Математическая система Maxima. Методичка работы с maxima Как пользоваться программой maximal pro

Maxima - компьютерная система, позволяющая работать с символьными, численными выражениями. Поддерживает операции разложения в ряд, дифференцирования, преобразования Лапласа, интегрирования. Программе нестрашны обыкновенные дифференциальные уравнения, матрицы и тензоры, системы линейных уравнений, списки, векторы, многочлены, множества. Система компьютерных вычислений может производить расчёты с высокой степенью точности. Использует целые числа, дробные выражения. Приложение умеет строить графики в двухмерном либо трехмерном измерении. Имеет руководство, где подробно изложено, как работать с утилитой, какие операторы поддерживаются системой математических операций. Программа отлично подходит любителям компьютерной алгебры: студентам, преподавателям, аспирантам.



- Работает с математическими числовыми и символьными выражениями.
- Поддерживает работу со списками, многочленами, матрицами, тензорами, дифференциальными уравнениями и системами линейных уравнений.
- Поддерживает операции разложения в ряд, дифференцирования, преобразования Лапласа, интегрирования.
- Производит расчёты с высокой степенью точности.
- Использует целые числа, дробные выражения.
- Умеет строить графики в двухмерном либо трехмерном измерении.
- Подходит любителям компьютерной алгебры.
- Имеет доступную документацию для ознакомления с работой системы.
- Не влияет на производительность и скорость работы операционной среды.
- Есть поддержка русского языка.

Недостатки программы

- Отсутствует портативная (portable) версия.

- Процессор с тактовой частотой 1200 MHz или более мощный.
- Оперативная память 256 Мб или больше.
- Свободное место на жёстком диске от 185 Мб.
- Архитектура с разрядностью 32 бит или 64 бит (x86 или x64).
- Операционная система Windows XP, Windows Vista, Windows 7, Windows 8

Многофункциональные калькуляторы: Таблицы сравнения

Название программы На русском Дистрибутивы Инсталлятор Популярность Размер Индекс
★ ★ ★ ★ ★ 48.7 Мб 100
★ ★ ★ ★ ★ 59.8 Мб 99
★ ★ ★ ★ ★ 1.3 Мб 86

Тема : Система команд, вычисления в Maxima .

Цель: продолжить знакомство с программой Maxima , познакомить с системой команд Maxima ; развивать память, внимание; воспитывать информационную культуру.

Ход урока:

    Организационное начало:

    Приветствие.

    Работа с дежурными.

    Повторительно-обучающее начало.

    Индивидуальная работа по карточкам.

Карточка №1.

    1. Понятие системы математический вычислений.

      Особенности системы математических вычислений.

Карточка №2.

    1. Понятие компьютерной алгебры.

      Особенности компьютерной алгебры.

    Устный индивидуальный опрос.

Понятие Maxima . Особенности. Запуск программы.

Интерфейс программы Maxima .

    Работа по осмыслению и усвоению нового материала.

    Объявление темы и цели урока.

    Изучение нового материала.

Ввод простейших команд в wxMaxima

После запуска wxMaxima появляется окно программы.

верхней графической части окна интерфейса Maxima рассказывает, что загружена версия 5.14.0, что она распространяется по лицензии GNU, с какого сайта доступна и кто её родитель. В нижнем окне в поле ВВОД: Maxima приготовилась воспринимать команды. Разделителем команд является символ; (точка с запятой). После ввода команды необходимо нажать клавишу Enter для ее обработки и вывода результата.

В ранних версиях Maxima и некоторых ее оболочках (например, xMaxima), и в консольной версии наличие точки с запятой после каждой команды строго обязательно. Поэтому настоятельно рекомендуем при использовании Максимы

не забывать добавлять точку с запятой; после каждой команды. В случае, когда выражение надо отобразить, а не вычислить, перед ним необходимо поставить знак (") (одинарная кавычка). Но этот метод не работает, когда выражение имеет явное значение,

например, выражение sin(π) Максима рассматривает как нуль и при наличии апострофа. Трудно предусмотреть многообразие возможных вариантов использования Максимы для расчета или преобразования выражений. В сложных случаях, можно попытаться получить справку на английском языке. Для вызова справки достаточно в поле ВВОД написать? и нажать Enter.

Обозначение команд и результатов вычислений

После ввода каждой команде присваивается порядковый номер. На приведенном ниже рисунке введенные команды имеют номера 1–3 и обозначаются соответственно (%i1), (%i2), (%i3). Результаты вычислений имеют соответственно порядковый номер (%o1), (%o2) и т.д. Где "i" – сокращение от англ. Input (ввод), а "o" – англ. Output (вывод)

Этот механизм позволяет при дальнейшей записи команд сослаться на ранее записанные, например (%i1)+(%i2) будет означать добавление к выражению первой команды выражения второй с последующим вычислением результата. Также можно использовать и номера результатов вычислений, например, таким образом (%o1)*(%o2).

Для последней выполненной команды в Maxima есть специальное обозначение – %.

Пример: Вычислить значение производной функции

в точке х=1.

Команда (%i9) была выполнена, и был получен результат (%о9). Поэтому следующая команда (%i10) сослалась на уже полученный результат, но уточнила значение переменной х, поэтому команда получала вид (%i10) (%о9), х=1.

Ввод числовой информации

Правила ввода чисел в Maxima точно такие, как и для многих других подобных программ. Целая и дробная часть десятичных дробей разделяются символом точка. Перед отрицательными числами ставится знак минус.

Числитель и знаменатель обыкновенных дробей разделяется при помощи символа / (прямой слэш).

Обратите внимание, что если в результате выполнения операции получается некоторое символьное выражение, а необходимо получить конкретное числовое значение в виде десятичной дроби, то решить эту задачу позволит применение оператора numer . В частности он позволяет перейти от обыкновенных дробей к десятичным

Здесь Maxima прежде всего действовала по умолчанию. Она сложила дроби 3/7 и 5/3 по правилам арифметики точно: нашла общий знаменатель, привела дроби к общему знаменателю и сложила числители. В итоге она получила

44/21. Лишь после того, как мы попросили её получить численный ответ, она вывела приближенный, с точностью 16 знаков численный ответ 2,095238095238095.

Константы

В Maxima для удобства вычислений есть ряд встроенных констант, самые распространенные из них показаны в следующей таблице (табл.1):

Арифметические операции

Обозначения арифметических операций в Maxima ничем не отличаются от классического представления, используются математические знаки: + – * /.

Возведение в степень можно обозначать тремя способами: ^ , ^^ , **. Извлечение корня степени n записывают, как степень ^^(1/n ). Напомним еще одну встроенную в Maxima полезную операцию –нахождение факториала числа. Эта операция обозначается восклицательным

Например, 6!=1⋅ 2⋅ 3⋅ 4⋅ 5⋅ 6=120.

Для увеличения приоритета операции, как и в математике, при записи команд для Maxima используют круглые () скобки.

Переменные

Для хранения результатов промежуточных расчетов применяются переменные. Заметим, что при вводе названий переменных, функций и констант важен регистр букв, так переменные x и X – это две разные переменные.

Присваивание значения переменной осуществляется с использованием символа: (двоеточие), например x : 5;.

Если необходимо удалить значение переменной (очистить ее), то применяется метод kill :

kill (x ) – удалить значение переменной x ;

kill (all ) – удалить значения всех используемых ранее переменных.

И кроме того, метод kill начинает новую нумерацию для исполняемых команд (обратите внимание, что ответом на команду (%i 3), приведенную выше, оказался ответ с номером ноль (%o 0) done , и далее нумерация команд продолжилась с единицы).

Математические функции

В Maxima имеется достаточно большой набор встроенных математических функций. Вот некоторые из них (табл.2). Следует иметь ввиду, что некоторые названия функций отличаются от названий, используемых в отечественной литературе: Вместо tg – tan , вместо ctg – cot , вместо arcsin – asin , вместо arcos – acos , вместо arctg – atan , вместо arcctg – acot , вместо ln – log , вместо cosec – csc .

Правило записи функций

Для записи функции необходимо указать ее название, а затем, в круглых скобках записать через запятую значения аргументов. Если значением аргумента является список, то он заключается в квадратные скобки, а элементы списка также разделяются запятыми.

integrate(sin(x),x,-5,5); plot2d(,,);

Пользовательские функции

Пользователь может задать собственные функции. Для этого сначала указывается название функции, в скобках перечисляются названия аргументов, после знаков:= (двоеточие и равно) следует описание функции. После задания пользовательская функция вызывается точно так, как и встроенные функции Maxima.

Перевод сложных выражений в линейную форму записи

Одним из самых сложных занятий для начинающих пользователей системы Maxima является запись сложных выражений, содержащих степени, дроби и другие конструкции, в линейной форме (в текстовой форме записи, при помощи ASCII символов, в одну строку).

Для облегчения данного процесса нелишне дать несколько рекомендаций:

1. Не забывайте ставить знак умножения! В графическом окне Maxima по правилам математики удвоенное значение переменной х записывает в виде 2x , но в окне ВВОД: команда для Maxima должна выглядеть как 2*x .

2. В случае сомнения всегда лучше поставить «лишние», дополнительные скобки (). Числитель и знаменатель выражения всегда необходимо заключать в скобки.

А также при возведении в степень основание и степень лучше всегда брать в скобки.

3. Функция не существует отдельно от своих аргументов (если таковые имеются). Поэтому, например, при возведении в степень можно взять всю функцию с аргументами в скобки, а потом уже возводить полученную конструкцию в нужную степень: (sin (x ))**2.

Также помните, что несколько аргументов функции записываются в скобках, через запятую, например, min(x1,x2,x3,xN);

5. Недопустима запись функции sin(2*x) в виде sin*2*x или sin2x.

6. В случае записи сложного выражения разбейте его на несколько простых составляющих, введите их по отдельности, а затем объедините, используя рассмотренные ранее обозначения введенных команд.

Пример: необходимо ввести следующее выражение:

Разделим это выражение на три составные части: числитель, выражение в скобках и степень. Запишем каждую составную часть и объединим их в выражение.

Maxima упростит выражение

rat(выражение). преобразовывает рациональное выражение к канонической форме. То

есть раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; кроме того, приводит все числа в конечной десятичной записи к рациональным.

    Задание на дом:

Стахин Н.А, с 10-18, опорный конспект.

    Итог урока.

Для чего предназначена программа Maxima ?

Перечислите основные элементы интерфейса программы Maxima .

Перечислите основные команды Maxima .

У нас можно бесплатно скачать новую версию математического приложения Maxima на русском языке для Windows ХР / Vista / 7 / 8 / 10 с сервера или официального сайта.

Описание программы Maxima:

Maxima - система компьютерной алгебры, предназначенная для работы с символьными и численными выражениями, включающая интегрирование, дифференцирование, разложение в ряд, преобразование Лапласа, системы линейных уравнений, обыкновенные дифференциальные уравнения, множества, многочлены, списки, векторы, матрицы и тензоры.

Так как программа производит довольно серьёзные вычисления из области инженерии и высшей математики, то обычному пользователю она вряд ли понадобится. А вот специалисты производящие научные и инженерные вычисления, а также многие студенты оценят ее огромные возможности, список поддерживаемых задач и отличную скорость работы.

Maxima – одно из самых мощных на сегодняшний день математических приложений, которое обладает множеством возможностей для вычислений довольно большого числа всевозможных функций. Кроме выше перечисленных функций программа производит численные расчеты высокой точности, используя точные дроби, целые числа и числа с плавающей точкой произвольной точности. Система позволяет строить графики функций и статистических данных в двух и трех измерениях.

Наверное, на сегодняшний день нет такой области математических вычислений, которую бы не распознавала данная система.

Интерфейс программы. несмотря на её сложность, довольно прост. Основная панель управления имеет несколько разделов меню, в которых и представлены все методы математических вычислений. Для начала работы с каждым из разделов, пользователю необходимо ввести изначальную задачу, а программа выдаст оптимальное решение в автоматическом режиме.

Причем, в некоторых случаях возможно получить результат в виде подробнейшего доказательства со всеми расписанными процедурами и обоснованиями для принятия конечного результата.

Maxima является потомком легендарной системы компьютерной алгебры Macsyma, разработанной в начале 60-х в MIT. Это единственная основанная на Macsyma система, все еще публично доступная и имеющая активное сообщество пользователей благодаря своей открытости. В своё время Macsyma произвела переворот в компьютерной алгебре и оказала влияние на многие другие системы, в числе которых Maple и Mathematica.

Название Maxima
Версия 5.40.0
Язык Русский есть
Система Windows XP / Vista / 7 / 8 / 10
Разработчик

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЕЛЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. И. А. БУНИНА»

ЦЕНТР СВОБОДНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Т. Н. Губина, Е. В. Андропова

РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ MAXIMA

Учебное пособие

УДК 519.62+519.63+004.94 ББК 32.973.26-018

Печатается по решению редакционно-издательского совета Елецкого государственного университета имени И.А. Бунина от 27. 05. 2009 г., протокол № 2

Рецензенты:

О.Н. Масина , кандидат физико-математических наук, доцент (Елецкий государственный университет им. И.А Бунина); А. В. Якушин , кандидат педагогических наук, доцент

(Тульский государственный педагогический университет им. Л.Н. Толстого)

Т. Н. Губина, Е. В. Андропова

Г 93 Решение дифференциальных уравнений в системе компьютерной математики Maxima: учебное пособие. – Елец: ЕГУ им. И.А. Бунина, 2009. – 99 с.

Учебное пособие может быть использовано в рамках дисциплин математический анализ, дифференциальные уравнения, пакеты прикладных программ и др. на разных специальностях в учреждениях высшего профессионального образования, если государственным образовательным стандартом предусмотрено изучение раздела «Дифференциальные уравнения», а также в рамках курсов по выбору. Оно также может быть полезным для знакомства с системами компьютерной математики в профильных классах общеобразовательных учреждений с углубленным изучением математики и информатики.

УДК 519.62+519.63+004.94 ББК 22.1+22.18 Р30

© Губина Т.Н., Андропова Е.В., 2009

© ЕГУ им. И.А. Бунина, 2009

Предисловие ..................................................................................................................

Глава 1. Основы работы в системе компьютерной математики Maxima

1.1. О системе Maxima...................................................................................................

1.2. Установка Maxima на персональный компьютер.................................................

1.3. Интерфейс основного окна Maxima......................................................................

1.4. Работа с ячейками в Maxima..................................................................................

1.5. Работа со справочной системой Maxima..............................................................

1.6. Функции и команды системы Maxima..................................................................

1.7. Управление процессом вычислений в Maxima....................................................

1.8. Простейшие преобразования выражений.............................................................

1.9. Решение алгебраических уравнений и их систем................................................

1.10. Графические возможности...................................................................................

Глава 2. Численные методы решения дифференциальных уравнений

2.1. Общие сведения о дифференциальных уравнениях............................................

2.2. Численные методы решения задачи Коши для обыкновенного дифференци-

ального уравнения первого порядка............................................................................

2.2.1. Метод Эйлера.......................................................................................................

2.2.2. Метод Эйлера-Коши............................................................................................

2.2.3. Метод Рунге-Кутта 4 порядка точности............................................................

2.3. Решение краевых задач для обыкновенных дифференциальных уравнений

методом конечных разностей.......................................................................................

2.4. Метод сеток для решения дифференциальных уравнений в частных произ-

водных.............................................................................................................................

Глава 3. Нахождение решений дифференциальных уравнений в системе Maxima

3.1. Встроенные функции для нахождения решений дифференциальных уравне-

3.2. Решение дифференциальных уравнений и их систем в символьном

виде.................................................................................................................................

3.3. Построение траекторий и поля направлений дифференциальных уравне-

ний...................................................................................................................................

3.4. Реализация численных методов решения задачи Коши для обыкновенных

дифференциальных уравнений.....................................................................................

3.4.1. Метод Эйлера.......................................................................................................

3.4.2. Метод Эйлера-Коши............................................................................................

3.4.3. Метод Рунге-Кутта...............................................................................................

3.5. Реализация конечно-разностного метода решения краевой задачи для обык-

новенных дифференциальных уравнений...................................................................

3.6. Реализация метода сеток для дифференциальных уравнений в частных

производных...................................................................................................................

Задания для самостоятельного решения .................................................................

Литература ....................................................................................................................

Предисловие

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Одной из основных особенностей дифференциальных уравнений является непосредственная связь теории дифференциальных уравнений с приложениями. Изучая какие-либо физические явления, исследователь, прежде всего, создает его математическую идеализацию или математическую модель, записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др. Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее .

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать качественные оценки измерений, происходящих в нем с течением времени. На основе анализа дифференциальных уравнений были открыты электромагнитные волны.

Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики.

Учитывая современной развитие компьютерной техники и интенсивное развитие нового направления - компьютерной математики - получили широкое распространение и спрос комплексы программ, называемые системами компьютерной математики.

Компьютерная математика - новое направление в науке и образовании, возникшее на стыке фундаментальной математики, информационных и компьютерных технологий.

Система компьютерной математики (СКМ) - это комплекс программ, который обеспечивает автоматизированную, технологически единую и замкнутую обработку задач математической направленности при задании условия на специально предусмотренном языке.

Современные системы компьютерной математики представляют собой программы с многооконным графическим интерфейсом, развитой системой помощи, что облегчает их освоение и использование.

Основными тенденциями развития СКМ являются рост математических возможностей, особенно в сфере аналитических и символьных вычислений, существенное расширение средств визуализации всех этапов вычислений, широкое применение 2D- и 3D-графики, интеграция различных систем друг с другом

и другими программными средствами, широкий доступ в Internet, организация совместной работы над образовательными и научными проектами в Internet, использование средств анимации и обработки изображений, средств мультимедиа

и др.

Существенным обстоятельством, которое до недавнего времени препятствовало широкому использованию СКМ в образовании, является дороговизна профессионального научного математического обеспечения. Однако в последнее время многие фирмы, разрабатывающие и распространяющие такие программы, представляют (через Internet - http://www.softline.ru) для свободного использования предыдущие версии своих программ, широко используют систему скидок для учебных заведений, бесплатно распространяют демонстрационные или пробные версии программ .

Кроме того, появляются бесплатные аналоги систем компьютерной математики, например, Maxima, Scilab, Octave и др.

В настоящем учебном пособии рассматриваются возможности системы компьютерной математики Maxima для нахождения решений дифференциальных уравнений.

Почему именно Maxima?

Во-первых, система Maxima - это некоммерческий проект с открытым кодом. Maxima относится к классу программных продуктов, которые распространяются на основе лицензии GNU GPL (General Public License).

Во-вторых, Maxima - программа для решения математических задач как в численном, так и в символьном виде. Спектр ее возможностей очень широк: действия по преобразованию выражений, работа с частями выражений, решение задач линейной алгебры, математического анализа, комбинаторики, теории чисел, тензорного анализа, статистических задач, построение графиков функций на плоскости и в пространстве в различных системах координат и т.д.

В-третьих, в настоящее время у системы Maxima есть мощный, эффективный и «дружественный» кроссплатформенный графический интерфейс, который называется WxMaxima (http://wxmaxima.sourceforge.net).

Авторами книги уже на протяжении десяти лет изучаются системы компьютерной математики такие как Mathematica, Maple, MathCad. Поэтому, зная возможности этих программных продуктов, в частности для нахождения решений дифференциальных уравнений, хотелось изучить вопрос, связанный с организацией вычислений в символьном виде в системах компьютерной математики, распространяемых свободно.

Настоящее пособие рассказывает о возможностях организации процесса поиска решений дифференциальных уравнений на базе системы Maxima, содержит в себе общие сведения по организации работы в системе.

Пособие состоит из 3 глав. Первая глава знакомит читателей с графическим интерфейсом wxMaxima системы Maxima, особенностями работы в ней, синтаксисом языка системы. Начинается рассмотрение системы с того, где можно найти дистрибутив системы и как его установить. Во второй главе рассматриваются общие вопросы теории дифференциальных уравнений, численные методы их решения. Третья глава посвящена встроенным функциям системы

компьютерной математики Maxima для нахождения решений обыкновенных дифференциальных уравнений 1 и 2 порядка в символьном виде. Также в третьей главе показана реализация в системе Maxima численных методов решения дифференциальных уравнений. В конце пособия приведены задания для самостоятельного решения.

Мы надеемся, что пособием заинтересуется широкий круг пользователей и оно станет их помощником в освоении нового инструмента для решения математических задач.

Т.Н. Губина, Е.В. Андропова Елец, июль 2009

Глава 1 ОСНОВЫ РАБОТЫ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ MAXIMA

1.1. О системе Maxima

В рамках проекта создания искусственного интеллекта в 1967 году в Массачусетском технологическом институте была инициирована разработка первой системы компьютерной алгебры Macsyma. Программа в течение многих лет использовалась и развивалась в университетах Северной Америки, где появилось множество вариантов системы. Maxima является одним из таких вариантов, созданным профессором Вильямом Шелтером (William Schelter) в 1982 году. В 1998 году он получил официальное разрешение Министерства энергетики США на выпуск Maxima под лицензией GPL. А начиная с 2001 года Maxima развивается как свободный международный проект, базирующийся на SourceForge .

В настоящее время Maxima - это система компьютерной математики, которая предназначена для выполнения математических расчетов (как в символьном, так и в численном виде) таких как:

– упрощение выражений;

– графическая визуализация вычислений;

– решение уравнений и их систем;

– решение обыкновенных дифференциальных уравнений и их систем;

– решение задач линейной алгебры;

– решение задач дифференциального и интегрального исчисления;

– решение задач теории чисел и комбинаторных уравнений и др.

В системе имеется большое количество встроенных команд и функций, а также возможность создавать новые функции пользователя. Система имеет свой собственный язык. Она также имеет встроенный язык программирования высокого уровня, что говорит о возможности решения новых задач и возможности создания отдельных модулей и подключения их к системе для решения определенного круга задач.

1.2. Установка Maxima на персональный компьютер

Свободно распространяемую версию дистрибутива Maxima, документацию на английском языке, типы и виды интерфейсов системы можно посмотреть и скачать с сайта программы http://maxima.sourceforge.net . На период написания пособия последняя версия дистрибутива - Maxima 5.18.1.

Сама по себе Maxima - консольная программа и все математические формулы «отрисовывает» обычными текстовыми символами.

Система является многоплатформенной, имеет небольшой размер дистрибутива (≈ 21,5 Мб), легко устанавливается, имеет несколько графических русифицированных интерфейсов: xMaxima, wxMaxima, TexMacs.

Наиболее дружественным, простым и удобным в работе графическим интерфейсом в настоящее время является интерфейс wxMaximа. Поэтому в дальнейшем будем использовать именно этот интерфейс.

Т.Н. Губина, Е.В. Андропова

Установка Maxima под управлением Windows

Полученный после скачивания файл, например maxima-5.18.1.exe (размер файла около 21,5 мегабайт), является исполняемым. Для начала установки программы достаточно нажать на него два раза левой кнопкой мыши. Сразу появится окно выбора локализации (выбираем русский язык).

В появившемся окне выбираем путь установки программы (можно оставить его без изменения).

Переходим к выбору устанавливаемых компонент. Из всего перечисленного для нас «лишними» являются Пакеты поддержки языков Maxima.

При установке желательно установить и графический интерфейс xMaxima, поскольку на нем базируется интерфейс wxMaxima и при решении некоторых задач он необходим, например, при выполнении графических построений.

В следующих окнах предлагается выбрать место размещения ярлыка для запуска программы (в меню «Пуск», на рабочий стол и т.д.). Завершающим этапом будет окно с предложением начать установку. По окончании установки выбираем «Далее» и «Завершить».

Таким образом, установка программы закончена.

Установка Maxima под управлением Linux

Maxima входит в состав многих дистрибутивов Linux, например, таких как AltLinux, Mandriva, Ubuntu, Fedora и др. В некоторых случаях может понадобиться доустановка с репозитория дистрибутива с помощью систем yum или synaptic.

Для установки в других дистрибутивах Linux необходимо использовать подходящий пакет системы Maxima, который можно скачать с сайта http://maxima.sourceforge.net.

Теперь можно приступать к работе с системой.

Учебное пособие ориентировано на работу с системой Maxima, установленную под управлением Linux. Заметим, что все рассматриваемые команды активны и в системе, установленной под управлением Windows.

Для начала познакомимся с интерфейсом основного окна программы.

1.3. Интерфейс основного окна Maxima

После запуска системы Maxima 5.18.1 с графическим интерфейсом wxMaximа появляется рабочее окно программы (Рис. 1).

Глава 1 Основы работы в системе компьютерной математики Maxima

Рис. 1. Вид рабочего окна системы Maxima

Структура окна, как видно из рисунка, имеет стандартный вид:

строка заголовка, в которой располагается название программы и информация о том, сохранен ли рабочий документ (если документ сохранен, то прописывается его имя);

панель меню программы – доступ к основным функциям и настройкам программы. В ней находятся функции для решения большого количества типовых математических задач, разделенные по группам: уравнения, алгебра, анализ, упростить, графики, численные вычисле-

ния. Заметим, что ввод команд через диалоговые окна упрощает работу с программой для начинающих пользователей;

панель инструментов - на ней находятся кнопки для создания нового документа, быстрого сохранения документа, вызова окна справки, создания ячеек ввода, прерывания вычислений, кнопки для работы с буфером обмена и др.;

рабочая область - непосредственно сам документ, в котором формируются ячейки ввода и выводятся результаты выполненных команд;

полосы прокрутки;

панель с кнопками - набор кнопок для быстрого вызова некоторых команд: упростить, решить уравнение или систему, построить график и др.;

строка состояния.

Т.Н. Губина, Е.В. Андропова

В системе Maxima команда - это любая комбинация математических выражений и встроенных функций. Каждая команда завершается символом «;», причем в случае его отсутствия система сама добавит этот символ.

1.4. Работа с ячейками в Maxima

После того, как система загрузилась, можно приступать к вычислениям. Для этого следует добавить так называемую ячейку ввода, в которую вводится команда системе выполнить какое-либо действие.

Систему можно использовать в качестве мощного калькулятора для нахождения значений числовых выражений. Например, для того, чтобы найти значение произведения 120 и 1243, надо:

– на панели инструментов нажать кнопку Insert input cell (или нажать на клавиатуре клавишу Enter). В результате в рабочей области будет сформирована ячейка ввода (Рис.2).

Рис.2. Формирование новой ячейки ввода

Рис.3. Выполнение вычислений в системе Maxima

Таким образом, в документе были сформированы две строки: (%i1) - ячейка ввода и для нее (%о1) - ячейка вывода. Каждая ячейка имеет свою метку - заключенное в скобки имя ячейки. Ячейки, в которых размещаются входные данные (формулы, команды, выражения) называют ячейками ввода . Они обозначаются %iChislo, где Chislo - номер ячейки ввода (i - сокращенно от английского слова input - ввод). Ячейки, в которых размеща-

В системе Maxima имеется множество встроенных функций. Для каждой встроенной функции можно получить описание в документации, содержащейся в справочной системе. Вызвать справку можно с помощью функциональной клавиши F1. Также в Maxima есть специальная функция, которая выдает информацию из документации по конкретным словам. Сокращенная версия вызова этой функции: ?? name (Рис.12). Здесь?? - это имя оператора, и аргумент нужно отделять от него пробелом. Оператор?? выдает список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые требуется посмотреть:

Рис.12. Вызов справки по интересующей команде системы Maxima

Заметим, что в системе Maxima нет четкого разграничения между операторами и функциями. Более того,каждый оператор - это на самом деле функция.

Все функции и операторы Maxima работают не только с действительными, но и комплексными числами. Сами комплексные числа записываются в алгебраической форме, с мнимой единицей, обозначенной через %i; то есть в виде a+b*%i, где а и b - соответственно действительная и мнимая части числа.

Рассмотримсинтаксис базовых функций системы Maxima.

1. Арифметические операторы: + , -, *, /, -->. Пример:

3. Логические операторы: and, or, not. Пример:

4. Функция нахождения факториала числа: !

Факториал задан в наиболее общем виде и представляет собой, по сути, гамма-функцию (точнее, x! = gamma(x+1)), то есть определен на множестве всех комплексных чисел, кроме отрицательных целых. Факториал от натурального числа (и нуля) автоматически упрощается до натурального же числа.

5. Функция нахождения полуфакториала чила: !! (произведение всех четных (для четного операнда) или нечетных чисел, меньших либо равных данному).

6. Функция отрицания синтаксического равенства: # Запись a#b эквивалентна not a=b.Пример:

7. Функция нахождения модуля числа х: abs(x) Модуль определен для всех комплексных чисел. Пример:

8. Функция, возвращающая знак числа х: signum(x)

9. Функции, возвращающие наибольшее и наименьшее значения из заданных действительных чисел: max(x1,...,xn) и min(x1,...,xn).

10. Некоторые встроенные математические функции:

sqrt (x) Квадратный корень из x
acos (x) Арккосинус аргумента х
acosh (x) Гиперболический арккосинус аргумента х
acot (x) Арккотангенс аргумента х
acoth (x) Гиперболический арккотангенс аргумента х
acsc (x) Арккосеканс аргумента х
acsch (x) Гиперболический арккосеканс аргумента х
asec (x) Арксеканс аргумента х
asech (x) Гиперболический арксеканс аргумента х
asin (x) Арксинус аргумента х
asinh (x) Гиперболический арксинус аргумента х
atan (x) Арктангенс аргумента х
atanh (x) Гиперболический арктангенс аргумента х
cosh (x) Гиперболический косинус аргумента х
coth (x) Гиперболический котангенс аргумента х
csc (x) Косеканс аргумента х
csch (x) Гиперболический косеканс аргумента х
sec (x) Секанс аргумента х
sech (x) Гиперболический секанс аргумента х
sin (x) Синус аргумента х
sinh (x) Гиперболический синус аргумента х
tan (x) Тангенс аргумента х
tanh (x) Гиперболический тангенс аргумента х
log (x) Натуральный логарифм х
exp (x) Экспонента х

11. Функции для работы с матрицами:

determinant – нахождение определителя матрицы:

eigenvalues – нахождение собственных значений матрицы:

invert – получение обратной матрицы:

minor – определяет минор матрицы. Первый аргумент – матрица, второй и

третий – индексы строки и столбца соответственно:

rank – ранг матрицы:

submatrix – возвращает матрицу, полученную из исходной удалением

соответствующих строк и (или) столбцов. В качестве параметров следуют

номера удаляемых строк, исходная матрица, номера удаляемых столбцов.

transpose – транспонирование матрицы:

В языке системы Maxima заложены основные исполнимые операторы, которые есть в любом языке программирования. Рассмотрим их.

Операторы присваивания значений (именования выражений).

1. Оператор «:» (оператор задания значения переменной).

2.Оператор «:=» (оператор задания функции пользователя).

3.Расширенные варианты операторов присваивания и задания функции, обозначаемые соответственно через:: и::=.

Использование оператора задания функции пользователя значительно облегчает работу с ней, поскольку к ней можно обращаться по имени и легко и удобно вычислять значения функции в заданных точках.

Пример: найдем значение функции f (x,y )=cosx + siny в точке

Оператор цикла. Оператор цикла может задаваться несколькими способами. Способ задания зависит от того, известно ли заранее сколько раз необходимо выполнить тело цикла.

Пример: задание цикла для вывода значений переменной а в диапазоне от -3 до 10 с шагом 5:

Следующей важной возможностью системы Maxima являетсяработа со списками и массивами.

Для формирования списков используется команда makelist. Например, с помощью команды

мы сформировали список с именем x, состоящий из десяти элементов, значения которых находятся по формуле .

Для формирования массивов используется команда array. Например с помощью команды,

мы сформировали двумерный массив A, состоящий из 10 строк и 5 столбцов. Для заполнения массива элементами воспользуемся циклом с параметром. Например,

Для вывода элементов массива на экран можно воспользоваться командой:

Массив можно формировать и без предварительного объявления. В следующем примере мы сформировали одномерный массив x, состоящий из 5 элементов, значения которых вычисляются по формуле x(i )=sini

Неудобство работы с массивами заключается в том, что вывод значений элементов массива осуществляется в столбец. Гораздо удобнее, если значения массива (двумерного) выводятся в виде матрицы. Для этих целей можно воспользоваться командой genmatrix. Например, для формирования двумерного массива (матрицы) следует задать команду в следующем виде:

Выведем полученный массив:

6. Простейшие преобразования выражений.

По умолчанию в системе Maxima является активной функция автоупрощения, т.е. система старается упростить вводимое выражение сама без какой-либо команды.

Пример. Пусть требуется найти значение следующего числового выражения:

Зададим выражение по правилам языка системы Maxima.

Как видим, система в ответ вывела значение выражения, хотя мы не задали никакой команды.

Как же заставить систему вывести не результат, а само выражение? Для этого функцию упрощения надо отключить с помощью команды simp: false$. Тогда получим:

Для того чтобы активировать функцию упрощения, надо задать команду simp:true$. Функция автоупрощения может работать как с числовыми, так и с некоторыми не числовыми выражениями. Например,

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того, последняя ячейка вывода обозначается через %, а последняя ячейка ввода - через _. Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер. Но такими обращениями к ячейкам злоупотреблять не надо, поскольку при переоценивании всего документа или его отдельных ячеек ввода может произойти разногласие между номерами ячеек.

Пример. Найти значение выражения и увеличить полученный результат в 5 раз.

Желательно вместо имен ячеек использовать переменные и присваивать их имена любым выражениям. В этом случае в виде значения переменной может выступать любое математическое выражение.

Значения имен переменных сохраняются на протяжении всей работы с документом. Напомним, что если необходимо снять определение с переменной, то это можно сделать с помощью функции kill(name), где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить всю память и освободить все имена, введя команду kill(all) (или выбрать меню Махта->Очиститъ память (Clear Memory)). В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы.

Функция автоупрощения далеко не всегда способна упростить выражение. В дополнение к ней имеется целый ряд команд, которые предназначены для работы с выражениями: рациональными и иррациональными. Рассмотрим некоторые из них.

rat (выражение) - преобразовывает рациональное выражение к канонической форме: раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; приводит все числа в конечной десятичной записи к рациональным. Каноническая форма автоматически «отменяется» в случае любых преобразований, не являющихся рациональными

ratsimp (выражение) - упрощает выражение за счет рациональных преобразований. Работает в том числе и «вглубь», то есть иррациональные части выражения не рассматриваются как атомарные, а упрощаются, в том числе, и все рациональные элементы внутри них

fullratsimp(выражение) - функция упрощения рационального выражения методом последовательного применения к переданному выражению функции ratsimp(). За счет этого функция работает несколько медленнее, чем ratsimp(), зато дает более надежный результат.

expand (выражение) - раскрывает скобки в выражении на всех уровнях вложенности. В отличии от функции ratexpand(), не приводит дроби-слагаемые к общему знаменателю.

radcan(выражение) - функция упрощения логарифмических, экспоненциальных функций и степенных с нецелыми рациональными показателями, то есть корней (радикалов).

Часто при попытке упрощения выражения в Maxima может происходить на самом деле только его усложнение. Увеличение результата может происходить из-за того, что неизвестно, какие значения могут принимать переменные, входящие в выражение. Чтобы этого избежать, следует накладывать ограничения на значения, которые может принимать переменная. Делается это с помощью функции assume(условие). Поэтому в некоторых случаях наилучшего результата можно добиться, комбинируя radcan() с ratsimp() или fullratsimp().