Калибровка информационно измерительных систем. Поверка и калибровка средств информационно-измерительных и управляющих систем (измерительных каналов ИИС и АСУ ТП). Предварительные испытания асутп

193.00

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль"

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Методические указания распространяются на измерительные каналы информационно-измерительных систем - ИК ИИС, устанавливают требования к методам и средствам калибровки; определяют организацию, порядок проведения и оформления результатов калибровки; регламентируют алгоритмы определения метрологических характеристик (MX) ИК при проведении калибровки и предназначены для метрологических служб энергопредприятий, аккредитованных на право проведения работ по калибровке ИК ИИС.

  • Заменяет РД 34.11.205-88

Исключен из Реестра действующих в электроэнергетике НТД приказом НП "ИНВЭЛ" № 101/1 от 31.12.2009 г. Действуют СТО 70238424.27.100.037-2009 Системы КИП и тепловой автоматики ТЭС. Организация эксплуатации и технического обслуживания. Нормы и требования. и СТО 70238424.27.100.038-2009 Автоматизированные системы управления технологическими процессами (АСУ ТП) ТЭС. Организация эксплуатации и технического обслуживания. Нормы и требования.

1. Общие положения

2. Операции калибровки

3. Средства калибровки

4. Требования безопасности

5. Требования к условиям калибровки

6. Подготовка к калибровке

7. Проведение калибровки

7.1. Внешний осмотр

7.4. Обработка результатов экспериментальных исследований

8. Оформление результатов калибровки

Приложение 1. Обязательное. Перечень технической документации, предъявляемой при калибровке ИК

Приложение 4. Справочное. Примеры структурных схем проведения эксперимента при калибровке ИК

Список использованной литературы

Этот документ находится в:

Организации:

10.06.1998 Утвержден РАО ЕЭС России
Издан СПО ОРГРЭС 2000 г.
Разработан АО Фирма ОРГРЭС

Procedural Guidelines - Measurement Channels of Measurement Systems - Organization and Procedure for Calibration

  • ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности
  • ПР 50.2.016-94 Государственная система обеспечения единства измерений. Требования к выполнению калибровочных работ
  • ГОСТ 12.2.007.14-75 Кабели и кабельная арматура. Требования безопасности
  • ГОСТ 12.2.007.6-75 Система стандартов безопасности труда. Аппараты коммутационные низковольтные. Требования безопасности
  • РД 34.03.201-97 Правила техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей
  • Федеральный закон 102-ФЗ
  • ГОСТ 8.438-81 Государственная система обеспечения единства измерений. Системы информационно-измерительные. Поверка. Общие положения
  • РД 50-660-88 Инструкция. Государственная система обеспечения единства измерений. Документы на методики поверки средств измерений . Заменен на РМГ 51-2002 .


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр. 15



стр. 16



стр. 17



стр. 18



стр. 19



стр. 20



стр. 21



стр. 22



стр. 23



стр. 24



стр. 25

РД 153-34.0-11.205-98

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.

ИЗМЕРИТЕЛЬНЫЕ КАНАЛЫ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫХ СИСТЕМ.
ОРГАНИЗАЦИЯ И ПОРЯДОК ПРОВЕДЕНИЯ КАЛИБРОВКИ

Дата введения 2000-11-01

РАЗРАБОТАНО Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС"

ИСПОЛНИТЕЛИ А.Г. Ажикин, С.А. Спорыхин, В.И. Осипова

УТВЕРЖДЕНО Департаментом стратегии развития и научно-технической политики РАО "ЕЭС России" 10.06.98

Первый заместитель начальника А.П. Берсенев

Настоящие Методические указания распространяются на измерительные каналы информационно-измерительных систем - ИК ИИС (далее - ИК), устанавливают требования к методам и средствам калибровки; определяют организацию, порядок проведения и оформления результатов калибровки; регламентируют алгоритмы определения метрологических характеристик (MX) ИК при проведении калибровки и предназначены для метрологических служб энергопредприятий, аккредитованных на право проведения работ по калибровке ИК ИИС.

Методические указания разработаны в соответствии с Законом РФ "Об обеспечении единства измерений " , ГОСТ 8.438-81 , ПР 50.2.016-94 и РД 50-660-88 .

В соответствии с настоящими Методическими указаниями должны разрабатываться методические указания по калибровке ИК для конкретных типов ИИС.

С выходом настоящих Методических указаний утрачивает силу "Методика. Измерительные каналы информационно-измерительных систем. Организация и порядок проведения поверки: РД 34.11.205-88" (М.: СПО Союзтехэнерго, 1988).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Цель калибровки - определение и подтверждение действительных значений MX и (или) пригодности к применению ИК, не подлежащих государственному метрологическому контролю и надзору.

1.2. Калибровка ИК должна проводиться комплектно (комплектный метод).

Если калибровку невозможно провести комплектным методом, то ее проводят поэлементно (поэлементный метод).

Под элементами ИК ИИС понимаются отдельные средства измерений (СИ) или совокупности СИ и других технических средств, включая линии связи, используемых в ИК ИИС.

При проведении калибровки поэлементным методом отдельно калибруются первичный измерительный преобразователь (ПИП) (или ПИП и ИП) и электрический тракт ИК (ЭТ ИК). Калибровка ЭТ ИК проводится в соответствии с методикой, изложенной в настоящих Методических указаниях.

1.3. Калибровке подвергаются все ИК с интервалами, указанными в свидетельстве о метрологической аттестации (МА).

1.4. Перечень ИК, подлежащих калибровке, составляется метрологической службой энергопредприятия и утверждается главным инженером.

1.5. Измерительные каналы ИИС, подлежащие государственному метрологическому контролю и надзору, в соответствии со ст. 13 Закона РФ "Об обеспечении единства измерений " должны подвергаться периодической поверке.

Перечень ИК, подлежащих поверке, составляется метрологической службой энергопредприятия и направляется в территориальный орган Госстандарта России.

Поверка ИК производится по методике, утвержденной органом Государственной метрологической службы, или по методике, изложенной в настоящих Методических указаниях и согласованной с территориальным органом Госстандарта России.

Межповерочные интервалы устанавливаются территориальным органом Государственной метрологической службы. Корректировка межповерочных интервалов проводится органом Государственной метрологической службы по согласованию с метрологической службой энергопредприятия.

2. ОПЕРАЦИИ КАЛИБРОВКИ

При проведении калибровки должны быть выполнены следующие операции:

проверка наличия технической документации на ИИС и агрегатные средства измерений (АСИ), входящие в ИК (приложение 1);

внешний осмотр (разд. 7.1 настоящих Методических указаний);

проверка функционирования ИК (разд. 7.2);

определение метрологических характеристик (разд. 7.3);

обработка результатов экспериментальных исследований (разд. 7.4);

оформление результатов калибровки (разд. 8 настоящих Методических указаний).

3. СРЕДСТВА КАЛИБРОВКИ

3.1. Средства калибровки (эталоны) должны обеспечивать воспроизведение и (или) хранение единиц физической величины с наивысшей точностью с целью передачи ее значения ИК от соответствующих государственных эталонов, а также иметь действующее калибровочное (поверочное) клеймо или сертификат о калибровке (поверке).

3.2. При проведении калибровки комплектным методом в качестве эталонов должны применяться СИ, указанные в нормативно-технической документации (НТД) по поверке или калибровке ПИП.

3.3. При поэлементной калибровке контролю подлежат MX элементов ИК, поэтому в качестве эталонов должны применяться СИ в соответствии с НТД по поверке или калибровке первого СИ в составе ЭТ ИК.

3.4. Допускается использование встроенных эталонов и источников сигналов, входящих в состав ИИС, а также замена используемых эталонов на другие, если их технические и метрологические характеристики не хуже характеристик эталонов по пп. 3.2 и 3.3.

3.5. Контроль за внешними условиями должен осуществляться СИ, абсолютное значение погрешности которых составляет не более чем 0,1 изменения значения внешней влияющей величины, при котором возникают дополнительные погрешности у АСИ, входящих в состав ИК.

3.6. В приложении 2 приведен перечень эталонов и вспомогательных СИ, которые могут быть использованы при проведении калибровки.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При проведении калибровки ИК необходимо соблюдать меры безопасности, предусмотренные ГОСТ 12.2.007.0-75 , ГОСТ 12.2.007.6-75 , ГОСТ 12.2.007.14-75 , Правилами техники безопасности и , правилами ТБ и промсанитарии, устанавливаемыми инструкциями энергопредприятий, НТД на эталоны и АСИ.

4.2. К проведению калибровки допускаются лица, имеющие профессиональную подготовку и право проведения калибровочных работ.

5. ТРЕБОВАНИЯ К УСЛОВИЯМ КАЛИБРОВКИ

5.1. При проведении калибровки проводится контроль внешних условий, значения параметров которых должны соответствовать условиям, при которых были нормированы MX ИК.

5.2. Если условия эксплуатации СИ не соответствуют требованиям НТД, то калибровка не проводится до установления и устранения причин, вызвавших отклонение условий эксплуатации от требуемых.

5.3. Условия применения эталонов, используемых при калибровке, должны соответствовать требованиям НТД на них и быть такими, чтобы суммарная дополнительная погрешность, возникающая от воздействия внешних влияющих величин, не превышала 0,5 основной погрешности эталона.

6. ПОДГОТОВКА К КАЛИБРОВКЕ

6.1. Перед проведением калибровки необходимо:

осуществить организационные мероприятия по оформлению допуска к работе;

подготовить и проверить комплект технической документации на ИИС и АСИ, входящих в состав ИК, согласно перечню, приведенному в приложении 1;

инструктаж персонала, участвующего в калибровке;

подготовить градуировочные таблицы для термоэлектрических преобразователей и термопреобразователей сопротивления, таблицы расчетных значений перепадов давления для ИК расхода и уровня (пример таблицы приведен в приложении 3);

подготовить и установить эталоны и вспомогательные СИ для задания входного сигнала и контроля влияющих величин;

установить связь (по радио или телефонную) от средств задания входного сигнала до средств представления информации.

7. ПРОВЕДЕНИЕ КАЛИБРОВКИ

7.1. Внешний осмотр

7.1.1. При проведении внешнего осмотра ИК необходимо проверить:

комплектность ИК;

исправность пломб АСИ;

правильность и качество выполнения экранировки, монтажа линий связи;

отсутствие механических повреждений и дефектов АСИ, входящих в состав ИК, которые могут повлиять на их работоспособность;

выполнение заземления АСИ, входящих в состав ИК, в соответствии с требованиями инструкций по эксплуатации или технических описаний на конкретные АСИ;

наличие маркировки линий связи.

7.1.2. При несоответствии ИК вышеуказанным требованиям калибровка не проводится до устранения выявленных недостатков.

7.2. Проверка функционирования ИК (опробование)

Функционирование ИК в условиях эксплуатации проверяется путем вывода значений измеряемой величины технологического параметра на средства представления информации. Если значение измеряемого параметра соответствует режиму работы оборудования, то считается, что ИК функционирует нормально.

7.3. Определение метрологических характеристик

7.3.1. Определение количества исследуемых точек по диапазону измерений ИК

Исследуемые точки устанавливаются в соответствии с программой МА ИК ИИС в количестве не менее 5.

Исследуемые точки равномерно располагаются по всему диапазону измерений ИК, причем одна точка должна соответствовать 0 %, а другая - 100 % диапазона.

Если невозможно исследовать точки 0 % и 100 %, то они заменяются точками, в которых действительные значения измеряемого параметра определяются по формулам:

X и0 = X 0 + |Δ l | + |Δ h |;

X и100 = X 100 - |Δ l | - |Δ h |,

где Х и0 и Х и100 - действительные значения измеряемого параметра в исследуемых точках, находящихся вблизи нижнего и верхнего пределов диапазона измерений ИК;

Х 0 и Х 100 - нижний и верхний пределы диапазона измерений ИК;

Δ l и Δ h - нижняя и верхняя границы доверительного интервала погрешности измерений ИК, указанные в свидетельстве о МА ИК ИИС.

7.3.2. Проведение экспериментальных исследований

7.3.2.1. При комплектном методе экспериментальные работы состоят в определении значений выходного сигнала ИК в каждой исследуемой точке диапазона измерений ИК и контроле условий эксплуатации ИК.

Схема проведения эксперимента представлена в приложении 4 (рис. П4.1).

7.3.2.2. При поэлементном методе экспериментальные работы состоят в определении:

максимальных значений абсолютной погрешности ПИП (или ПИП и ИП) в исследуемых точках по протоколу калибровки, при этом должно выполняться условие:

Δ ПИПмакс ≤ Δ ПИПд;

Δ ИПмакс ≤ Δ ИПд,

где Δ ПИПд - предельно допустимое значение погрешности ПИП, указанное в НТД;

Δ ИПд - предельно допустимое значение погрешности ИП, указанное в НТД,

значений выходного сигнала ЭТ ИК в исследуемых точках и контроле условий его эксплуатации, а также значений внешних влияющих величин для ПИП (или ПИП и ИП). Структурная схема проведения эксперимента представлена на рис. П4.2.

7.3.2.3. В каждой исследуемой точке проводятся три наблюдения.

7.3.2.4. Регистрация результатов наблюдений осуществляется через интервалы времени, равные циклу опроса ПИП или превышающие его.

7.3.2.5. Результаты экспериментальных исследований заносятся в табл. 1 и 2 протокола (приложения 5 и 6).

7.3.2.6. Подключение эталонов производится в соответствии с НТД на АСИ.

7.3.2.7. После проведения экспериментальных работ восстанавливается рабочая схема ИК и проводится проверка его функционирования (см. разд. 7.2).

7.4. Обработка результатов экспериментальных исследований

7.4.1. Обработка результатов экспериментальных исследований состоит в определении погрешности ИК.

7.4.2. Обработка результатов экспериментальных исследований проводится по алгоритму.

7.4.2.1. Погрешность ИК для каждого i-го наблюдения в j-й исследуемой точке определяется:

при комплектном методе по формуле

где - среднее значение погрешности ИК по трем наблюдениям;

и - среднее значение погрешности ИК по двум наибольшим и двум наименьшим значениям;

Δ jiмин и Δ jiмакс - соответственно минимальное и максимальное значение погрешности в j-й исследуемой точке.

7.4.3. Заключение о пригодности ИК.

7.4.3.1. Заключение производится по алгоритму, приведенному на рис. 1.

Рис. 1. Блок-схема алгоритма определения пригодности ИК к применению

7.4.3.2. Измерительный канал считается пригодным к применению по результатам калибровки, если:

условия эксплуатации ИК соответствуют условиям, указанным в свидетельстве о МА;

во всех точках диапазона измерений ИК значения погрешностей, рассчитанные по одной из формул (3), (4) или (5), удовлетворяют неравенству

и одного из неравенств:

Δ l < Δ (2)+ < Δ h

Δ l < Δ (2)- < Δ h

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КАЛИБРОВКИ

По результатам калибровки оформляется сертификат о калибровке ИК ИИС по форме, приведенной в приложении 7.

По результатам поверки оформляется свидетельство о поверке ИК ИИС по форме, приведенной в приложении 8.

Приложение 1

Обязательное

ПЕРЕЧЕНЬ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ, ПРЕДЪЯВЛЯЕМОЙ ПРИ КАЛИБРОВКЕ ИК

1. Техническое описание ИИС.

2. Инструкция по эксплуатации ИИС.

3. Методические указания по калибровке ИК ИИС.

4. Методики калибровки или поверки.

5. Сертификат и протокол последней калибровки ИК.

6. Свидетельство о МА ИК ИИС.

7. Перечень и значения MX элементов ИИС, техническое описание на АСИ, журнал о калибровке АСИ.

8. Программа МА ИК ИИС.

Приложение 2

ЭТАЛОНЫ И ВСПОМОГАТЕЛЬНЫЕ СИ, ИСПОЛЬЗУЕМЫЕ
ПРИ ПРОВЕДЕНИИ КАЛИБРОВКИ

Наименование

Диапазон измерений

Основная погрешность, %

Назначение

1. Масляный пресс

Верхний предел измерений 6 кгс/см 2 (0,6 МПа)

Задание входного сигнала при комплектном методе калибровки ИК давления

2. Манометр образцовый

Контроль входного сигнала при комплектном методе калибровки ИК давления

3. Манометр деформационный образцовый

Верхний предел измерений 1 кгс/см 2 (0,1 МПа)

4. Задатчик давления

Воздух 250

Верхний предел измерений 250 кгс/см 2 (25 МПа)

Задание входного сигнала при комплектном методе калибровки ИК давления, разности давлений

5. Мановакуумметр

Верхний предел измерений 2,5 кгс/см 2 (0,25 МПа)

Задание входного сигнала при комплектном методе калибровки ИК вакуума

6. Магазин сопротивления

(0,01 ÷ 111111,1) Ом

Задание входного сигнала при поэлементном методе калибровки ИК температуры

7. Потенциометр постоянного тока

8. Магазин взаимной индуктивности

(5·10 -4 ÷ 11,111) мГн

Задание входного сигнала при поэлементном методе калибровки ИК давления, расхода, уровня

9. Источник электрических сигналов

10. Цифровой вольтамперметр

Контроль значения входного сигнала при поэлементном методе калибровки ИК давления, расхода, уровня

11. Термометр лабораторный

Цена деления 1 °С

Измерение температуры окружающего воздуха

12. Барометр

(80 ÷ 106) 1000 Па

Измерение барометрического давления

13. Психрометр Августа

Цена деления 0,5 °С

Измерение влажности окружающего воздуха

14. Ампервольтметр

Измерение напряжения питания

15. Частотомер

(10 ÷ 1000) Гц

±(1,5·10 -7 Гц + 1 ед.счета)

Измерение частоты

16. Виброизмерительный прибор

(12 ÷ 200) Гц

Измерение вибрации

Приложение 3

ПРИМЕР ГРАДУИРОВОЧНОЙ ТАБЛИЦЫ ДЛЯ ИЗМЕРИТЕЛЬНОГО КАНАЛА
ТЕМПЕРАТУРЫ С ИСПОЛЬЗОВАНИЕМ ТЕРМОЭЛЕКТРИЧЕСКОГО
ПРЕОБРАЗОВАТЕЛЯ ТИПА ТХА С ДИАПАЗОНОМ ИЗМЕРЕНИЯ ОТ 0 ДО 150 °С

Исследуемые точки

Значение входного сигнала, мВ

Температура свободных концов, °С

Приложение 4

Справочное

ПРИМЕРЫ СТРУКТУРНЫХ СХЕМ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА
ПРИ КАЛИБРОВКЕ ИК

Рис. П4.1. Структурная схема проведения эксперимента при калибровке ИК комплектным методом:

ПИП - первичный измерительный преобразователь (датчик); ИП - измерительный преобразователь;
АЦП - аналого-цифровой преобразователь; К - коммутатор; УСВК - устройство связи с вычислительным
комплексом; СПИ - средство представления информации; ВК - вычислительный комплекс;
ПУ - печатающее устройство; Э - средство калибровки эталон; ИнК - информационный комплекс

Рис. П4.2. Структурная схема проведения эксперимента при калибровке ИК поэлементным методом:

а - образцовый сигнал подается на вход ИП; б - образцовый сигнал подается на вход УКНП;
УК - устройство коммутации;
УКНП - устройство коммутации, нормализации и преобразования;
c , d - линия связи между ПИП и ЭТ ИК; 1 - рабочее состояние ИК; 2 - калибровка

Остальные обозначения см. рис. П4.1.

Приложение 5

ПРОТОКОЛ
КАЛИБРОВКИ ИК КОМПЛЕКТНЫМ МЕТОДОМ

Таблица 1

Измеряемый параметр

Диапазон измерений

Условия калибровки

Значение входного сигнала в

Подпись, число

% диапазона измерений

единицах измеряемой величины X gi

ПРОТОКОЛ
КАЛИБРОВКИ ИК ПОЭЛЕМЕНТНЫМ МЕТОДОМ


Таблица 1

Измеряемый параметр

Диапазон измерений

Элемента ИК

Погрешность ИК

Заключение о результатах калибровки

Специалист по калибровке (ф.и.о.)

Подпись, число

ПИП (или ПИП и ИП)

Наименование

Условия эксплуатации

Погрешность измерений

Наименование

Условия калибровки

Значение входного сигнала в единицах измерительной величины Xgi

Значение выходного сигнала (погрешность измерения) в единицах измеряемой величины

основная Δ oj

дополнительная Δ gj


________________________________________________

наименование метрологической службы энергопредприятия

СЕРТИФИКАТ
О КАЛИБРОВКЕ ИК ИИС
___________________________________________

тип ИИС, предприятие, эксплуатирующее ИИС

_______________________________________________________________

наименование ИК (группы однотипных ИК)

Действительные значения метрологических характеристик ИК _____________________

___________________________________________________________________________

Условия проведения калибровки ______________________________________________

Заключение о годности ИК ___________________________________________________

___________________________________________________________________________

___________________________________________________________________________

Протокол № _________ от _____________ 20____ г.

Приложение 8

__________________________________________________________

наименование органа Государственной метрологической службы

СВИДЕТЕЛЬСТВО
О ПОВЕРКЕ ИК ИИС № ____

Действительно до

"___" _________ г.

Измерительный канал ________________________________________________________

наименование ИК, тип ИИС, предприятие, эксплуатирующее ИИС

в составе ___________________________________________________________________

АСИ, их заводские номера

поверен и на основании результатов периодической поверки (протокол № ___ от _______ г.) признан годным к применению.

Оттиск поверительного клейма или печати

____________________________________

должность руководителя метрологической службы

_________________

инициалы, фамилия

Поверитель

_________________

ССБТ. Кабели и кабельная арматура. Требования безопасности.

6. ПР 50.2.016-94 . ГСОЕИ. Требования к выполнению калибровочных работ.

7. РД 50-660-88. ГСОЕИ. Документы на методики поверки средств измерений.

8. Правила техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей: РД 34.03.201-97 . - М.: НЦ ЭНАС, 1997.

9. Правила техники безопасности при эксплуатации электроустановок. - М.: СПО Союзтехэнерго, 1991.

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. ОПЕРАЦИИ КАЛИБРОВКИ

3. СРЕДСТВА КАЛИБРОВКИ

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5. ТРЕБОВАНИЯ К УСЛОВИЯМ КАЛИБРОВКИ

6. ПОДГОТОВКА К КАЛИБРОВКЕ

7. ПРОВЕДЕНИЕ КАЛИБРОВКИ

7.1. Внешний осмотр

7.2. Проверка функционирования ИК (опробование)

7.3. Определение метрологических характеристик

7.4. Обработка результатов экспериментальных исследований

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КАЛИБРОВКИ

Приложение 1 Обязательное ПЕРЕЧЕНЬ ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ, ПРЕДЪЯВЛЯЕМОЙ ПРИ КАЛИБРОВКЕ ИК

Приложение 4 Справочное ПРИМЕРЫ СТРУКТУРНЫХ СХЕМ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА ПРИ КАЛИБРОВКЕ ИК

Список использованной литературы

, 58.45kb.

  • Экзаменационные вопросы по дисциплине «Измерительная техника» , 40.7kb.
  • Методика приемки из наладки в эксплуатацию измерительных каналов информационно-измерительных , 235.63kb.
  • Отдел метрологического обеспечения измерений физико-химических величин , 18.17kb.
  • Рабочая программа дисциплины мерительные устройства систем управления , 448.87kb.
  • Анализ и синтез измерительных преобразователей с частотным выходным сигналом для информационно-измерительных , 675kb.
  • Поверка каналов измерительных систем

    В последнее время всё более отчетливо просматриваются проблемы, связанные с поверкой, вообще, и с поверкой каналов измерительных систем, в частности. Оставляя в стороне общие проблемы, остановимся на вопросах, связанных с поверкой каналов измерительных систем.

    Можно выделить несколько таких вопросов.

    1. Следует ли уточнить понятие “поверка” по отношению к каналам измерительных систем?

    2. Достаточно ли полны процедуры поверки, применяемые в настоящее время для оценки основной погрешности каналов измерительных систем?

    3. Как следует документировать результаты поверки каналов измерительных систем?

    4. Как обеспечить взаимное признание результатов поверки каналов измерительных систем внутри страны и за рубежом?

    Сразу хотелось оговориться, что в рамках данного доклада излагается личная точка зрения автора, основанная на его опыте решения подобных проблем, причем, в основном, этот опыт сводился к решению вопросов общей организации поверки, а не методик поверки отдельных конкретных систем. Естественно, этот опыт нельзя считать всеобъемлющим, а полученные выводы непререкаемыми.

    Начнем с ряда цитат из ГОСТ Р 8.596 . Прежде всего, определимся: что же такое измерительная система? “Измерительная система – совокупность измерительных, связующих, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое, предназначенная для:

    – получения информации о состоянии объекта с помощью измерительных преобразований в общем случае множества изменяющихся во времени и распределенных в пространстве величин, характеризующих это состояние;

    – машинной обработки результатов измерений;

    – регистрации и индикации результатов измерений и результатов их машинной обработки;

    – преобразования этих данных в выходные сигналы системы в разных целях”.

    – измерительные каналы ИС-1, как правило, подвергают комплектной поверке, при которой контролируют метрологические характеристики измерительных каналов ИС в целом (от входа до выхода канала);

    – измерительные каналы ИС-2, как правило, подвергают покомпонентной (поэлементной) поверке: демонтированные первичные измерительные преобразователи (датчики) – в лабораторных условиях; вторичную часть – комплексный компонент, включая линии связи, – на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты. При наличии специализированных переносных эталонов или передвижных эталонных лабораторий и доступности входов ИС-2 комплектная поверка измерительных каналов ИС-2 на месте установки предпочтительна”.

    При этом под каналами ИС-1 и ИС-2 понимается следующее:
    “ИС-1 – выпускаемые изготовителем как законченные укомплектованные (за исключением, в ряде случаев, линий связи и электронных вычислительных машин) изделия, для установки которых на месте эксплуатации достаточно указаний, приведенных в эксплуатационной документации, в которой нормированы метрологические характеристики измерительных каналов системы;

    ИС-2 проектируемые для конкретных объектов (группы типовых объектов) из компонентов ИС, выпускаемых, как правило, различными изготовителями, и принимаемые как законченные изделия непосредственно на объекте эксплуатации. Установку таких ИС на месте эксплуатации осуществляют в соответствии с проектной документацией на ИС и эксплуатационной документацией на её компоненты, в которой нормированы метрологические характеристики, соответственно, измерительных каналов ИС и её компонентов”.

    Рассмотрим простейший пример – теплосчётчик. Он полностью соответствует определению измерительной системы. Однако, для его поверки ГОСТ Р 51649 рекомендует уже иные подходы к поверке: поэлементный и поканальный. Поэлементный метод рекомендуется использовать в случае, когда составные части теплосчётчика утверждены, как типы средств измерений, а также при наличии стандартной информационной связи между частями и утвержденной в установленном порядке методике расчета погрешности теплосчётчика по погрешностям его составных частей.

    Поканальный метод используется в том случае, когда установлены нормы погрешности каналов и имеется методика расчета погрешности теплосчётчика по погрешностям его измерительных каналов, утвержденная в установленном порядке.

    Небезынтересно отметить, что в том же ГОСТ Р 8.596 под измерительным каналом понимается “конструктивно или функционально выделяемая часть ИС, выполняющая законченную функцию от восприятия измеряемой величины до получения результата её измерений, выражаемого числом или соответствующим ему кодом, или до получения аналогового сигнала, один из параметров которого – функция измеряемой величины.

    Примечание . Измерительные каналы ИС могут быть простыми и сложными. В простом измерительном канале реализуется прямой метод измерений путем последовательных измерительных преобразований. Сложный измерительный канал в первичной части представляет собой совокупность нескольких простых измерительных каналов, сигналы, с выхода которых, используются для получения результата косвенных, совокупных или совместных измерений или для получения пропорционального ему сигнала во вторичной части сложного измерительного канала ИС”.

    Отсюда следует, что теплосчётчик надо бы рассматривать, как сложный измерительный канал, но состоящий из ряда простых. Создаётся впечатление, что мы несколько запутались. Даже на таком простом примере, оказывается, что одно и то же средство измерений можно рассматривать и как систему и как канал.

    Но вернемся к поверке. По определению, теплосчётчик следует отнести к ИС-1, а, следовательно, её надо бы поверять комплексно, но в настоящее время не существует подобных методик. Если же используется поэлементный или поканальный метод поверки, что в данном случае не имеет существенного значения, то, в ряде случаев, периодическая поверка сводится к внешнему осмотру. При внешнем осмотре выполняются следующие операции:

    – оценка соответствия комплектности теплосчётчика паспорту;

    – проверка наличия непросроченных свидетельств о поверке (или других документов, подтверждающих прохождение первичной или периодической поверки) теплосчётчика и каждой его составной части;

    – контроль наличия и целостности пломб изготовителя, а также пломб и клейм, обязательных для коммерческих средств учета;

    – проверка отсутствия механических повреждений, влияющих на работоспособность составных частей теплосчётчика и электрических связей между ними.

    Перечень операций, приведенный выше, является по существу дословной цитатой из методики одного из теплосчётчиков.

    Получается, что при периодической поверке никаких работ по оценке метрологических характеристик теплосчётчика не выполняется. Такие работы проводятся при поверке его составных частей. Тогда поверка вырождается в чисто административную процедуру. Это приводит к возникновению сразу двух вопросов:

    1. Может быть, определить поверку, как оценку соответствия средств измерений установленным техническим и административным требованиям? При этом метрологические характеристики, которые являются частью технических, могут быть установлены в процессе калибровки.

    2. Достаточен ли набор процедур, выполняемых при периодической поверке, чтобы быть уверенным, что основная погрешность теплосчётчика в целом не превзойдет нормированных пределов? Не развивая эту тему, можно отметить, что перечисленный набор процедур не включает в себя проверку правильности соединений. А это может оказать весьма существенное влияние на суммарную погрешность.

    Можно было бы отметить и другие источники погрешностей, которые нередко не учитываются при описании методик поверки измерительных систем. Отметим ещё только возможность влияния программного обеспечения на достоверность полученных результатов. Несмотря на то, что за рубежом этому вопросу уделяется значительное внимание. В России только начинаются работы в указанном направлении. Очень слабо отражены в методической и нормативной документации и вопросы, связанные с влиянием интерфейсов, как цифровых, так и, особенно, аналоговых на достоверность полученных результатов измерений.

    И ещё о проблемах взаимного признания результатов поверки и калибровки не только внутри СНГ, что тоже в ближайшем будущем может стать существенной проблемой, но и в странах, так называемого, дальнего зарубежья.

    В российской метрологической практике используется несколько родственных понятий, относящихся к техническим устройствам, используемым в сфере метрологии:

    Стандартный образец – техническое средство в виде вещества (материала), устанавливающее, воспроизводящее, хранящее единицы величин, характеризующих состав или свойства этого вещества (материала) в целях передачи их размера средствам измерений;

    Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу величины, размер которой принимают неизменной (в пределах установленной погрешности) в течение известного интервала времени;

    Средство контроля – техническое средство, воспроизводящее и (или) хранящее величину заданного размера, предназначенное для определения состояния контролируемого объекта и обладающее нормированными характеристиками погрешности;

    Испытательное оборудование – техническое средство, предназначенное для воспроизведения и поддержания условий испытаний.

    Если любое из перечисленных технических устройств используется в областях, охватываемых законодательной метрологией, например, обеспечение безопасности, здравоохранение, торговля, экология и т.п., должны ли на него распространяться требования по испытаниям и утверждению типа или это относится только к средствам измерений в строгом понимании этого термина? В Германии, например, это различие не столь строго, да и у нас, на практике, значительную долю Госреестра средств измерений составляют устройства контроля и испытательное оборудование.

    В случае, если средство измерений состоит из отдельных блоков, которые могут быть использованы, как автономно, так и составе сложных измерительных устройств или каналов измерительных систем, следует ли подвергать испытаниям и утверждению типа каждый из таких блоков в отдельности? Если да, то может ли наравне с этим в качестве отдельного типа средства измерений утверждаться канал измерительной системы, в состав которого входят аналогичные блоки, не проходившие индивидуально утверждения типа?

    В ряде международных документов по метрологии указано на возможность отказа от испытаний и утверждения типа средств измерений, если их соответствие существующим требованиям может быть подтверждено на основе представленной технической документации, а метрологические характеристики оцениваются при проведении первичной поверки или калибровки. Следует ли уточнить, на какие именно группы средств измерений распространяется указанное положение?

    Если средство измерений изготавливается или ввозится по импорту в единичном или незначительном количестве экземпляров, необходимо ли проведение работ по утверждению типа или достаточно провести первичную поверку (метрологическую аттестацию) конкретных образцов?

    Если метрологические характеристики средства измерений существенно зависят от условий и качества монтажа и наладки средства измерений, что имеет место при создании измерительных систем типа ИС-2, имеет ли смысл в этом случае утверждение типа?

    Подтверждение соответствия индивидуального образца средства измерений утвержденному типу может быть реализовано в виде поверки или калибровки. При этом различают первичную и последующие поверки.

    Различие между поверкой и калибровкой состоит с одной стороны в том, что при калибровке устанавливаются действительные значения метрологических характеристик средств измерений, а при поверке только определяется их соответствие установленным требованиям. С другой стороны, эти две процедуры различаются статусом. Поверка осуществляется в тех областях измерений, которые подлежат государственному регулированию. Калибровка может проводиться и в этих областях и за их пределами. По существу, калибровка, в большинстве случаев служит составной частью поверки.

    Если средства измерений не подвергались испытаниям с целью утверждения типа, то содержание первичной поверки существенно расширяется. В этом случае возникает необходимость подтверждения того, что средство измерений соответствует всем требованиям законодательной метрологии к подобным средствам измерений. Поэтому, помимо определенных испытаний (контроля), должны также использоваться данные об изготовителе, его декларация соответствия, а, в некоторых случаях, его система обеспечения качества. Простого контроля технических характеристик в данном случае недостаточно.

    Как в первом, так и во втором случае первичная поверка может быть выборочной.

    Таким образом, необходимо, во-первых, определить требования к различным типам средств измерений. За основу могут быть приняты рекомендации МОЗМ, стандарты МЭК и ИСО, приложения к европейской Директиве 2004/22/ЕС. Разработка подобных документов пока не предполагается.

    Во-вторых. При наличии указанных документов, определяющих согласованные требования к средствам измерений возможна постановка вопроса об использовании Свидетельств МОЗМ в качестве документа, подтверждающего соответствие определенному типу, однако пока такой подход не поддерживается даже на уровне региональных метрологических организаций.

    В-третьих. Если однотипные средства измерений производятся различными изготовителями или выпускаются в различных модификациях, то необходимо подтверждение того, что все они соответствуют утвержденному типу.

    В-четвертых, требуется обеспечить корректную оценку того, что каждое индивидуальное средство измерений соответствует утвержденному типу. Т.е. оно должно быть правильно поверено или откалибровано.

    Задача первичной поверки (калибровки) состоит в необходимости доказательства с приемлемой достоверностью, что каждый экземпляр средства измерений в производстве, а для измерительных систем в монтаже и наладке, соответствует установленным в описании типа требованиям к техническим характеристикам.

    Это подтверждение может использовать:

    – индивидуальный контроль каждой единицы средств измерений;

    – статистический (выборочный) контроль независимых выборок;

    – статистический (выборочный) контроль последовательных выборок;

    – статистический контроль технологического процесса с использованием контрольных карт;

    – использование системы обеспечения качества изготовителя.

    Причем, для измерительных систем реализуемы только первый и последний подходы.

    Поверка или калибровка средств измерений может выполняться в стране – производителе средств измерений, а также и в стране импортере. Часто калибровка должна выполниться на месте, после установки средств измерений. Методики выполнения поверки (калибровки) при выполнении общих требований по номенклатуре оцениваемых характеристик средств измерений и достоверности полученных результатов могут различаться с учетом технологических возможностей различных стран. Это создает дополнительные сложности для взаимного признания результатов поверки и калибровки.

    Указанные проблемы препятствуют быстрому решению вопроса взаимного признания. Возможно, следует подумать о разработке документа, который определил бы критерии для выбора рационального способа осуществления первичной поверки (калибровки) в каждой конкретной ситуации.

    Этот документ может также определить условия, необходимые для заключения соглашений о взаимном признании соответствия средств измерений согласованным требованиям к ним, между национальными органами по законодательной метрологии различных стран.

    Литература

    1. ГОСТ Р 8.596-2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

    2. ГОСТ Р 51649-2000 Теплосчётчики для водяных систем теплоснабжения. Общие технические условия

    Лукашов Юрий Евгеньевич – начальник отдела ФГУП “ВНИИМС”, к.т.н., доцент

    Россия, 119361, Москва, Озерная, 46

    Материал посвящен важному аспекту метрологического обеспечения готовых систем автоматизации - калибровке измерительных каналов (ИК) АСУ ТП, а именно: проблеме повышения эффективности калибровочных работ и снижению их трудоемкости за счет более эффективного метода калибровки.



    Создаваемые сегодня современные автоматизированные системы управления технологическими процессами (АСУ ТП) крупных объектов теплоэнергетики характеризуются высокой сложностью и степенью ответственности. Программно- технические комплексы (ПТК), составляющие основу АСУ ТП, должны не только обеспечивать реализацию всех необходимых сегодня функций контроля, измерения и регулирования технологических параметров, но быть удобными и технологичными в эксплуатации и сопровождении. Одним из важных видов сопровождения готовых автоматизированных систем является метрологическое сопровождение.

    Не секрет, что метрологические вопросы являются самыми “больными” и “нелюбимыми” как для многих поставщиков ПТК, так и для эксплуатационных служб. Нередко вопросы метрологии вообще игнорируются, особенно в связи с внедрением микропроцессорных систем управления. Правда, такой способ решения требует определенной лояльности со стороны органов стандартизации и метрологии. В противном случае, проблемы в решении метрологических задач могут обернуться серьезными проблемами и значительными производственными и экономическими потерями.

    Используя опыт внедрения АСУ ТП и их сопровождения, компания “ ” разработала комплексный подход к созданию современных систем на генерирующих объектах энергетики. Совместно с ведущими проектными и технологическими организациями компания осуществляет все необходимые исследовательские и инжиниринговые работы. Особое внимание уделяется метрологическому обеспечению поставляемых автоматизированных систем управления.

    Необходимые метрологические работы выполняются на каждом этапе жизненного цикла АСУ ТП. На этапе технического задания формируются требования к метрологическому обеспечению разрабатываемой системы, на стадии технического проекта разрабатываются перечни измерительных каналов (ИК), определяются требования к точности выполнения измерений, выбираются средства измерений для формирования ИК, обеспечивающие требуемую точность, и также подбираются рабочие эталоны, с помощью которых можно подтвердить заданную точность измерения. На этапе подготовки рабочей документации выполняется согласование с Заказчиком применения утвержденных Госстандартом РФ методик поверки (калибровки) измерительных каналов.

    На стадии ввода АСУ ТП в действие осуществляется комплекс метрологических работ в соответствии с нормативными документами.

    На этапе пусконаладочных работ осуществляется монтаж и наладка измерительных каналов системы, на этапе предварительных испытаний наладочная организация совместно с персоналом эксплуатирующей организации выполняет приемку ИК из наладки в опытную эксплуатацию с целью проверки соответствия ИК и готовности к вводу в эксплуатацию. Все измерительные каналы системы подвергаются первичной поверке или калибровке.

    На этапе приемочных испытаний могут быть проведены испытания с целью “сертификации соответствия” ИК, либо испытания с целью утверждения типа. И, наконец, в промышленной эксплуатации осуществляется периодическая поверка или калибровка измерительных каналов АСУ ТП.

    Являющиеся основой для создаваемых АСУ ТП, разработаны в соответствии с нормативными документами РФ и относятся к изделиям Государственной системы приборов. ПТК “Торнадо” занесены в Государственный реестр и имеют сертификат об утверждении типа средств измерений.

    Разработанные метрологической службой компании методики поверки (калибровки) измерительных каналов АСУ ТП и измерительных модулей, входящих в состав программно-технического комплекса, согласованы Всероссийским НИИ метрологии и стандартизации (ВНИИМС).

    Помимо необходимых документов и аппаратного обеспечения, компания предлагает Заказчикам специализированное ПО “АРМ метролога” (собственная разработка компании), которое является составной частью ПО ПТК “Торнадо” и позволяет осуществлять калибровку измерительных каналов АСУ ТП в автоматизированном режиме.

    Разработанные методики калибровки измерительных каналов АСУ ТП поставляются в комплекте со специализированным программным и аппаратным обеспечением. На наш взгляд, этот способ является одним из наиболее оптимальных для решения метрологических вопросов при внедрении АСУ ТП. Однако уже сегодня специалисты компании работают над проблемой сокращения трудозатрат на калибровку ИК, поставляемых заказчику АСУ ТП. По существующему в настоящее время методу в процессе калибровки каналов АСУ ТП на объекте участвуют как минимум два человека. Один из них находится на стационарном рабочем месте инженера АСУ ТП или метролога и работает с программой “АРМ метролога”. Второй должен находиться у соединительных коробок, чтобы с помощью генератора эталонных сигналов подавать эталонный сигнал в месте подключения первичного преобразователя (датчика). Оба калибровщика должны быть снабжены рациями, чтобы согласовывать свои действия. После того, как введены исходные данные о канале, задано количество сечений диапазона измерения, в которых будет осуществляться сбор измеренных значений, программа определяет значение эталонного сигнала и подсказывает, в какой момент этот сигнал можно подавать на вход ИК. Эту информацию калибровщик, работающий за компьютером, должен передать коллеге, который находится на объекте (рис. 1).

    Рис. 1. Один из существующих методов калибровки ИК АСУ ТП

    Таким образом, существующая методика реализует традиционный (с использованием средств ВТ и специализированного ПО) метод калибровки (поверки), который имеет ряд недостатков:

    Большие временные затраты (на калибровку каждого канала необходимо 10-15 минут без учета времени, затрачиваемого на подключение задатчика эталонного сигнала);

    Необходимость участия в процессе калибровки двух человек;

    Возможность ошибочной информации;

    Ручное управление задатчиком;

    Передача информации ведется по рации.

    Недостаток пользовательского интерфейса стационарного АРМ метролога - потребность в ручном внесении настроек процесса, при поверке каждого канала (класса точности канала, сечений диапазона измерений, единиц измерения и др.).

    Принципиальным недостатком существующей методики калибровки ИК является то, что калибровщик, работающий на объекте, постоянно занят в процессе калибровки и не может отвлечься на работу по подготовке следующего канала в момент калибровки текущего канала. То есть, по существующей методике калибровщик работает строго последовательно - подготовка канала для калибровки (5-10 мин), калибровка (10-15 мин), восстановление канала (5-10 мин). Итого, весь процесс занимает в среднем 30 минут на один канал. Таким образом, за одну смену можно провести калибровку 10-15 каналов. Если учесть, что все эти работы проводятся дневным персоналом, а объем ИК, подлежащих калибровке на энергоблоке 200 МВт, составляет порядка 2000, то на калибровку всех ИК потребуется от 6 до 9 месяцев! Это, конечно, если все честно делать.

    Поэтому если есть лазейки, и есть возможность не делать, то в подавляющем большинстве случаев метрологией, как таковой, никто и не занимается - ни поставщик АСУ ТП, ни эксплуатационные службы.

    Как уже было сказано, ПТК “Торнадо” имеет в своем составе комплексное решение метрологических задач, но, к сожалению, трудоемкость этих работ остается высокой. И специалисты компании на собственном опыте поняли, что необходимо в корне изменить ситуацию и снизить трудоемкость калибровочных работ.

    Для создания более эффективного метода калибровки, не имеющего недостатков предшествующей системы и способного значительно повысить эффективность работы специалиста-калибровщика за счет большей автоматизации процесса сбора измерительной информации и обработки результатов, специалистам компании необходимо было провести ряд теоретических и исследовательских работ:

    Разработка нового метода калибровки;

    Анализ необходимого аппаратного обеспечения и выбор оборудования;

    Разработка оптимальной архитектуры новой системы калибровки;

    Просчет и создание тестовой модели мобильного АРМ метролога;

    Разработка операторского интерфейса для мобильного и стационарного АРМ;

    Разработка новых протоколов связи.

    После проведения работ специалисты компании пришли к идее применения беспроводных технологий связи для организации проведения калибровочных работ.

    Разработка нового метода калибровки

    Разработанный метод предполагает последовательное выполнение следующих операций:

    Отключение датчика и подключение генератора эталонных сигналов к входу измерительного канала;

    Выбор канала по его коду или наименованию на мобильном АРМ метролога. При этом, с мобильного АРМ посылается запрос на стационарный АРМ, на котором из базы данных или из перечня ИК выбирается вся необходимая информация об этом канале: диапазон измерения, класс точности канала, сведения о датчике, измерительном модуле и другая информация, необходимая для организации процесса калибровки и для внесения в сертификат;

    Запуск автоматической процедуры сбора измеренных значений и статистической обработки выборки;

    Мониторинг процесса калибровки, просмотр результатов.

    В ходе автоматического выполнения процесса калибровки у калибровщика есть возможность следить на мобильном АРМ за текущим измеренным значением, за отклонением этого значения от эталонного, за переключением генерируемых значений. Также имеется возможность просмотреть протокол калибровки и сертификат на канал.

    Выбор оборудования

    Специалистами компании были изучены специфические особенности процесса калибровки ИК на крупных промышленных объектах и сформулированы основополагающие критерии для определения состава технических средств новой системы:

    Дальность связи и скоростные характеристики. При выборе средств беспроводной связи важным критерием являются дальность связи и скоростные характеристики. Данный критерий напрямую связан с конструктивными особенностями промышленного объекта, а именно: геометрией помещений, наличием металлических конструкций, наличием помех.

    Натурные испытания новой системы проводились на Новосибирской ТЭЦ-5;

    Совместимость физических интерфейсов. Следует учесть, что все устройства должны быть совместимы друг с другом на уровне физических интерфейсов, а также быть поддерживаемыми на уровне операционных систем (ОС);

    Вес и размеры используемых компонентов. Все устройства, входящие в мобильный АРМ, должны отвечать требованиям мобильности и удобства эксплуатации. То есть иметь минимальный вес и размеры для беспрепятственного перемещения специалиста-калибровщика по объекту вместе с мобильным АРМ;

    Оптимальность электропитания. Низкое энергопотребление, мобильность, возможность использования общего автономного источника питания;

    Экономичность внедрения. Требование касается приемлемой стоимости и целесообразности внедрения на объекте, при соблюдении всех вышеописанных критериев.

    Разработка архитектуры системы

    Рис. 2. Общая структура системы калибровки ИК АСУ ТП

    Структура распределенной системы калибровки измерительных каналов была определена с учетом специфики проведения калибровки измерительных каналов на крупных промышленных объектах. В основу системы положена идея применения беспроводных технологий связи, мобильного компьютера и управляемого от него генератора эталонного сигнала. К компьютеру стационарного АРМ подключается радиомодем (рис. 2), в программу стационарного АРМ вносятся необходимые изменения для работы ее в режиме удаленного управления мобильным АРМ.

    В состав мобильного АРМ метролога входят:

    1_карманный персональный компьютер (КПК), который выполняет две функции:

    Удаленный интерфейс к стационарному АРМ метролога;

    Передача заданий, полученных от стационарного АРМ метролога программируемому задатчику.

    2_Программируемый задатчик, с помощью которого формируется калибровочный сигнал на входе канала.

    3_Блок для обеспечения беспроводной связи КПК со стационарным АРМ.

    4_Средства, обеспечивающие питание радиомодема и генератора аналоговых сигналов.

    Создание тестовой модели мобильного АРМ метролога

    После проведенных испытаний и анализа сравнительных характеристик ряда промышленных ноутбуков и карманных персональных компьютеров в качестве компьютера тестовой модели АРМ решено было использовать КПК.

    В качестве блока для обеспечения беспроводной связи КПК со стационарным АРМ в испытательной модели мобильного АРМ метролога был использован радиомодем с питанием модема от аккумуляторной батареи 12 В.

    В отличие от устройств WI-FI, работающими на частотах 2400 - 2483.5 МГц, радиомодем работает на частоте 433.92 МГц и оптимально подходит для промышленных объектов, таких как ТЭЦ.

    Рис. Подключение задатчика к КПК

    Радиоволны частоты 433 МГц лучше огибают металлические конструкции типичных (для промышленного предприятия) размеров. В условиях цеха металлические конструкции частично огибаются радиоволнами, частично волна попадает за препятствия за счет отражений.

    Пространственное затухание радиоволн на низких частотах меньше. Используемый радиомодем специально приспособлен для работы в условиях импульсных помех, так как в нем использовано каскадное кодирование с перемежением, эффективно исправляющее ошибки при передаче данных.

    В качестве программируемого задатчика, с помощью которого формируется эталонный сигнал на входе канала, был использован программируемый калибратор-измеритель унифицируемых сигналов ИКСУ 2000. Достоинством данного задатчика является его высокий класс точности, что позволяет использовать его не только для калибровки ИК, но и измерительных модулей ПТК, класс точности которых существенно выше.

    Задатчик обладает малым весом и габаритами. Предусмотрена возможность программирования калибратора через интерфейс RS232. Работа калибратора может осуществляться при питании от аккумулятора на 12В, это делает возможным использование одного источника для питания калибратора и радиомодема.

    Калибратор ИКСУ 2000 подключается к КПК через кабель.

    Использование устройства ИК-RS232 (инфракрасный порт - RS232), как одного из составляющих мобильного АРМ, было определено исходя из потребности в управлении двумя устройствами с КПК. Это дало возможность использования его как прозрачный канал связи ИК-RS232 и питания от подключаемого устройства через интерфейс RS232.

    Радиомодем соединяется с КПК через ИКпорт-RS232.

    Таким образом, все компоненты мобильного АРМ свободно размещаются в объеме 350x250x100 мм и имеют общий вес не более 2,5 кг.

    Результаты проведенных работ

    В результате проведенных работ была создана тестовая модель работающей системы (включающей мобильный АРМ и программу стационарного АРМ) для калибровки измерительных каналов различных типов. В ПО стационарного АРМ были внесены все необходимые изменения для работы в режиме удаленного управления.

    Ряд испытаний, проведенных на ТЭЦ-5 ОАО “Новосибирскэнерго”, показали, что:

    В процессе калибровки при использовании новой распределенной системы калибровки измерительных каналов достаточно участие только одного человека, оснащенного мобильным АРМ метролога. Все управление задатчиком полностью ложится на программу стационарного АРМ, что исключает погрешности, связанные с установкой прибора. Инструкции поступают через беспроводную связь в программу, установленную на мобильном АРМ, которая и управляет калибратором. Управление всем процессом ведется с мобильного АРМ также через беспроводное соединение;

    В функции калибровщика - координатора мобильного АРМ входят: запуск процесса и выбор кода канала (необходимая инициализация производится на стационарном АРМ); визуальное наблюдение за ходом процесса посредством интерфейса ПО мобильного АРМ, который отображает текущий этап калибровки, значения текущих погрешностей измерений, выставляемые значения на задатчике. Калибровщик имеет возможность в любой момент остановить процесс калибровки или начать процедуру с самого начала;

    Поиск по сайту

    Поверка и калибровка измерительных систем

    В соответствии с ГОСТом Р 8.596-2002 поверке подвергают измерительные каналы ИС, на которые распространен сертификат утверждения типа, подлежащие применению или применяемые в сферах распространения государственного метрологического контроля и надзора:

    1) ИС-1 - первично при выпуске из производства или ремонта, при ввозе по импорту и периодически в процессе эксплуатации. Необходимость первичной поверки измерительных каналов ИС-1 после установки на объекте определяют при утверждении типа ИС-1;

    2) ИС-2 - первично при вводе в постоянную эксплуатацию после установки на объекте или после ремонта (замены) компонентов ИС-2, влияющих на погрешность измерительных каналов, и периодически в процессе эксплуатации.

    1) измерительные каналы ИС-1, как правило, подвергают комплексной поверке, при которой контролируют метрологические характеристики измерительных каналов ИС в целом (от входа до выхода канала);

    2) измерительные каналы ИС-2, как правило, подвергают покомпонентной (поэлементной) поверке: демонтированные первичные измерительные преобразователи (датчики) - в лабораторных условиях; вторичную часть - комплексный компонент, включая линии связи, - на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты. При наличии специализированных переносных эталонов или передвижных эталонных лабораторий и доступности входов ИС-2 предпочтительна комплектная поверка измерительных каналов ИС-2 на месте установки. При необходимости допускаемые значения метрологических характеристик измерительных каналов ИС или комплексных компонентов, поверяемых на месте установки, определяют расчетным путем по нормированным метрологическим характеристикам измерительных компонентов для условий, сложившихся на момент поверки и отличающихся от нормальных условий.

    которых проводится идентификация источника информации, используются тип, заводской номер и место установки ПИП. В целях проверки легитимности применяемых СИ в базу данных системы вводятся даты очередной поверки теплосчетчика и его измерительных компонентов, а также начала и окончания допуска узла учета к эксплуатации. Для использования в качестве критериев достоверности результатов измерений в базе данных системы хранятся допустимые значения верхних и нижних границ диапазонов измерения давления, расхода и температуры, а также разницы расходов и температур для каждого типа измерительного компонента и каждого трубопровода, на котором этот компонент установлен. В целом в системе используется 52 различных параметра, в том числе для достоверизации результатов измерения количества теплоты и параметров теплоносителя.

    Реализация методов контроля, основанных на проверке функций достоверизации, адаптивности и защищенности, заложенных в методику поверки, позволили сократить время поверки системы, включающей на настоящий момент около 7000 измерительных каналов, с нескольких месяцев до нескольких дней с соответствующим снижением стоимости поверки.

    Подходы к достоверизации, адаптивности и защищенности информационной части больших систем учета энерго-

    ресурсов, рассмотренные выше, предложены в виде требований к метрологическому обеспечению АИИС КУТЭ аналогичного назначения и включены в качестве приложения в утвержденный для добровольного применения национальный стандарт , разработанный в ФБУ «Томский ЦСМ» (дата введения: 1 марта 2013 г.)

    Л и т е р а т у р а

    1. МИ 3000-2006. ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки.

    3. ГОСТ Р 8.596-2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

    4. ГОСТ Р 8.778-2011. ГСИ. Средства измерений тепловой энергии для водяных систем теплоснабжения. Метрологическое обеспечение.

    Дата принятия 30.08.2012 г.

    Калибровка измерительных каналов измерительных систем после их градуировки

    А. А. ДАНИЛОВ, Ю. В. КУЧЕРЕНКО

    ФБУ «Пензенский ЦСМ», Пенза, Россия, e-mail: [email protected]

    Рассмотрены вопросы определения параметров функции преобразования измерительных каналов измерительных систем, введения корректирующих поправок и последующего оценивания их метрологических характеристик.

    Кпючевые слова: измерительные системы и каналы, метрологические характеристики, функция преобразования.

    The problems of determination of the transformation function parameters of measuring channels in measuring systems, of inserting corrections and subsequent evaluation of their metrological characteristics are considered.

    Key words: measuring systems and channels, metrological characteristics, transformation function.

    При проведении периодической проверки состояния метрологического обеспечения (МО) эксплуатируемых средств измерений (СИ) с целью повышения их точности выполняется градуировка функции преобразования СИ с последующим введением корректирующих поправок. В тех случаях, когда градуировка СИ (рис. 1) является одним из этапов их калибровки (или поверки, которая, по сути, та же калибровка, но с принятием заключения о соответствии метрологических характеристик (МХ) установленным нормам), приходится считаться с некоторыми особенностями МО СИ. На

    рис. 1 темным фоном выделена цепь последовательно выполняемых при этом процедур, которые будут рассмотрены ниже.

    Известно , что градуировку и калибровку СИ целесообразно проводить с использованием различных (не менее двух) экземпляров рабочих эталонов (РЭ). В качестве примера относительно немногих СИ, для которых реализована подобная процедура, можно привести электронные весы, в комплект поставки которых включена градуировочная гиря. При этом МХ весов определяют при помощи гирь из другого набора.

    Сравнение МХ с установленными нормами (поверка)

    Учитывая, что наряду с применением различных экземпляров эталона могут быть рекомендованы несколько вариантов использования одного и того же экземпляра РЭ как для градуировки, так и для калибровки СИ . К сожалению, на практике такой метод перекрестной проверки обычно не применяется, что снижает достоверность калибровки и поверки СИ. Дело в том, что один и тот же экземпляр РЭ, служащий как для градуировки, так и для калибровки,

    может дать слишком оптимистичный результат для МХ калибруемого СИ, если использовать точечную, а не интервальную оценку погрешности. Именно поэтому нельзя забывать, что к МХ СИ, для которых осуществляется градуировка, следует отнести оценки:

    неисключенной систематической погрешности (НСП);

    среднего квадратического отклонения случайной погрешности;

    вариации.

    При этом в оценку НСП СИ, разумеется, должна войти и одноименная погрешность РЭ (о чем иногда забывают).

    Если градуировку и калибровку измерительных каналов (ИК) измерительных систем предполагается осуществлять комплектно, то, скорее всего, их будут выполнять в рабочих условиях эксплуатации, сложившихся на момент проведения эксперимента. Следует отметить, что вопрос проведения комплектной калибровки ИК методически не проработан. Остается вопрос, как распространить оценки МХ, полученные для сложившихся условий эксплуатации ИК, на произвольные условия? Кроме того, при комплектной калибровке целесообразно использовать многофункциональные калибраторы , которые должны быть малогабаритными, легкими, мобильными, с малыми затратами времени на подготовку к работе, сохраняющими свои МХ в широком диапазоне рабочих условий эксплуатации. Зачастую именно последнее требование к эталонам является определяющим, не позволяющим применять калибраторы в рабочих условиях эксплуатации ИК измерительных систем.

    В связи с этим комплектную калибровку приходится заменять поэлементной: отключают первичный измерительный преобразователь (ПИП) и калибруют оставшуюся часть ИК, которая обычно представляет комплексный компонент (КК) вместе с линией связи.

    При поэлементной калибровке ИК существенное внимание следует уделить размещению РЭ. С одной стороны, его расположение в месте эксплуатации ПИП (рис. 2, а) не позволяет снизить требования к РЭ в части сохранения МХ в рабочих условиях эксплуатации ПИП, а в некоторых случаях - решить вопросы искробезопасности и взрывозащи-ты. С другой стороны, нахождение РЭ в месте эксплуатации КК (рис. 2, б) приводит к нарушению симметричности линии связи (которая была при подключенном ПИП), а следовательно, к увеличению составляющей погрешности от воздействия продольной и поперечной помех на линию связи . Возможен и третий вариант (рис. 2, в), заключающийся в поэлементной проверке ПИП, КК и линий связи с помощью средств проверки линий связи (СПЛС).

    Процедуры МО эксплуатируемых СИ

    Градуировка Нет

    Определение МХ (калибровка) Нет Да Нет

    Рис. 1. Процедуры МО эксплуатируемых СИ

    Следует отметить, что вопрос проведения калибровки ИК после градуировки его компонентов также методически не проработан. Здесь возможны три варианта: комплектные градуировка и калибровка; градуировка и калибровка каждого компонента ИК, а затем расчет их МХ;

    имитация комплектных градуировки и калибровки. Первый вариант редко реализуется на практике, поэтому рассмотрим второй и третий варианты и начнем с градуировки. Градуировку каждого компонента ИК (второй вариант) рассмотрим в предположении, что простой ИК состоит из последовательно соединенных ПИП и КК, которые обладают номинальными линейными функциями преобразования (ФП):

    где Уном, ^ X У ажом, °жом - номинальные значения выходных величин и значения входных величин, а также коэф-

    Рис. 2. Способы экспериментальной проверки комплексных компонентов (КК) и линии связи при поэлементной калибровке ИК измерительных систем: ПИП - первичный измерительный преобразователь; РЭ - рабочий эталон; СПЛС - средства проверки линий

    фициенты номинальной линейной ФП соответственно ПИП и КК.

    Также предположим, что с целью получения поправок проведены независимые экспериментальные исследования ПИП и КК в нескольких точках диапазона измерений, а затем ФП каждого из них аппроксимирована, например, полиномом второй степени

    у = а0 + а1х + а2х2; z = bo + biy + b2y2,

    где а, Ь[ - коэффициенты полиномов.

    Предположим, что градуировку выполнили, и выражение для г после подстановки в него выражения для у приобретает вид

    г = Ь0 + Ь1(а0 + а1х + а2х2) + Ь2(а0 + а1х + а2х2)2. В итоге после преобразований получим

    г = с0 + с1х + с2х2 + с3х3 + с4х4,

    где с0 = Ь0 + Ь1а0 + Ь2 а2; с0 = Ь1а1 + 2Ь2а0а1; с2 = а2 + 2Ь2а0а2 + + Ь2 а 1; С3 = 2Ь2а1а2; С4 = Ь2 а2.

    Пусть номинальная ФП ИК имеет вид

    г = с + с х ном 0ном 1ном "

    тогда выражение для расчета поправки должно быть

    V = г - *.„..

    казания, соответствующие каждой из проверяемых точек ИК, которые используют при градуировке. Разумеется, полной имитации комплектной градуировки ИК не получается, так как экспериментальные исследования ПИП обычно выполняют в нормальных условиях эксплуатации, которые могут существенно отличаться от фактических условий, что снижает достоверность градуировки.

    Предположим, что осуществлена градуировка ИК. Далее возможны четыре варианта оценивания их МХ: по результатам градуировки или проведенной затем калибровки - комплектной, поэлементной или имитированной комплектной.

    Разумеется, первый вариант, несмотря на его широкое распространение, обладает меньшей достоверностью, поскольку при оценивании МХ ИК измерительных систем, необходимо учитывать НСП эталона дважды - при определении как доверительных границ результатов измерений, так и поправки. Как отмечено выше, вариант комплектной калибровки с участием второго экземпляра эталона редко применим на практике, хотя и обладает большей достоверностью по сравнению с первым вариантом. Поэтому приходится использовать поэлементную калибровку или имитацию комп