителей частоты наиболее часто используют схему нелинейного резонансного усилителя с контуром, настроенным на требуемую частоту. Как было показано ранее, в спектре импульсов тока нелинейного усилителя на транзисторе (работающего в режиме с отсечкой тока) имеются гармонические составляющие с частотами, кратными частоте входного сигнала. Если контур усилителя настроить на частоту k- й гармоники, то на выходе будет сформировано гармоническое колебание с частотой этой гармоники.

Известно, что амплитуда k -й гармоники определяется выражением . Следовательно, режим работы усилителя как умножителя частоты должен быть таким, чтобы амплитуда нужной гармоники была наибольшей. При определенном значении это обеспечивается оптимальным углом отсечки, при котором = max.

Практически доказано, что такой угол отсечки, при котором графики имеют хорошо выраженные максимумы, равен . Знание угла отсечки дает возможность определить амплитуду входного сигнала и напряжение рабочей точки умножителя частоты:

, .

Здесь – средняя крутизна ВАХ транзистора для k -й гармоники, – напряжение отсечки.

Рассмотренная схема умножителя может обеспечить умножение частоты в 2, реже в 3 раза и не более, ибо амплитуды высших гармоник коллекторного тока быстро убывают с увеличением их частоты. В тех случаях, когда требуется умножение частоты сигнала в десятки и более раз, возможно многократное умножение частоты путем последовательного включения нескольких умножителей. Однако более целесообразно использовать другой метод.


Известно, что спектр периодической последовательности видеоимпульсов содержит бесконечное число гармонических составляющих с частотами, кратными частоте следования импульсов . Амплитуды этих гармоник при достаточно велики в широком диапазоне частот (ширина основного лепестка спектра равна ). Поэтому с помощью узкополосных фильтров можно выделить гармоники с частотами при значениях более десяти.

Схема такого умножителя содержит нелинейный преобразователь гармонического колебания в периодическую последовательность очень коротких по длительности видеоимпульсов с частотой повторения, равной частоте входного колебания, т.е. . Необходимая гармоника спектра этих импульсов выделяется фильтром.

Еще больший коэффициент умножения можно получить, если использовать периодическую последовательность радиоимпульсов. Спектр такого сигнала сосредоточен в области частоты несущего колебания. В составе этого спектра содержатся гармонические составляющие с частотами , значительно превышающими частоту входного колебания. Схема такого умножителя сложная, так как должна содержать импульсный амплитудный модулятор, преобразующий колебания с частотой в периодическую последовательность радиоимпульсов с частотой следования .

Умножение частоты можно осуществить также с помощью параметрических цепей (например, цепей с варактором). В рамках данного учебного пособия эта проблема не рассматривается.

Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты, стабилизированной кварцевым резонатором, на число п, число п можно задавать в цифровом виде, т.е. можно получить гибкий источник сигналов, которым можно управлять даже с помощью компьютера или простого контроллера.

В данном примере попытаемся использовать ФАПЧ чтобы получить довольно высокую частоту диапазона ДМВ, стабилизированную низкочастотным кварцевым резонатором. Итак, имеем кварцевый резонатор на частоту 6,8 МГц, микросхему КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхему КР1564ЛП5, которую будем использовать в качестве фазового детектора.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на - n (рис.1).

На этой схеме для каждого функционального блока указан коэффициент передачи. При расчете контура ФАПЧ эти коэффициенты используются для проведения расчетов по устойчивости. Имеются специальные формулы для расчета каждого из коэффициентов передачи. Общий коэффициент передачи контура ФАПЧ будет равен произведению коэффициентов передачи всех функциональных блоков контура.

По результатам расчета величины общего коэффициента судят об устойчивой работе данной схемы контура. Наибольшие трудности в этих расчетах приходятся на долю расчета элементов НЧ фильтра. Большинству радиолюбителей, не имеющих возможности заняться расчетом устойчивости, приходится подбирать компоненты фильтра до тех пор, пока контур не заработает. Попробуем рассмотреть назначения элементов фильтра. На рис.2 приведена одна из возможных схем фильтра НЧ.

Произведение R1xC0 определяет время сглаживания контура, a R0/R1 - демпфирование, т.е. отсутствие перегрузки в скачкообразном изменении частоты. Подбор величин можно начинать с R0 = 0,2 R1. На рис.2(б) приведена схема с дополнительным конденсатором С1. Один из возможных вариантов этого фильтра может иметь следующие данные: R1 = 10k, R0 = 10к, С0 = 1000 и С1 = 0,033мк.

Рассмотрим принципиальную схему умножителя частоты с ФАПЧ, в которой имеется кварцевый резонатор на частоту 6,8 МГц, микросхема КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхема КР1564ЛП5, которую будем использовать в качестве фазового детектора. На рис.3 приведена одна из возможных принципиальных электрических схем умножителя частоты на 64 с применением ФАПЧ, в которой задействованы перечисленные выше компоненты.

Рис.3

Эта схема не является отработанной и приведена мною чисто в целях иллюстрации возможного варианта умножителя с применением ФАПЧ. Фазовый детектор выполнен на МС DD1 74НС86 (564ЛП5). На элементе этой микросхемы DD1.1 выполнен генератор с кварцевым резонатором Z1. На элемент DD1.3, который работает в режиме повторителя, поступает сигнал с МС делителя частоты ГУН.

Разностный сигнал выявляется на элементе DD1.2 и подается на активный НЧ фильтр, выполненный на транзисторах VT1 и VT2. R10 и С6 являются дополнительными элементами НЧ фильтра. На варикап VD1 разностный сигнал поступает через R10. ГУН выполнен на транзисторе VT3, а на VT4 собран буфер - усилитель частоты ГУН. С VT4 сигнал с подается через С14 на выход, а через фильтр ВЧ С13Др1С15 на делитель частоты ГУН, выполненный на DD2. С выхода делителя частоты сигнал подается на фазовый детектор через конденсатор С16.

Процесс захвата

Для выполнения процесса захвата частоты необходимым условием является достаточное напряжение сигнала рассогласования после НЧ фильтра. Всегда следует помнить, что НЧ фильтр на LC элементах вносит большое ослабление сигнала. Контур первого порядка всегда будет синхронизироваться, поскольку там отсутствует ослабление сигнала рассогласования на низкой частоте.

Синхронизация контура второго порядка зависит от типа фазового детектора и полосы пропускания фильтра нижних частот. Кроме того, фазовый детектор по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ имеет ограниченный диапазон захвата, зависящий от постоянной времени фильтра.

Рис.4
Процесс захвата происходит следующим образом: когда сигнал фазового рассогласования приближает частоту ГУН к опорной частоте, его изменения становятся более медленными и наоборот. Сигнал рассогласования поэтому является асимметричным и меняется более медленно в той части цикла, в течение которой fгун ближе подходит к fon.

В результате появляется ненулевая средняя компонента, т.е. постоянная компонента, которая и вводит ФАПЧ в синхронизм. Если графическим путем проанализировать управляющее напряжение ГУН в процессе захвата, то можно получить что-то похожее на сигнал, показанный на рис.4.
Каждый процесс захвата индивидуален и каждый раз он выглядит по-разному.

Полоса захвата и слежения

При использовании фазового детектора по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ полоса захвата ограничена постоянной времени фильтра нижних частот. В этом есть определенный смысл, так как, если различие по частоте велико, сигнал рассогласования будет ослабляться фильтром настолько, что контур никогда не сможет осуществить захват. Очевидно, что увеличение постоянной времени фильтра уменьшает полосу захвата, так как это приводит к пониженному коэффициенту передачи контура.

Умножитель частоты на МС12179

Фирма Motorola изготавливает серийно микросхему ФАПЧ типа МС12179, которая в своем составе уже имеет следующие компоненты, необходимые для создания полноценного контура ФАПЧ, а именно:

Все элементы, необходимые для организации работы внешнего генератора с кварцевой стабилизацией частоты;
Фазовый детектор;
Делитель частоты на 256, что позволяет использовать эту МС как умножитель частоты до частот 2500 МГц;
Предусмотрен вход для частоты ГУН и выход сигнала рассогласования к НЧ фильтру.

Обратите внимание, - фильтра НЧ в составе микросхемы нет, его в каждом отдельном случае следует проектировать в соответствии с индивидуальными требованиями к умножителю.

Рис.5 и 6

На рис.5 показан схематически контур ФАПЧ с микросхемой МС12179. Кварц Z1 может выбираться в пределах от 5 до 11 МГц, при этом на выходе умножителя можно получить частоты в диапазоне от 2400 до 2800 МГц. Схемы возможных для применения НЧ фильтров показаны на рис.6.

Умножитель частоты с ФАПЧ на МС12179 создает шумы во много раз меньшие, чем умножитель по описанной выше схеме с отдельным делителем частоты.

Синтезатор частоты на LM7001

Схема синтезатора частоты для диапазона 145МГц выполнена на микросхеме LM7001J, используемой различными фирмами в бытовых радиоприемниках.

Синтезатор предназначен для работы в приемопередающих устройствах ЧМ с промежуточной частотой 10,7 МГц. Он обеспечивает формирование сигнала с частотой 133,3...135,3 МГц в режиме приема и 144...146 МГц в режиме передачи с шагом сетки частот 25 кГц. В нем также предусмотрена возможность сканирования в режиме приема во всем диапазоне рабочих частот.

Синтезатор имеет энергонезависимую память на три пользовательские частоты. В нем также зашиты 9 репитерных каналов (R0...R8). В режиме передачи в синтезаторе осуществляется частотная модуляция ВЧ сигнала. Питают синтезатор напряжением 8...15 В. Ток потребления - не более 50 мА. Уровень ВЧ сигнала на его выходе при нагрузке 50 Ом составляет не менее 0,1 В. Эта очень интересная конструкция должна заинтересовать многих радиолюбителей.

Технические характеристики МС LM7001J:

1. Номинальное напряж. питания, В.....................................................4,5...6,5.
2. Входное напряж. высокого уровня, В, по входам СЕ, CL, Data 2,2...6,5.
3. Входное напряжение низкого уровня, В, по входам СЕ, CL, Data ...0... 0,7.
4. Максимально допустимое напряжение, подводимое к выходу SC, В.... 6,5.
5. Максимальное допустимое напряжение, подводимое к выходам BSoutl... BSout3, В........13.
6. Максимально допустимый выходной ток выхода SC, мА..................... 3.
7. Максимально допустимый входной ток входов BSoutl... BSout3, мА 3.
8. Частотный интервал входа Amin1, МГц..................0,5...10.
9. Частотный интервал входа Fmin, МГц, при шаге частотной сетки
- 25,50,100 кГц.............45...130.
- 1,5,9,10 кГц............ 5...30.
10. Чувствительность по входам Amin и Fmin, В (эфф.)..............0,1 ...1,5.
11. Типовое значение входного сопротивления по входам Amin и Fmin, кОм............ 500.
12. Общий потребляемый ток, мА.................. 40.

Микросхемы LM7001J и LM7001JM предназначены для построения частотных синтезаторов с системой ФАПЧ, применяемых в бытовых радиоприемных устройствах. Обе микросхемы идентичны по схеме и параметрам и отличаются лишь конструкцией корпуса - у LM7001J корпус DIP16 для обычного монтажа, у LM7001JM -MFP20 для поверхностного монтажа (обе микросхемы пластмассовые). Назначение выводов микросхем представлена в таблице ниже.

Выводы Xout и Xin - выход и вход усилителя сигнала образцовой частоты; к этим выводам подключают кварцевый резонатор. Вывод СЕ- вход сигнала разрешения записывания. CL -вход тактовых импульсов записывания. Data -информационный вход. SC - Syncro Control - выход контрольной частоты 400 кГц. BSoutl -BSout3 - band switching-выходы управления внешними устройствами (выход BSoutl, кроме этого, - выход сигнала частоты 8 Гц); с помощью этих сигналов выполняется коммутация диапа-зонов Amin и Fmin - входы программируемого делителя частоты, иначе говоря, входы сигналов AM и ЧМ. Pdl и Pd2 -выходы частотно-фазового детектора в режимах FM и AM соответственно.

Функциональная схема прибора изображена на рис. 7. Управляющая последовательность битов, поступающая на приемный сдвиговый регистр, определяет значение шага частотной сетки синтезатора, коэффициент деления программируемого делителя частоты, режим его работы и состояние выходов BSoutl...BSout3.

Рис.7

Микросхема может работать с семью стандартными значениями шага частотной сетки - 1, 5, 9, 10, 25, 50 или 100 кГц (при частоте образцового генератора 7200 кГц. Введение управляющей последовательности битов происходит последовательно, начиная с младшего бита коэффициента деления частоты программируемого делителя, который может работать в двух режимах - AM и FM.