Какой должен быть коэффициент пульсации светодиодных ламп. Пульсация, мерцание светодиодных ламп: причина и способы борьбы с ней. Всё о светодиодных лампах

Огромным множеством преимуществ обладают полупроводниковые источники освещения, которые пользуются большим спросом среди населения. Одно из достоинств — это низкий коэффициент пульсации, например, у светодиодных лампочек. Интересно, что формирование зрения бывает только при воздействии солнечных лучей и отсутствии сторонних факторов. Так как цивилизация развивается, человечеству понадобилось больше дополнительных источников освещения. По этой причине изобрели первые лампочки накаливания. Далее из-за прогресса стали выпускаться более современные источники света. Однако совсем недавно ученые, исследуя, обратили внимание на такое явление, как пульсация, которая плохо сказывается на организме человека. Из-за таких сведений в местах, где регулярно бывают люди, а также в детских учреждениях, запретили использовать некоторые виды лампочек. В этой статье мы расскажем, что собой представляет пульсация светодиодных ламп, почему она возникает и как исправить мерцание самостоятельно.

Причины возникновения мерцания

Практически все лампы формируют эффект мерцания. Для того, чтобы решить, как исправить эту проблему важно знать, почему пульсируют лампы. Дело в том, что частота мерцания или пульсации выше крайней частоты слияния мельканий, которые глаз человека не воспринимает напрямую как мерцающий световой поток. Несмотря на это, негативное воздействие сказывается на самочувствии человека и вызывает повышенную утомленность. Чем чаще происходит пульсация, тем большее влияние на организм: начинается головная боль, а также быстрая усталость, что приводит к рассеянности человека, и он не может сфокусировать внимание на работе.

Лампами накаливания образуется наиболее сильное мерцание. По причине того, что мерцание в полной мере зависит от самого источника питания, в светодиодных лампах решили эту проблему с помощью применения драйвера, благодаря которому напряжение проходит в виде постоянного тока. Все же не все изготовители стали использовать качественные драйверы, которые способны снизить уровень импульса до нужного значения. Поэтому изготовленный товар имеет низкую себестоимость и в то же время плохое качество.

Иногда бывает так, что при покупке, лампочка светит хорошо без мерцаний, однако со временем мерцание появляется. Это говорит о том, что качество данного продукта низкое. Поэтому при покупке необходимо обращать внимание, указан ли в технических характеристиках коэффициент пульсации. Соответственно такой осветительный прибор стоит дороже.

Подробности о коэффициенте пульсации

Главная причина мерцания заключается коэффициенте пульсации. Это безразмерная величина, которая выражается в процентах и отображает уровень колебаний освещенности при варьировании светового потока. Источник света является основой, которая подключается к переменному току.

Благодаря проведенным исследованиям выяснилось, что при 10% коэффициенте пульсации появляется стробоскопический эффект, а он представляет собой оптический обман зрения. Появляется он из-за неправильного восприятия предметов, которые находятся в движении. Существуют нормы допустимой величины коэффициента пульсации. Значение должно быть в рамках от 5% до 20% в зависимости от обстоятельств, при которых происходит зрительная работа.

В тех местах, где больше всего находятся люди, коэффициент не может превышать:

  • Дошкольные детские учреждения – 10%.
  • Места, где находятся компьютеры – 5%.
  • Образовательные учреждения – 10%.
  • Места, где осуществляются высокоточные работы – 10%.

Коэффициент пульсации может происходить и на производственных предприятиях, а также в складских ангарах, то есть в местах, где люди могут быть только какое-то время, и где исключена возможность возникновения стробоскопического эффекта. Однако первый фактор способен привести к опасной ситуации, например, вращение детали может совпадать с мерцанием лампы. В такой ситуации деталь будет казаться в неподвижном положении, а из-за этого может возникнуть опасная ситуация, которая приведет к производственному травматизму.

Такие нормы были установлены недавно, и только в последнее время стали усиленно контролировать их соблюдение. На большинстве предприятий, а также в учебных заведениях освещение не отвечает санитарным нормам. Поэтому в следствии проверок все стали улучшать качество освещения.

Как проверить уровень пульсации

Важно знать, как определить уровень пульсации в LED светильниках. Это можно делать с помощью коэффициента, который рассматривался выше. Однако только в том случае, если подключение светодиодных ламп было осуществлено к переменному току, учитывая схему питания. Коэффициент варьирует в диапазоне 1-30%, охватывается весь диапазон.

Следует сделать измерение, которое позволит определить коэффициент пульсации. При измерении нужно учитывать два фактора:

  1. Так, как при постоянном токе коэффициент нулевой, а соответственно мерцание отсутствует полностью, то измерение следует проводить при переменном токе.
  2. Проверку или измерение следует осуществлять специальными приборами, а не простой фотокамерой. Она только фиксирует сам факт мерцания, но не вычисляет его величину. Следует использовать устройства, которые способны преобразить излучение. Например, можно использовать пульсометр-люксметр или многоканальный радиометр, а также другие похожие приборы. Для дополнительных подсчетов можно подключать эти устройства к компьютеру, и с помощью программы сделать вычисление.

Светодиоды могут мерцать даже в выключенном положении. Такое явление можно увидеть невооруженным глазом, и оно вызывает у человека дискомфорт. Однако моргать они могут и во включенном состоянии, и визуально это не ощущается. Поэтому следует знать, чем вредна пульсация светодиодных ламп. Такое мигание приносит большой вред, ведь невольно влияет на организм человека. Если лампочка мигает при работе, человек утомляется, у него возникает подавленное состояние и бессонница, и конечно же это плохо влияет на зрение.

На видео ниже наглядно показывается, как производится измерение пульсации светодиодных ламп от известных производителей:

К сожалению изготовители редко указывают информацию, которая показывает коэффициент пульсации. Но для того, чтобы проверить в домашних условиях нужно проводить тесты, которые фиксируют само мигание. Можно проверить это явление двумя способами.

  1. Самый простой способ с использованием карандаша. Необходимо включить только тестируемую светодиодную лампу и быстро помахать перед ней карандашом. В случае если виден сплошной след карандаша, то все в порядке, однако если след распадается на отрезки, то значит, что импульсы присущи.
  2. Можно также использовать фотокамеру. Не всегда будет под рукой фотоаппарат, поэтому необходимо знать, как проверить телефоном, ведь большинство из них оснащены камерой. Итак, камеру следует держать на расстоянии 1 метра от тестируемой светодиодной лампочки, если мигание присуще, то на экране будут темные полосы.

На видео ниже наглядно показывается, как определить мерцание светодиодных ламп при работе:

Способы устранения мерцания

Следует знать, как избавиться от мерцания светодиодных ламп. Необходимо устранить старый конденсатор на другой с большей емкостью. Однако подобрать конденсатор нужно и по габаритам, и по рабочему напряжению старого устройства. Конечно нужно знать, как устранить пульсацию, ведь в плате необходимо найти сам конденсатор, и уметь припаять новый. Все же этот вариант не всегда позволит полностью убрать проблему, однако нужно пробовать различные способы борьбы с ним.

Практически 90 процентов информации наш мозг получает посредством органов зрения. Понятно, что для лучшего восприятия информации нам необходимо хорошее освещение. Наш организм прекрасно воспринимает естественное освещение . Но, к сожалению, мы (как наши предки) не можем себе позволить ложиться спать с заходом солнца. Поэтому нам приходится постоянно пользоваться искусственным освещением в помещении. Естественно, такое освещение имеет ряд минусов, по сравнению с естественным. Одним из которых можно смело назвать - пульсация (мерцание, моргание, мигание) ламп. Сегодня мы попробуем разобраться с таким понятием, как пульсация (мерцание, моргание, мигание) светодиодных ламп . Вообще. повышенная пульсация ламп происходит из-за периодических колебаний уровня светового потока , который мы получаем от любой лампы, в том числе и светодиодной.

Пульсация светового потока – это одна из характеристик искусственного освещения , показывающая частоту мерцания света.

Санитарные нормы и правила требуют максимальные уровни пульсации для каждого вида освещения. Согласно СП 52.13330.2011 пульсация допускается в диапазоне 10-20 процентов. В жилых помещениях такие требования не распространяются.

Скорее всего из-за этого на всех коробках светодиодных ламп попросту не указывают коэффициент пульсации. А зря... Как выясним позже, очень зря...

Реальные коэффициенты пульсаций светодиодных приборов

Мы знаем, что может быть как от постоянного, так и переменного напряжения . А это значит, что уровень (коэффициент) пульсации, мерцания, моргания любых светодиодных ламп будет полным повторением уровня пульсаций их источников питания.

Если лампа имеет питание от постоянного тока, то и световой поток. исходящий от нее будет постоянным, что само по себе значит нулевой коэффициент пульсации.

Но в наших домах постоянного напряжения нет. Поэтому, в зависимости от схемы питания светодиодных ламп, пульсация будет составлять от 1 до 30 процентов.

Часто бывает пульсация в светодиодных лампах появляется после. Не часто, но такая проблема тоже имеет место быть.

Для сравнения, за все время проводимых измерений были получены следующие цифры:

Коэффициент пульсации для индукционных ламп составляет не более 5%
- для ламп накаливания (галогенные) - не более 5%
- люминесцентные от 5-40 %
- светодиодные от 1-30%

Мы видим, что коэффициент пульсации (моргания, мерцания, мигания) светодиодных ламп может охватывать весь диапазон пульсаций, в зависимости от того, какая используется схема их электропитания.

Поэтому можно понять, что с пульсацией надо бороться и свести к минимуму. Так чем же вредна пульсация?

Вредность пульсации (мерцания, мигания) светодиодных ламп

Мы можем фиксировать изменение поступающей информации до 300 Гц. Визуально мы их не ощущаем, но на подсознательном уровне все ПЛОХО. Как правило, человек начинает чувствовать себя плохо, появляется дискомфорт, переутомление, головокружение. И хорошо, если Вы сталкиваетесь с такой пульсацией не надолго. Но если на рабочем месте у Вас постоянно такое освещение, то это станет (рано или поздно) причиной постоянного подавленного состояния, бессонницы, сердечно-сосудистых и возможно (еще не доказано. но ведутся исследования) онкологических заболеваний.

Также стоит отметить и такое важное и опасное состояние светодиодных ламп - стробоскопический эффект. Это доказанный и опасный факт. Его необходимо как можно быстрее "убирать" с рабочих мест. Пример стробоскопического эффекта: частота мерцания лампы совпадает с частотой вращения детали на каком-нибудь станке. От этого создается впечатление, что детали на станках "крутятся-вертятся" очень медленно. Из-за такого эффекта пострадали, покалечились, погибли не одна сотня работников.

Поэтому оптимальным коэффициентом пульсации ЛЮБОГО источника света стоит считать до 5 %.

Сравнение некоторых ламп по коэффициенту пульсации (мерцанию, морганию)

Ниже приведены графики протестированных ламп по коэффициенту пульсации:

1. Лампа накаливания 60 Вт - пульсация 18%
2. Лампа светодиодная Армстронг - пульсация 41%
3. Лампа люминесцентная 9 Вт WalSun - пульсация 31%
4. Лампа люминесцентная Camelion - пульсация 4%
5. Лампа люминесцентная ЛБ40 - пульсация 25%
6. Лампа светодиодная Philips 9 Вт - пульсация 3,2%
7. Лампа светодиодная кукуруза "китайская" - пульсация 68%

По полученным данным можно легко понять, что светодиодная лампа не дает нам основания считать о низкой пульсации. Самый хороший коэффициент можно считать светодиодную лампу Philips . Это не удивительно. Чем дороже лампа, чем лучше брэнд, тем лучше коэффициенты пульсации. И наоборот, повсеместное использование известных источников света (Армстронг) не говорит о том, что Вы получите качественное освещение.

Все-таки, перед покупкой стоит у продавца спрашивать сертификаты на лампы, комплектующие (если источник света собирается "на коленях"). Только тогда Вы сможете быть уверенным, что не получите негативного влияния от пульсации.

Видеообзор сравнение пульсации различных ламп

В данном видеоматериале Вы посмотрите ряд тестов сравнений по освещенности и коэффициенту пульсаций на ряде ламп: от ламп накаливания, до светодиодных.

Можно ли справиться с миганием светодиодных ламп

С миганием справиться достаточно просто, но только для тех, кто понимает где и что делать. Как правило, без паяльника тут не обойтись.

Все китайские модели не имеют драйвера в своих лампах. поэтому тут проблема решиться только с установкой драйвера. Но тут стоит понимать, что его надо еще найти таких размеров, чтобы в лампу установить.

Можно пробовать установить конденсатор. Тут надо помимо паяльника уметь считать. Для каждой каждой лампы свой. Тут без измерений не обойтись, чтобы правильно подобрать конденсатор.

Все способы сводятся только к замене или установке нормальных драйверов. Но опять же... Это дополнительные траты и трудозатраты. Скупой платит дважды! Поэтому не стоит скупиться и приобретать. Пульсация там будет, но минимальная, что нас абсолютно устраивает.

Для тех же, кто хочет все-таки самостоятельно убрать пульсацию (мигание, мерцание) есть хорошее подспорье - "Светодиодные лампы . Как убрать пульсацию Автор: Коллектив Издательство: Россия Год издания: 2015 Язык: Русский Формат: Mp4 Качество: отличное Размер: 408.20 Мб". Забейте в поисковик и у Вас все получится.

Как определить пульсацию (мигание, мерцание) светодиодных ламп

Одним из самых простых способов определить есть ли пульсация в Вашей лампе - использовать видеокамеру. Современные камеры в телефонах имеют параметр - гашение мерцания 50 или 60 Гц. Вам необходимо найти данную опцию в параметрах и включить ее. После этого, подводя камеру к лампе Вы сможете увидеть мерцание (ни с чем его не спутать). Если же картинка остается четкой - то поздравляем, мерцания в Вашей лампе или нет или она ничтожно мала.

Также можно с легкостью телефона и фотографии определить мерцание. Достаточно сделать фотографию лампы без засветки. Фотография Вам покажет есть или нет пульсации. Если на фото Вы видите горизонтальные затемненные полоски, то Вам не повезло...

Более серьезные методы - использование компьютера, фото а, резистора мы рассматривать не будем. Материала по этому вопросу достаточно много в сети. Ищите, да обрящите.

Одним из важнейших физических факторов на каждом рабочем месте является освещение. Освещение не только обусловливает возможность выполнения работ, но и обеспечивает уровень производительности и качества труда, травмобезопасность и состояние здоровья работников. Контроль и оценка условий освещения при аттестации рабочих мест производится в соответствии с требованиями Р 2.2.2006–05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» по методике, изложенной в МУ ОТ РМ 01-98/2.2.4.706-98 «Оценка освещения рабочих мест». При этом освещение оценивается по параметрам, характеризующим как количество, так и качество света. Среди показателей качества света особое место занимает пульсация освещенности. Этот параметр световой среды неизменно вызывает вопросы.

Анализ результатов аттестации рабочих мест с персональными компьютерами показывает, что большинство из них «условно аттестованы» по причине несоответствия требованиям норм по ограничению глубины пульсации освещенности. Причем зачастую не отвечают требованиям норм по ограничению пульсации новые осветительные установки, нередко выполненные импортными светильниками, имеющие современный дизайн и обеспечивающие достаточное количество света. В итоге внешне эффектные системы освещения не соответствуют требованиям по качеству освещения и оказываются вредными с точки зрения условий и охраны труда. Использование четырехламповых растровых зеркальных светильников в административных помещениях также нередко приводит к нарушению требований норм по пульсации освещенности. При этом обеспечение требуемых уровней освещенности не представляет проблемы.

При высоких уровнях освещенности оценка условий освещения как вредных вызывает недоумение у работодателей: света много, откуда может быть «вредность»? Однако эту «вредность» очень четко отмечают работающие в условиях повышенной пульсации, которые, не фиксируя ее визуально, выражают нежелание работать «при люминесцентных ламп ах». Проблема эта не нова, и, по словам выдающегося проектировщика-светотехника Г. М. Кнорринга, «в первые годы применения люминесцентных ламп, когда вред пульсаций недооценивался и для их ограничения не принималось мер, несколько хороших в остальном осветительных установок были скомпрометированы именно из-за пульсаций».

Что же такое пульсация освещенности? Среди показателей качества световой среды это, пожалуй, самый «коварный» параметр. Коварность пульсации светового потока заключается в том, что глаз не ощущает колебания света, но на них отрицательно реагирует мозг, и человек не понимает, по какой причине он очень утомляется и неважно себя чувствует.

Причина пульсации освещенности – переменный ток, питающий осветительные установки. Световой поток источников света при питании их переменным током промышленной частоты 50 Гц пульсирует с удвоенной частотой – 100 Гц (см. рисунок).

Явление это наиболее характерно для газоразрядных источников света. Процесс электрического разряда в этих лампах практически безынерционен и следует за частотой переменного тока, в связи с чем, зависящее от этого процесса излучение люминофора, обладающего лишь малым послесвечением, также непостоянно во времени. Следует отметить, что пульсация освещенности отмечается и в осветительных установках с лампами накаливания, она весьма незначительна при использовании мощных ламп (3-5 % при лампах мощностью 300-500 Вт), однако при снижении мощности до 100-60 Вт может достигать 11-18 %.

Пульсация светового потока зрительно не воспринимается, так как частота пульсаций 100 Гц превышает критическую частоту слияния световых мельканий. Электрофизиологические исследования показали, что пульсация неблагоприятно влияет на биоэлектрическую активность мозга, вызывая повышенную утомляемость. Это обусловлено изменением основной ритмической активности нервных элементов мозга, перестраивающих присущую им частоту в соответствии с частотой световой пульсации.

Отрицательное воздействие пульсации возрастает с увеличением ее глубины. Большинство исследователей отмечают отрицательное воздействие пульсации света на работоспособность человека как при длительном пребывании в условиях пульсирующего освещения, так и при кратковременном, в течение 15–30 мин. Это определяет требования к ограничению глубины пульсации светового потока в осветительных установках.

Поскольку основным количественным параметром осветительных установок является нормированный уровень освещенности, в качестве критерия оценки глубины световых колебаний в осветительных установках, питаемых переменным током, принят коэффициент пульсации освещенности на рабочей поверхности, характеризующий ее глубину. Он равен отношению половины максимальной разности освещенности за период колебания к средней освещенности за период, выраженному в процентах.

Экспериментально установлено, что отрицательное действие пульсации на организм человека достаточно мало только при глубине пульсации не более 5–6 % при частоте 100 Гц. При частоте колебаний света 300 Гц и более глубина пульсаций не имеет значения, так как на эту частоту мозг не реагирует.

При работе с ВДТ на электронно-лучевых трубках вопрос об ограничении пульсации освещенности встает особенно остро, так как мозг человека крайне отрицательно реагирует на два и более одновременных, но различных по частоте и некратных друг другу ритма световых раздражений. Именно такая ситуация складывается при работе на персональном компьютере . Поэтому к осветительным установкам в помещениях с компьютерами предъявляются весьма жесткие требования по пульсации освещенности – не более 5 %.

Ограничение пульсации освещенности требуется не только в помещениях с компьютерами, но и при выполнении других видов работ, особенно работ, относящихся к точным. При этом особенно следует обратить внимание на систему комбинированного освещения, где пульсация должны быть ограничена не только в местном освещении (как правило, для этого используются светильники с лампами накаливания), но и в общем. Есть основание считать, что периферическое зрение особенно чувствительно к пульсации, поэтому общее освещение также должно соответствовать нормативным требованиям (не более 20%). На практике нередко общее освещение механических цехов, выполненное светильниками с газоразрядными лампами высокого давления (ДРЛ, ДНаТ) без распределения по фазам сети, создает пульсацию освещенности, достигающую 80-90 %.

Следует отметить, что наличие пульсаций освещенности, превышающих нормативные требования, может вызвать, так называемый, стробоскопический эффект, то есть явление, когда предметы быстро движущиеся поступательно представляются имеющими многократные контуры. Вращающиеся предметы в зависимости от их скорости вращения могут казаться остановившимися, изменившими скорость или направление вращения. Искажение зрительного восприятия вращающихся, движущихся или сменяющихся объектов в мелькающем свете, возникающее при совпадении или кратности частотных характеристик движения объектов и изменения светового потока во времени может быть непосредственной причиной травматизма.

Меры ограничения глубины пульсации освещенности достаточно хорошо проработаны. Они изложены в любой справочной литературе по светотехнике («Справочная книга по светотехнике» под редакцией Ю.Б. Айзенберга, «Справочная книга для проектирования электрического освещения » под редакцией Г.М. Кнорринга и др.). Требование к обязательности оценки коэффициента пульсации освещенности изложено в Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» и в Методических указаниях «Оценка освещения рабочих мест». Контроль коэффициента пульсации освещенности в настоящее время осуществляется инструментально с помощью приборов.

Все отраслевые и ведомственные нормативные документы по освещению содержат нормируемые значения коэффициента пульсации, и их требования должны учитываться при проектировании осветительных установок (ОУ). Кроме того, ГОСТ 17677-82 «Светильники. Общие технические условия» также содержит требования по ограничению пульсации, в частности указано, что в светильниках с числом ламп, кратным двум, должны применяться пускорегулирующие аппараты, обеспечивающие сдвиг фаз между токами ламп (см. п.3.2.3 ГОСТ). И требования этого ГОСТа должны в обязательном порядке выдерживаться.

Теоретически все наши действующие осветительные установки должны обеспечивать надлежащее качество освещения. Тем более что практическое обеспечение требований норм по ограничению глубины пульсации освещенности технически достижимо: использование наиболее подходящих для данного вида работ источников света, ПРА с «расщепленной фазой», включение ламп на разные фазы сети, при необходимости использование ВЧПРА.. Однако, как показывают результаты обследования освещения, почти все существующие осветительные установки на рабочих местах с компьютерами не обеспечивают нормируемую глубину пульсации освещенности и, как правило, она составляет 28-35 %, а иногда достигает 41-50 %.

Решения, обеспечивающие соблюдение нормативных требований к освещению (как по количеству, так и по качеству), должны обеспечиваться на стадии проектирования. К сожалению, уровень проектирования осветительных установок в настоящее время оставляет желать лучшего. К тому же при сертификации светильников не проверяется коэффициент пульсации освещенности. Положение осложняется еще и тем, что отечественные заводы – изготовители светильников в большинстве своем не соблюдают требования ГОСТ16677-82 в части ограничения глубины пульсации освещенности. Нередко осветительные установки в кабинетах, где имеются рабочие места с компьютерами, монтируются вообще без проектов, просто кому-то понравились светильники в соседнем учреждении, решили себе установить не три, а, например, четыре таких светильника – чтобы светлее было! И если не соблюдается порядок монтажа осветительных установок, то о каком качестве освещения можно говорить. К слову сказать, грамотное проектирование освещения в помещениях с компьютерами является сложной задачей, технические решения иногда приходится принимать на уровне компромисса, с такой задачей способен справиться лишь опытный специалист-светотехник.

Справедливости ради надо отметить, что в последнее время на освещение, наконец-то, обратили внимание. Многие работодатели имеют намерение привести осветительные установки в состояние, соответствующее требованиям норм, в том числе и по коэффициенту пульсации освещенности. Многие из них сталкиваются с проблемой отсутствия информации о возможности приобретения соответствующей качественной аппаратуры, и это в то время, когда любой производитель ищет рынки сбыта и с готовностью предложит свою продукцию.

К сожалению, для обеспечения требуемых норм пульсации освещенности сегодня нередко приходится реконструировать действующие вновь смонтированные установки. Однако этот процесс нельзя пускать на самотек. Современный светотехнический рынок наполнен как дешевыми некачественными изделиями, так и продукцией высокого уровня , но дорогой. Чтобы разумно выбирать «золотую середину», без специалистов, владеющих вопросами освещения, не обойтись.

Надо еще раз обратить внимание на необходимость качественного проектирования вновь создаваемых осветительных установок, недопустимо монтировать системы освещения без соответствующих проектов. Нужно более ответственно подходить к процессу приемки осветительных установок в эксплуатацию, а производственный контроль проводить в полном соответствии с требованиями нормативной документации. Следует решить вопрос с информацией: потребители должны знать, что им нужно, и где это приобрести, а производителям необходимо предоставлять сведения о своих изделиях в полном объеме, причем в форме, доступной и понятной для покупателей.

К сожалению, информацию о продаваемых светильниках получить очень трудно. Продавцы твердят о наличии сертификата на светильник, об указании в паспорте светильника на соответствие его требованиям ГОСТ (как правило, это требования ГОСТ по пожарной безопасности). Никаких указаний по типам установленных ПРА в паспорте не содержится. То есть нужно очень хорошо представлять, как задать интересующий вопрос по поводу ограничения коэффициента пульсаций, чтобы получить адекватный ответ.

Что же касается реконструкции действующих осветительных установок, то наиболее целесообразным вариантом решения этой проблемы представляется разработка типовых рекомендаций с привлечением грамотных специалистов – светотехников.

Мы вкратце вспомнили историю искусственного освещения, а также немного поговорили о том, какие основные параметры есть у энергосберегающих ламп вообще и светодиодных ламп в частности. Сегодня, как и было обещано, мы перейдем к замерам и сравнениям (однако пока что без раскручиваний).

А стоит ли оно того?

Прежде всего меня волновал очевидный вопрос – все же, так ли сказочно эффективны обычные светодиодные лампы, которые можно купить в магазине, в реальных условиях? Чтобы ответить на него, я решил замерить освещенность, создаваемую в моей комнате разными лампочками, вкрученными в одну и ту же (мою) люстру. Исходно в ней стояли три двадцативаттных КЛЛ «Эра»; для сравнения я взял три светодиодных лампы Gauss по 12 Вт (утверждается, что это аналог 100 Вт лампы накаливания) и, для чистоты эксперимента, три обычных лампы накаливания по 95 Вт. Измерения проводились в центре комнаты, то есть именно там, где яркость освещения мне наиболее интересна и необходима. Скажу сразу - с точки зрения фотометрии это, наверное, не совсем корректно; но вот с точки зрения обычной жизни такое сравнение, как мне кажется, представляет основной интерес, так как отражает поведение лампочки не в интегрирующей сфере, а в самой обычной люстре.

Измерения проводились люксометром Mastech MS6610 . Стороннюю засветку я исключил плотными шторами (при выключенном освещении прибор показывал ноль люкс). Поскольку световой поток люминесцентных и светодиодных ламп зависит от их температуры, значения освещенности снимались два раза – сразу после включения и после десятиминутного прогрева (эмпирически было выяснено, что после десяти минут работы освещенность изменяется крайне незначительно). Лампы накаливания, разумеется, прогревать не надо, поэтому для них измерение проводилось только один раз, сразу после включения, чтобы не испортить люстру, расчитанную, если мне не изменяет память, максимум на 40 Ватт (для лампы накаливания) в каждом рожке. Результаты сего опыта можно наблюдать в таблице ниже.

Ну что же, видно, что этом тесте светодиодные лампы (как минимум те, что были у меня) и правда превосходят все, что ныне можно вкрутить в обычный патрон E27 (за исключением, может быть, какой-нибудь экзотики). С лампами накаливания все понятно – я и так догадывался, что результат будет не слишком впечатляющим. Интереснее сравнить светодиодные лампы и все еще популярные КЛЛ.

Сразу бросается в глаза, что за первые десять минут КЛЛ изменяют яркость почти в пять раз. На практике это означает, что для бытового сценария «зашел в комнату (кладовку) на две минуты найти что-то» они подходят хуже всего – к моменту выхода на рабочий режим их скорее всего уже выключат. Это помимо того, что газоразрядные лампы и так плохо переносят частые включения, хотя, положим, в кладовке они могут быть и не такими частыми, но, тем не менее, непродолжительными. Светодиодные лампы, напротив, несколько снижают яркость по мере прогрева – падение напряжения, а, следовательно, и мощность (при постоянном токе) на нагретом светодиоде меньше. Тем не менее, разница в яркости здесь не носит такого сногсшибательного характера, как в случае КЛЛ (что косвенно говорит о достаточно хорошем теплоотводе конкретно в этих лампах). К слову, видно, что и после прогрева разница все еще в пользу светодиодов, хотя ее размер таков, что можно считать освещенность, создаваемую и теми, и другими, примерно равной. Однако мы говорим о примерно равной освещенности, создаваемой двадцативаттной КЛЛ и двенадцативаттной LED-лампой – экономия по мощности почти в два раза. Про лампы накаливания можно даже не говорить – при во много раз большей мощности потребления по создаваемой освещенности они проигрывают и КЛЛ, и светодиодам. Кроме того, как я уже упоминал выше, девяностопятиваттные лампы в мою люстру вкручивать вообще нельзя, так что в реальности с лампами накаливания я бы не получил даже этих ста люкс. Разумеется, такое ограничение связано с нагревом.

Лампы накаливания, очевидно, уже сошли с дистанции, так что давайте сравним КЛЛ и светодиодную лампу по нагреву.

Эти изображения также были сняты после десятиминутного прогрева. Видно, что КЛЛ греется до ста градусов и более, в то время как максимальная температура светодиодной лампы составляет лишь около шестидесяти. То есть, возможность обжечься об КЛЛ, в принципе, существует (белок начинает сворачиваться при восьмидесяти градусах Цельсия), в то время как со светодиодной лампой это невозможно в принципе. Мелочь, но приятно.

Больше промеров

Итак, мы разобрались, что с точки зрения тех характеристик, которые приходят в голову первыми, светодиоды явно лучше. Время поговорить о более тонких материях, таких как коэффициент мощности и коэффициент пульсаций. Об этих хактеристиках почему-то вообще вспоминают редко, и, разумеется, их (пока что?) никогда не пишут на упаковках, а зря.

Коэффициент пульсаций является очень важным показателем. Несмотря на то, что изменения яркости с частотой более 16 – 20 Гц наш мозг сознательно не обрабатывает, эффект от них вполне заметен. Существенные пульсации общей освещенности могут привести к повышенной утомляемости, мигреням, депрессиям и прочим малоприятным вещам по части психики. Нормируется этот показатель в СНиП 23-05-95 . Там очень много разных таблиц, но, в целом, из них можно вынести, что коэффициент пульсаций общего освещения не должен превышать 20%. Стоит оговориться, что разговор обо всем этом имеет смысл до частоты около 300 Гц, поскольку далее на изменения освещенности уже не успевает реагировать сама сетчатка, и потому в этом случае в мозг просто не приходит раздражающего сигнала.

Коэффициент мощности для конечного потребителя, в принципе, неважен. Этот параметр показывает отношение активной мощности, потребляемой прибором, к полной мощности , учитывающей реактивную часть, не производящую полезной работы, но, в частности, греющую провода. Также распространено название «косинус фи» - это все оттого, что интересующая нас величина может вводиться как косинус некоторого условного угла. Максимальное, идеальное значение коэффициента мощности – 1. Бытовые счетчики учитывают только активную мощность , ее же пишут на упаковках; для потребителя в этом смысле проблем нет. Однако, если мы говорим о глобальных масштабах (например, миллионный город, целиком освещаемый светодиодными светильниками), низкий коэффициент мощности может создать большие проблемы энергетикам. Поэтому его оценка – оценка лампы в смысле светлого светодиодного будущего.

Мощность и коэффициент мощности я мерял головкой muRata ACM20-2-AC1-R-C . Коэффициент пульсаций измерялся осциллографом Uni-Trend UTD2052CL , к которому подключалась следующая схема:


Кому интересно, это классический частотно-компенсированный преобразователь «ток-напряжение» на операционном усилителе, дополненный искусственной средней точкой. Питается, для исключения наводок, от батареи. Диод BPW21R – прибор фотометрического класса с характеристикой, компенсированной согласно чувствительности человеческого глаза. Документация гарантирует линейность тока в зависимости от освещенности в фотогальваническом режиме, так что схема выдает напряжение, прямо пропорциональное освещенности фотодиода и вполне годится для измерений коэффициента пульсаций. Определяется он, кстати, как отношение размаха пульсаций к удвоенному среднему значению. И размах, и среднее значение входят в стандартные автоматические измерения любого современного цифрового осциллографа, так что с этим проблем нет – остается только удвоить и поделить. Сравнения результатов измерений этой импровизированной конструкцией со значениями, выдаваемыми прибором «ТКА-ПУЛЬС» (Госреестр), показали расхождение измеренного коэффициента пульсаций не более процента.

Итак, результаты замеров для ламп, которые оказались у меня под рукой:

С цоколем E27:

С цоколем E14:

Про лампу Wolta стоит поговорить отдельно

На упаковке читаем гордую надпись:


«Оптимальная для глаз частота мерцания». Офигеть! Что там за частота-то такая? Может быть, они имеют в виду, что она далеко за пределами регламентированных санитарными нормами трехсот Герц?

На осциллографе видим:


100 Гц, коэффициент пульсаций 68%. По СанПиН не проходит. Что они понимают под оптимальностью - загадка…

Как мы видим, здесь у светодиодных ламп не все так радужно. Тут же выясняется очень интересный факт – похоже, что о качестве светодиодных ламп нельзя судить только по производителю; одни и те же бренды, вообще говоря, ставят как рекорды качества, так и антирекорды. Надо отметить, что общий вердикт, представленный в таблице, я выносил, придавая большее значение коэффициенту пульсаций, чем коэффициенту мощности, по причинам, изложенным выше. Но даже коэффициент пульсаций в 1% не может до конца оправдать коэффициент мощности, равный 0.5, в случае промышленного изделия, продаваемого миллионными тиражами. Впрочем, для дома лучше взять такую лампу, чем изделие с единичным коэффициентом мощности и уровнем пульсаций в 50%.

Разумеется, лампы с коэффициентом пульсаций более 20% категорически не подходят для общего освещения (в люстру по шесть штук такое вкручивать не стоит). К слову, для упомянутых мной КЛЛ «Эра» он составляет чуть менее 10%, а для классической лампы накаливания - около 13%.

Последние параметры, о которых можно вскользь поговорить, это цветовая температура и индекс цветопередачи. Несмотря на то, что они формализуются, на бытовом уровне все сводится к «нравится/не нравится». Должен сказать, что все протестированные лампы в этом плане меня порадовали - ни у одной не было явного уклона в синеву или избыточную желтизну, все имели приятный белый оттенок. Но это, разумеется, на мой вкус, и только.

В следующих статьях мы наконец-то посмотрим, что у ламп внутри, и попытаемся разобраться, какие внутренние причины делают хорошие лампы хорошими, а плохие – плохими.

Примечание:

Выбор ламп для тестов обусловлен исключительно соображением «что было». Если (когда) появятся другие лампы - промеряю и выложу.

Смотрите видео на каналах:

Количественной характеристикой пульсации служит коэффициент пульсации (К П, %) , равный отношению половины разности максимальной и минимальной освещенности за период в люксах к средней освещённости за тот же период.

Согласно российским нормам, коэффициент пульсации на рабочей поверхности рабочего места не должен превышать 10-20% (в зависимости от специфики помещения и точности производимых работ), а в помещениях с компьютерами - 5%.

Но, по последним данным, для полного отсутствия вредных воздействий на человека, пульсации не должны быть более 4-5% при частоте до 300 Гц , потому что, согласно ГОСТ Р 54945-2012, частота пульсации свыше 300 Гц не оказывает влияния на общую и зрительную работоспособность.

Пульсации, глубиной 20%, вызывают такой же уровень расстройств нормальной активности мозга, как и пульсации с глубиной 100%. Человек ощущает необъяснимый дискомфорт, переутомление, головокружение. Высокочастотные пульсации света влияют на гормональный фон человека, суточные биоритмы и связанные с ними работоспособность, утомляемость, эмоциональное самочувствие. Систематическое воздействие может послужить косвенной причиной постоянного подавленного состояния, бессонницы, сердечно-сосудистых и онкологических заболеваний. Выявлено также неблагоприятное влияние колебаний света на фоторецепторные элементы сетчатки. Отрицательное действие пульсации освещения обусловлено изменением основной ритмической активности нервных элементов мозга, перестраивающих присущую им частоту этой активности в соответствии с частотой световых пульсаций. При действии ритмических световых раздражений наблюдается изменение частотного спектра электроэнцефалограммы (ЭЭГ), заключающееся в резком усилении амплитуды навязываемой частоты и в снижении амплитуд всех других частот, особенно частот так называемого альфа-ритма (9-12 Гц), которые в обычной ЭЭГ наиболее выражены.

Существует несколько способов измерения коэффициента пульсации освещённости.

Можно использовать прибор или приложения для смартфона: Flicker Tester , LED Flicker Finder , Flicker&Lux meter . Работоспособность приложений не проверялась, но, предположительно, первое должно работать лучше за счёт использования камеры, а 2 других хуже, потому что скорости работы датчика освещённости обычно не хватает.

1. Измерение коэффициента пульсации фотодиодом с подключением его в микрофонный вход компьютера.

Для этого нам потребуется любой фотодиод, аудиокабель, например от наушников, и программа виртуальный осциллограф на компьютере, вот она: VISUAL ANALYSER 2014 . Если в браузерах Internet Explorer и Microsoft Edge фильтр SmartScreen блокирует закачку, то можно использовать другой браузер или скачать программу с официального сайта .

К одному каналу кабеля подсоединяем фотодиод.

Плюс фотодиода к минусу кабеля (к общему проводу, экрану), минус фотодиода к плюсу кабеля (к сигнальному проводу).

Втыкаем кабель в микрофонный вход компьютера, запускаем программу, нажимаем в ней кнопку On. Ставим галочку рядом с Values. Для калибровки необходимо включить лампу накаливания 60 Вт (К П на разных сайтах от 11% до 18%, в примере используется 11%) , регулируя уровень входного сигнала микрофона и расстояние, добейтесь, чтобы при максимальной амплитуде значение Peak to peak (%fs) стало 11 (дальнейшее приближение лампы к фотодиоду не должно увеличивать это значение!), как на скриншоте:

Этот пункт Peak to peak (%fs) теперь будет показывать примерный коэффициент пульсации в цифровом виде и для всех других ламп (менять уровень микрофона больше не требуется). Для дальнейших измерений достаточно плавно приближать лампу к фотодиоду (амплитуда графика будет плавно увеличиваться), как только она начнёт уменьшаться, стоит остановиться - это и будет нужное значение, т.е. следует делать всё также, как и в процессе калибровки, но без изменения уровня входного сигнала микрофона.

Если осциллограф никак не реагирует на лампу , то нужно включить в программе другой канал, либо присоединить фотодиод к другому каналу на аудиокабеле.

Для определения частоты подсветки жидкокристаллических мониторов чувствительности некоторых фотодиодов может быть недостаточно, в этом случае нужно использовать солнечную батарею или другой фотодиод.

Для смартфона есть приложение Spectrum Analyzer ,похожее на описанное выше, но без числовых значений и калибровки, потому что на смартфоне не получится настроить уровень микрофона. Для работы нужно использовать 4-х контактный mini-jack 3,5 мм. Фотодиод или солнечная батарея подключается вместо микрофона проводной гарнитуры к двум выводам разъёма. Полярность зависит от марки смартфона. Может потребоваться первоначальное подключение фотодиода к проводу с неправильной полярностью, чтобы смартфон распознал подключение микрофона, после этого полярность нужно изменить для лучшей чувствительности, не вытаскивая штекер из смартфона. После запуска приложения нужно нажимать "минус" под верхним графиком 7 раз, пока крайние значения не станут равны 30000.

На левом скриншоте коэффициент пульсации 1%, на правом - 17%.

Ориентироваться следует по амплитуде верхнего графика. Чем больше амплитуда, тем выше коэффициент пульсации лампы.

Дальнейшее приближение фотодиода к лампе обязательно должно уменьшать амплитуду . Если этого не происходит, то сравнить лампы не получится, нужно взять более мощный фотодиод.

2. Измерение коэффициента пульсации с помощью фотодиода, резистора, с подключением в линейный вход компьютера.

З. Оценка коэффициента пульсаций, используя фотоаппарат.

Можно визуально определить наличие пульсаций, а при некотором опыте отличить лампу с большим коэффициентом пульсации от лампы с меньшим. Рекомендуется использовать телефон или смартфон. Некоторые камеры имеют встроенное подавление пульсаций, поэтому, если устройство не показывает мерцание лампы накаливания 75 Вт и мощнее, то нужно использовать другое. Камеру нужно подносить как можно ближе к лампе, чтобы она заняла весь экран. Может потребоваться нажатие кнопки автофокуса или изменение настроек. Ниже 2 видео пульсаций, сделанные смартфоном HTC Desire S:

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Эта 300 Вт лампа обладает наименьшим коэффициентом пульсации среди ламп накаливания меньших её по мощности - 4,5%, кроме ламп с толстой нитью, у которых К П ещё меньше. Вот так выглядит её график в виртуальном осциллографе:


4. Прослушивание пульсаций через наушники.

Для этого нужно подключить фотодиод или солнечную батарею к наушникам. Поднести фотодиод вплотную к лампе, солнечную батарею можно держать на расстоянии нескольких сантиметров от источника света, в зависимости от её мощности и лампы. При наличии пульсаций, в наушниках будет слышен примерно такой . Фотодиод будет создавать тихое гудение, особенно от ламп накаливания, поэтому рекомендую использовать . Он поможет избежать ошибок и позволит слышать пульсации света на значительном расстоянии.

5. Измерение коэффициента пульсаций с помощью мультиметра.

Подходит только мультиметр с возможностью измерения напряжения переменного тока в милливольтах . Ещё нужен фотодиод или солнечная батарея с резистором, как во втором способе. При одинаковом расстоянии между лампой и фотодиодом, нужно замерить переменное (U пер.) и постоянное (U пост.) напряжение на фотодиоде. В помещении должен быть свет только от измеряемой лампы. Для измерения переменного напряжения, в некоторых случаях, последовательно с мультиметром придётся подключать разделительный металлоплёночный конденсатор. В моём мультиметре конденсатор нужен только при измерении мВ с точностью до сотых при некоторых напряжениях. Формула: (U пер. *√2*2*100)/(U пост. *2). Пример: (0,00161В* √2*2*100)/(0,00609В*2)=37,387%. Слишком близкое приближение лампы к фотоэлементу и слишком большое расстояние от слабой лампы до фотоэлемента искажают значения .

6. По фотографиям с помощью Photoshop.

7. "Карандашный" тест.

Наиболее простой способ, показывающий наличие пульсаций от источника света. Можно использовать светлый карандаш или любой другой похожий предмет, а также хорошо подходят блестящие металлические стержни. При свете лампы необходимо быстро двигать его полукругом в двух пальцах, чтобы размытый след карандаша по форме напоминал веер.

При сильных пульсациях в "веере" будут заметны несколько карандашей. Чем сильнее коэффициент пульсации, тем более чётко будут различимы контуры карандашей. На фото Кп 37%, поэтому видны полосы, очертания очень размыты. Если свет не пульсирует, или мерцание небольшое, полос и контуров быть не должно. Способ не самый точный, поэтому, по возможности, рекомендую проверять его предыдущими.

Округлённые значения коэффициента пульсации некоторых ламп, измеренных вторым способом.

Лампа накаливания 15 Вт - 17%

Лампа накаливания 25 Вт - 12%

Лампа накаливания 6 В 30 Вт - 3%

Лампа накаливания 60 Вт - 11%

Лампа накаливания 75 Вт - 9%

Лампа накаливания 95 Вт - 8%

Лампа накаливания 200 Вт - 6%

Компактная люминесцентная лампа Philips 14 Вт - 11%

Светодиодная лампа IKEA Ледаре 10 Вт 600 лм матовая - 25%

Лампа Osram 11 Вт с дросселем - 41%

Светодиодная лампа FlexLED 8,5 Вт - 55%. Добавление 10 мкФ к 6,8 мкФ снизило пульсации до 37%, а ещё 33 мкФ уменьшило до 18%.

Светодиодная лампа Navigator 94 146 NLL-G105-18-230-2.7K-E27 18 Вт - 1%

Жду всех на каналах:

Новые статьи добавлены на второй сайт, на который можно перейти через кнопку "Спектроскопия" в меню сайта!

Если посмотреть на светодиодную лампочку через смартфон или видеокамеру, то можно обнаружить сильное мерцание. Если оно отсутствует, то можно попробовать приблизиться к лампочке на расстояние 20-30 см. У качественных светодиодных ламп качественный драйвер, в результате никакого мерцания не будет (у некоторых некачественных ламп мерцание может появиться через месяц-другой).

Также проверить наличие мерцания можно и при помощи карандашного теста. Для этого нужно просто помахать карандашом и посмотреть, остается ли след.

И конечно же мерцание (пульсации) можно измерить при помощи специальной аппаратуры).

Мерцающие лампы стоит ставить в коридор, туалет и любое другое помещение, где не проводишь много времени.

Самой первой светодиодной лампой у меня была Ikea LEDARE GU10 (802.559.07). После галогенных светодиодные лампочки порадовали меня отсутствием ультрафиолетового излучения, а также отсутствием мерцания.

200 лм для лампочки конечно оказалось маловато. Но для чтения хватало 5 лампочек, причем благодаря направленному свечению спотовых светильников. Что интересно, одна из галогенная лампочек прожила 2 года, тогда как первые четыре сгорели менее, чем за год. Интересно, 4 светодиодные лампы в том же светильнике как-то продлевают срок службы пятой галогенной или нет?

Следующими приобрел пару ламп свечек Ikea Ledare 402.540.90 E14 7W 400lm. Цветопередача у этих икеевских ламп заметно лучше, чем у многих других. Да и 400 люмен - в два раза больше 200. Перед покупкой я боялся, что в светильнике с лампами, расположенным горизонтально полу, светодиодные свечки не справятся из-за ограниченного угла. Но светили они неплохо. Правда, они заметно шире обычных ламп накаливания, так что поместятся не в любой светильник. И все бы ничего, тем более при такой цене, но эти светодиодные лампы мерцают

Следующими приобрел десяток светодиодных лампочек Philips E27 8W 9290002488. Взял сразу много, потому что был уверен, что Филипс производит качественную продукцию, а цена на распродаже в Ашане составляла всего 159 рублей. Позже обнаружил, что лампочки были произведены еще в 2010 году. Хотя на коробке написано 600 люмен, они заметно тусклее икеевской лампы E27 с маркировкой 600 люмен. При этом лампа Икеа Ледаре еще и больше по размеру, да мощность у нее выше. Всё бы ничего, но данные светодиодные лампочки Philips мерцают

В потолочном светильнике Евросвет (Eurosvet) 4807/12 помимо 12 галогенных ламп G4 используется и светодиодная подсветка. Мерцание светодиодов также можно заметить на камеру.

При этом галогенные лампы G4 в этой люстре не получится заменить на светодиодные. G4 - наверное, самый неподходящий конструктив для изготовления светодиодных ламп. Уж слишком маленький размер, чтобы туда можно было поместить хорошо светящие и качественные диоды, чтобы они еще и нормально охлаждались. 3 Вт - это пока практический предел для такого корпуса именно из-за проблем с теплоотводом, причем даже такие лампы могут сгореть очень быстро.

Но помимо низкой освещенности, в данной люстре еще приходится столкнуться с тем, что трансформатор рассчитан на активную нагрузку. Даже если светодиодные лампы с ним заработают (в том числе, если часть ламп оставить галогенными), мерцание будет просто кошмарным.

Чтобы поставить в люстру с цоколем G4, рассчитанную на галогенные лампы, светодиодные лампы, потребуется установка импульсного стабилизированного блока питания.

А также другие светильники Евросвет с цоколем G4 и пультом дистанционного управления!

Родители после моих опытов со светодиодными лампами и значительным сокращением счетов за электричество, также решили их попробовать. В магазине им предложили лампочки Gauss Elementary. Стал читать про этот "бренд", пишут, что их продукция присутствует только в России. Страницы на немецком могут попадаться, но реального присутствия в магазинах и тестирования за рубежом якобы нет. Также прочитал, что это китайские лампы по сильно завышенной цене, не соответствующей качеству. Цена в 310 рублей за лампу мне действительно казалась слишком завышенной для середины прошлого года. К счастью, данные лампы вообще не мерцают, если смотреть через видеокамеру:

(обновление) Снял светодиодные лампы Gauss Elementary повторно. Мерцание очень хорошо видно. Интересно, оно появилось со временем (прошло всего пару месяцев), или просто при съемке в первый раз камера была слишком далеко?

А вот помимо надписи Gauss Elementary я ничего другого на лампе не обнаружил. У ламп Филипс и Икеа маркировка конечно намного подробнее.

После таких опытов у меня остается сомнение, стоит ли верить всяким "Интернет-знатокам". Хотя ammo1 измерил индекс цветопередачи светодиодных свечек EB103101106, и он оказался равен 72,8, при том что на коробке написано >90. Может, с той же маркировкой сейчас идут уже другие лампы, но это тогда вообще странный шаг. Да и другие лампочки Гаусс уже могут мерцать.

Что касается проблемы с мерцанием, то ее иногда можно решить. Например, один из покупателей Ikea Ledare e14 802.489.93 на входе после моста поставил дополнительно конденсатор 2.2 мкФ на 400вольт, а на выходе поменял 220мкФ на 50В. К сожалению, не понимаю в электронике, так что подтвердить это не могу. Но если решение такое простое, то почему его не использует производитель? Потому что конденсаторы высыхают, а лампочки сильно нагреваются и способствуют этому?

Тестирование лампочек проводят многие, но одного российского ресурса вроде ledbenchmark.com с самыми популярными светодиодными лампами пока нет.

Кстати, очень полезно на лампе маркером писать дату установки. В будущем это поможет с легкостью определить, как долго она проработала. 20, 30 и тем более 55 тысяч часов - это очень приличный срок, так что все позабудется через годы. Да и с такой надписью легче следить, не сгорела ли лампа до окончания гарантийного срока.

На качество света светодиодной лампы влияют пять основных параметров. Рассмотрим подробно каждый из них.

Световой поток.

Измеряется в люменах (лм, lm). Это общее количество света, которое даёт лампа. Чем больше люмен, тем ярче лампа. 60-ваттная лампа накаливания даёт приблизительно 580 лм, 40-ваттная 350 лм, 75-ваттная - 800 лм, 100-ваттная - 1250 лм. В стандартах и на многих сайтах вы увидите более высокие значения. Я привожу данные для ламп, продающихся в обычных в магазинах и работающих от бытовой 220-В сети (а не 230, полагающиеся по стандарту).

Коэффициент пульсации света.

Естественные источники света (солнце, огонь свечи) светят равномерно, однако многие электрические источники света (лампы, экраны мониторов) дают не равномерный свет, а пульсирующий, при этом частота и степень пульсации могут быть весьма разными.

При частоте 50 Гц пульсация света более 40% воспринимается визуально как стробоскопический эффект (пульсацию видно при резком переводе взгляда или повороте головы). Такую пульсацию легко распознать с помощью карандашного теста : берём обычный длинный карандаш за кончик и начинаем быстро-быстро крутить им по полукругу туда и обратно. Если отдельных контуров карандаша не видно — мерцания нет, если же видно "несколько карандашей" — свет мерцает.

Видимая пульсация света вызывает ощущения дискомфорта, усталости и даже недомогания. Кроме того, современные медицинские исследования показывают, что органы зрения и мозг способны воспринимать невидимую пульсацию света с частотой до 300 Гц. При высокой частоте мерцания свет не оказывает визуального воздействия, но способен влиять на гормональный фон, который в свою очередь воздействует на эмоции человека, его работоспособность, суточные ритмы, а также многие другие сферы жизнедеятельности.

Свет с частотой пульсации выше 300 Гц не имеет заметного влияния на организм человека, так как пульсации на таких частотах просто не воспринимаются сетчаткой глаза.

В СНиП 23-05-95 «Естественное и искусственное освещение» указывается, что коэффициент пульсаций освещённости рабочей поверхности рабочего места не должны превышать 10—20 % (в зависимости от степени напряжённости работы), при этом нормируются только те пульсации, частота которых ниже 300 Гц. В СанПиН 2.2.2/2.4.1340-03 "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» указывается, что коэффициент пульсаций освещения при работе на ПЭВМ не должен превышать 5 %.

По ГОСТ 54945-2012 коэффициент пульсации определяется по формуле:

За секунду производится тысяча измерений яркости. Из максимального полученного значения вычитается минимальное, и результат делится на два средних значения (суммы всех значений, разделённой на их количество), получившийся результат умножается на 100.

Когда пульсации света нет, все измеренные значения одинаковы и коэффициент пульсации равен нулю.

В современных системах, где яркостью управляет ШИМ, импульс света может быть гораздо короче паузы, и тогда коэффициент пульсации может принимать значения больше 100%.

Например, когда импульс света в 10 раз короче паузы между импульсами, а яркость в импульсе составляет 100 лм, среднее значение будет 10 лм и по формуле ((100-0)/(10*2))*100 коэффициент пульсации составит 500%.

Пульсация с коэффициентом более 100 встречается в плохих светодиодных лампах и плохих мониторах. Большинство же хороших светодиодных ламп имеют коэффициент пульсации света менее 5 %.

Обычные лампы накаливания имеют коэффициент пульсации света от 8 до 32 % в зависимости от мощности (точнее, от толщины и инерционности спирали), поэтому ничего страшного в светодиодных лампах, имеющих пульсацию света до 40 % нет, а вот лампы с пульсацией более 40 % покупать и использовать не следует ни в коем случае.

Ещё один способ проверить наличие пульсации света — посмотреть на свет через камеру смартфона. Как правило, при пульсации света более 5% по экрану будут идти полосы, причём чем они контрастней, тем пульсация сильней. Недостаток этого способа в том, что полосы будут видны и при безвредной пульсации 5—40 %.

Индекс цветопередачи (Ra, CRI).

Спектр света светодиодной лампы отличается от спектра солнечного света и света обычной лампы накаливания. Хоть свет и выглядит белым, некоторых цветовых компонентов в нём больше, а некоторых меньше. Индекс цветопередачи показывает, насколько равномерен уровень разных цветовых компонентов в свете. При низком Ra хуже видны оттенки. Такой свет визуально неприятен, причём понять, что в нём не так, очень сложно. У ламп накаливания и солнца Ra=100, у хороших светодиодных ламп он больше 80, у очень хороших больше 90. Лампы с Ra ниже 80 в жилых помещениях лучше не использовать.

Индекс Ra учитывает только восемь цветов, и розового цвета, влияющего на восприятие оттенков человеческой кожи, среди них нет. Иногда можно встретить указание индекса R9 — это как раз розовый цвет. Считается, что R9 у хороших ламп должен быть больше ноля, у очень хороших — больше 50.

Недавно появились ещё две новые системы определения качества цвета в освещении. Это CQS (на основе 15 цветов) и TM30 (на основе 99 цветов). Пока ни одной серийной лампы, на упаковке которой указан какой-либо из этих новых индексов я не встречал, но при тестировании ламп на lamptest.ru я указываю все три индекса.

Цветовая температура (измеряется в кельвинах, K).

Светодиодные лампы выпускаются с разной цветовой температурой света: 2700 К — тёплый свет, как у ламп накаливания, 3000 К — чуть более белый комфортный свет, 4000 К — белый свет, 6500 К — холодный белый свет.

Учёные утверждают, что белый и холодный белый свет повышают работоспособность, а тёплый свет способствует релаксации. Для того чтобы человек полноценно отдыхал, придя с работы и лучше засыпал, рекомендуется использовать дома тёплое освещение. На мой взгляд, для дома больше подходят лампы с цветовой температурой 2700—3000 К. К тому же у светодиодных ламп с тёплым светом спектр более ровный, а у "холодных" ламп на спектре есть резкий пик синего цвета, который, по мнению некоторых учёных, вреден для глаз.

Угол освещения.

Обычные лампы накаливания светят во все стороны, галогенные споты дают узкий пучок света. Со светодиодными лампами всё сложнее.

Многие светодиодные лампы, заменяющие обычные лампы накаливания, имеют колпак в форме полусферы такого же диаметра, как корпус. Такие лампы практически не светят назад, и, если они направлены вниз, потолок будет оставаться тёмным, что может быть некомфортно. К счастью, в последнее время появилось много ламп, прозрачный колпак которых больше корпуса, и за счёт этого лампа немного светит и назад.

Лампы на светодиодных нитях (filament) или прозрачных дисках (Crystal Ceramic MCOB) имеют такой же большой угол освещения, как обычные лампы накаливания.

Большинство светодиодных спотов (ламп для подвесных потолков с цоколями GU10 и GU5.3) светят рассеянным светом с углом около 100 градусов и ослепляют из-за слишком широкого угла (галогенные софиты дают узкий луч света с углом освещения около 30 градусов).

Только некоторые светодиодные споты имеют такой же узкий угол освещения, как у галогенных ламп. Такие лампы легко распознать по наличию линз перед светодиодами.

Помимо основных параметров, влияющих на качество света, важно обращать внимание и на некоторые другие параметры светодиодных ламп.

Рабочее напряжение.

Большинство светодиодных ламп рассчитаны на сетевое напряжение 230 В, лампы с цоколями GU5.3 и G4 выпускаются также на 12 вольт. Светодиодные лампы работают в широком диапазоне напряжений. Обычно производители точно указывают диапазон (например, 90-265 В), но даже те лампы, на упаковке которых написано 230, 220 или 220-240 В, могут нормально работать на сильно пониженных напряжениях, не снижая яркость.

Все 12-вольтовые лампы могут работать как на переменном, так и на постоянном напряжении. Использование источника стабилизированного постоянного напряжения позволяет полностью исключить пульсацию света даже у тех 12-вольтовых ламп, которые мерцают при питании переменным напряжением.

Потребляемая мощность.

Светодиодные лампы весьма экономичны. Обычно мощность ламп лежит в диапазоне 1,5-15 Вт. Яркость светодиодных ламп нельзя оценивать по мощности: чем современней лампа, тем ярче она светит при той же мощности. Эффективность светодиодных ламп, имеющихся в продаже, составляет от 40 до 125 лм/Вт, поэтому яркость лампы с одинаковой мощностью может различаться втрое.

Поддержка работы с выключателем, имеющим индикатор.

Многие светодиодные лампы не могут работать с выключателями, имеющими индикатор. Они вспыхивают или слабо горят, когда выключатель выключен. Это происходит из-за того, что слабый ток постоянно течёт через лампу. Выходов из этой ситуации два: или использовать лампы, корректно работающие с такими выключателями, или отключать индикатор внутри выключателя.

Поддержка диммирования.

Большинство светодиодных ламп не может работать с регуляторами яркости (диммерами), но существуют специальные диммируемые светодиодные лампы (они дороже обычных). В отличие от ламп накаливания, при снижении яркости светодиодная лампа не меняет цвет освещения (у обычной лампы он желтеет). Многие диммируемые светодиодные лампы диммируются не до нуля, а лишь до 15-20% полной яркости. Уровень минимума диммирования зависит не только от лампы, но и от модели диммера. Как правило, те диммеры, которые специально предназначены для светодиодных ламп, позволяют установить более низкую минимальную яркость.

Некоторые светодиодные лампы при работе с диммером издают гудящий звук, громкость которого также может зависеть от модели диммера.

Эквивалент мощности.

Большинство производителей указывает на упаковке ламп эквивалент мощности лампы накаливания, то есть какой лампе накаливания соответствует по яркости лампа. В Европе наметилась правильная тенденция к отказу от указания эквивалента — покупателей приучают выбирать лампы по яркости в люменах. На большинстве светодиодных ламп в европейских магазинах теперь крупно указывается световой поток и не указывается эквивалент мощности.

Коэффициент мощности (Power Factor).

Большинство светодиодных ламп потребляет ток неравномерно в течение периода синусоиды питающего напряжения. Для бытового использования это не имеет большого значения, так как все бытовые счётчики учитывают только активную мощность, которая и указывается в характеристиках ламп. Значение PF у светодиодных ламп может быть от 0,2 до 1.

Габаритные размеры.

При выборе ламп не стоит забывать о габаритных размерах, которые у светодиодных ламп иногда бывают гораздо больше, чем у соответствующих ламп накаливания. Лампа может просто не поместиться в светильник или будет некрасиво торчать из плафона.

Срок службы.

Производители указывают для светодиодных ламп срок службы от 10 000 до 50 000 часов. Важно понимать, что все эти сроки рассчитываются теоретически и проверить это на практике невозможно — лампы производятся не так давно, а 50 000 часов — это почти шесть лет непрерывной работы.

Гарантийный срок.

Производители дают гарантию на лампы на срок от 1 года до 5 лет. Рекомендую всегда фотографировать смартфоном чеки, когда вы покупаете лампы. Чек потеряется или выцветет, а фотография останется, и по ней можно будет восстановить чек и обменять лампу. Любой магазин, продающий лампы, обязан обменивать их по гарантии, если же магазин пропал, смело обращайтесь к производителю. Гарантия на лампы работает!

Надёжность ламп.

К сожалению, далеко не все светодиодные лампы работают те десятки тысяч часов, которые обещает производитель. Из 14 светодиодных ламп, установленных в моей квартире, за три года вышли из строя 4, и только одна из них — после окончания гарантийного срока. Ещё раз повторю — меняйте лампы по гарантии, если они сломались.

Дата изготовления лампы.

Нет, лампы не портятся от долгого хранения, но технологии очень быстро развиваются, и лампы, которые были выпущены два года назад, скорее всего, окажутся хуже тех, которые произведены совсем недавно. Обращайте внимание на дату выпуска (если она указана) при покупке ламп. Не советую покупать лампы, которые были произведены более чем год назад.

На чём экономят производители

В продаже можно встретить почти одинаковые лампы по цене, различающейся в несколько раз. Так на чём же экономят производители и можно ли покупать дешёвые лампы?

Светодиоды и люминофор.

В дешёвых лампах часто используются светодиоды с низким индексом цветопередачи. К счастью, ламп с Ra меньше 70 в продаже уже почти не осталось, но с Ra 72-75 их продаётся множество, хотя считается, что для бытового освещения Ra должен быть не менее 80.

Электроника.

В дешёвых лампах вместо полноценной платы драйвера часто используется простейшая схема из диодного моста и двух конденсаторов. Такие лампы почти всегда имеют недопустимую пульсацию света и слабо светятся при подключении через выключатель, имеющий индикатор. Недобросовестные производители используют дешёвые конденсаторы, которые редко работают больше 2-3 лет.

Охлаждение.

В дешёвых лампах используются самые примитивные теплоотводы. Светодиоды и элементы электронной схемы могут перегреваться, и лампа выйдет из строя гораздо раньше.

Как производители обманывают покупателей

Многие производители указывают на упаковках ламп завышенные параметры. Можно встретить лампы, на которых написано "Эквивалент лампы накаливания 60 Вт", а светят они лишь как 25-ваттные лампы накаливания. Ниже приведен неполный список ухищрений производителей.

Завышенный эквивалент.

Производитель указывает эквивалент лампы накаливания гораздо выше реального. Иногда уличить производителя можно, даже не вскрывая упаковку лампы. Мне встречались лампы, на которых был указан эквивалент 60 Вт, а мелкими буквами световой поток 340 лм, соответствующий мощности 40 Вт.

Завышенный световой поток.

По ГОСТ Р 54815-2011 измеренный начальный световой поток светодиодной лампы должен быть не менее 90% номинального светового потока. Многие производители считают, что раз в ГОСТе написано 90%, можно смело делать лампы со световым потоком 540 лм и писать 600 лм, а другие на ГОСТ просто плюют и "приписывают" до 40% светового потока. Некоторые вообще не указывают световой поток на лампах.

Завышенная мощность.

Как правило, когда производитель указывает завышенные значения светового потока и эквивалента, мощность тоже завышается. На полке магазина могут рядом лежать две очень похожие лампы разных производителей, на одной из которых указана мощность 6 Вт, а на другой 8 Вт, при этом фактически может оказаться, что первая лампа имеет большую мощность и ярче светит.

Завышенный срок службы.

Существуют производители, которые указывают срок службы ламп 50 000 часов, при этом в их драйверах стоят конденсаторы, которые вряд ли проработают больше 5 000 часов.

Завышенный индекс цветопередачи.

Некоторые производители вообще не указывают в характеристиках ламп индекс цветопередачи, некоторые пишут "не менее 80", а по факту может быть лишь чуть выше 70.

Некорректное указание цветовой температуры.

Один очень крупный и известный производитель на всех своих лампах с тёплым светом всегда пишет 2700 К, а по факту цветовая температура их света составляет около 3000 К.

Пульсация света.

Некоторые производители до сих пор выпускают лампы с высоким уровнем пульсации света. На таких лампах никогда ничего не пишут про пульсацию. Использование таких ламп может быть вредно для здоровья, и они вообще не должны выпускаться и продаваться.

Как выбрать хорошие лампы

Выбор светодиодных ламп — задача непростая. Даже у самых именитых производителей, таких как OSRAM, встречаются лампы с недопустимо высокой пульсацией. У некоторых производителей часть ламп хорошие, а часть не очень. Для того чтобы точно знать, какие лампы хорошие, а какие нет, создан проект по независимому тестированию светодиодных ламп . Сейчас протестировано уже более 800 моделей ламп 70 брендов, и работа продолжается. Поэтому самый простой вариант выбора — найдите интересующую вас лампу на lamptest и посмотрите на её измеренные параметры:

  • коэффициент пульсации не должен превышать 40% (а лучше, чтобы он был менее 10%);
  • индекс цветопередачи должен быть не менее 80 (для хозяйственных помещений можно от 70);
  • световой поток должен быть не меньше, чем у той лампы накаливания, которую вы хотите заменить светодиодной;
  • если у вас установлен выключатель с индикатором, убедитесь, что лампа может с ним корректно работать;
  • если у вас установлен регулятор яркости, убедитесь, что лампа поддерживает диммирование;
  • если вы выбираете лампы-споты, обратите внимание на угол освещения. Лампы с углом более 50° будут ослеплять при установке в потолке большого помещения.

Если интересующей вас лампы пока нет на сайте lamptest.ru , рекомендую руководствоваться следующими критериями выбора:

  • если на упаковке указано "без пульсации", с большой вероятностью пульсация света лампы будет менее 5%. Если это не указано и есть возможность включить лампу, посмотрите на её свет через камеру мобильного телефона. По экрану не должны идти полосы. Попробуйте покрутить карандашом или другим длинным предметом перед лампой. Если контуры карандаша размыты — пульсаций нет, если вы видите "несколько карандашей" — есть видимая пульсация и такую лампу покупать не стоит.
  • Посмотрите, как выглядит кожа руки под светом лампы. Если цвет сероватый — у лампы низкий индекс цветопередачи и её лучше не покупать.
  • Сравните яркость света лампы с яркостью света лампы накаливания или другой лампы, яркость которой вам известна. Приблизительное сравнение можно сделать с помощью датчика света большинства смартфонов на Android. Установите любое приложение-люксметр (например, Sensors Multitool и там выберите "light"). Датчики всех смартфонов не откалиброваны, поэтому значения у всех смартфонов будут совершенно разными, но для сравнения это не важно. Заранее возьмите дома матовую лампу такой же формы, как вы хотите купить, запустите приложение и прислоните смартфон датчиком к лампе (датчик находится над экраном слева или справа, подносите его к верхушке обычных ламп и к центру бока ламп-«свечек»). Запишите получившееся значение. В магазине включите лампу, подождите хотя бы минуту (при прогреве светодиодные лампы теряют до 12% яркости), запустите приложение и прислоните датчик к лампе. Сравните значение с измеренным дома. Теперь вы почти точно будете знать, ярче измеряемая лампа, чем та, которая была измерена дома, или тусклее.
  • Обратите внимание на дату производства лампы (у большинства ламп она указана на корпусе). Если лампа выпущена более чем год назад, лучше её не покупать — прогресс идёт очень быстро и современные лампы лучше тех, которые выпускались раньше.
  • Обратите внимание на гарантийный срок. Если гарантия большая (3—5 лет), вероятность выхода лампы из строя гораздо меньше.
  • После покупки сфотографируйте чек. Если лампа выйдет из строя, эта фотография поможет вам поменять её по гарантии, если обычный чек потеряется или выцветет.

Заключение

Светодиодные лампы становятся всё лучше и лучше. Уже сейчас они способны полноценно заменить дома лампы накаливания, галогенные лампы и компактные люминесцентные (энергосберегающие) лампы. Теперь вы знаете всё об особенностях светодиодных ламп и сможете выбрать лампы, которые будут служить вам долгие годы и обеспечат комфортное освещение.