Параллельные вычисления на GPU NVIDIA или суперкомпьютер в каждом доме. Эффективное использование GPU Просчет с gpu на cpu

Использование GPU для вычислений с помощью C++ AMP

До сих пор в обсуждении приемов параллельного программирования мы рассматривали только ядра процессора. Мы приобрели некоторые навыки распараллеливания программ по нескольким процессорам, синхронизации доступа к совместно используемым ресурсам и использования высокоскоростных примитивов синхронизации без применения блокировок.

Однако, существует еще один способ распараллеливания программ - графические процессоры (GPU) , обладающие большим числом ядер, чем даже высокопроизводительные процессоры. Ядра графических процессоров прекрасно подходят для реализации параллельных алгоритмов обработки данных, а большое их количество с лихвой окупает неудобства выполнения программ на них. В этой статье мы познакомимся с одним из способов выполнения программ на графическом процессоре, с использованием комплекта расширений языка C++ под названием C++ AMP .

Расширения C++ AMP основаны на языке C++ и именно поэтому в данной статье будут демонстрироваться примеры на языке C++. Однако, при умеренном использовании механизма взаимодействий в. NET, вы сможете использовать алгоритмы C++ AMP в своих программах для.NET. Но об этом мы поговорим в конце статьи.

Введение в C++ AMP

По сути, графический процессор является таким же процессором, как любые другие, но с особым набором инструкций, большим количеством ядер и своим протоколом доступа к памяти. Однако между современными графическими и обычными процессорами существуют большие отличия, и их понимание является залогом создания программ, эффективно использующих вычислительные мощности графического процессора.

    Современные графические процессоры обладают очень маленьким набором инструкций. Это подразумевает некоторые ограничения: отсутствие возможности вызова функций, ограниченный набор поддерживаемых типов данных, отсутствие библиотечных функций и другие. Некоторые операции, такие как условные переходы, могут стоить значительно дороже, чем аналогичные операции, выполняемые на обычных процессорах. Очевидно, что перенос больших объемов кода с процессора на графический процессор при таких условиях требует значительных усилий.

    Количество ядер в среднем графическом процессор значительно больше, чем в среднем обычном процессоре. Однако некоторые задачи оказываются слишком маленькими или не позволяют разбивать себя на достаточно большое количество частей, чтобы можно было извлечь выгоду от применения графического процессора.

    Поддержка синхронизации между ядрами графического процессора, выполняющими одну задачу, весьма скудна, и полностью отсутствует между ядрами графического процессора, выполняющими разные задачи. Это обстоятельство требует синхронизации графического процессора с обычным процессором.

Сразу возникает вопрос, какие задачи подходят для решения на графическом процессоре? Имейте в виду, что не всякий алгоритм подходит для выполнения на графическом процессоре. Например, графические процессоры не имеют доступа к устройствам ввода/вывода, поэтому у вас не получится повысить производительность программы, извлекающей ленты RSS из интернета, за счет использования графического процессора. Однако на графический процессор можно перенести многие вычислительные алгоритмы и обеспечить массовое их распараллеливание. Ниже приводится несколько примеров таких алгоритмов (этот список далеко не полон):

    увеличение и уменьшение резкости изображений, и другие преобразования;

    быстрое преобразование Фурье;

    транспонирование и умножение матриц;

    сортировка чисел;

    инверсия хеша «в лоб».

Отличным источником дополнительных примеров может служить блог Microsoft Native Concurrency , где приводятся фрагменты кода и пояснения к ним для различных алгоритмов, реализованных на C++ AMP.

C++ AMP - это фреймворк, входящий в состав Visual Studio 2012, дающий разработчикам на C++ простой способ выполнения вычислений на графическом процессоре и требующий лишь наличия драйвера DirectX 11. Корпорация Microsoft выпустила C++ AMP как открытую спецификацию , которую может реализовать любой производитель компиляторов.

Фреймворк C++ AMP позволяет выполнять код на графических ускорителях (accelerators) , являющихся вычислительными устройствами. С помощью драйвера DirectX 11 фреймворк C++ AMP динамически обнаруживает все ускорители. В состав C++ AMP входят также программный эмулятор ускорителя и эмулятор на базе обычного процессора, WARP, которые служит запасным вариантом в системах без графического процессора или с графическим процессором, но в отсутствие драйвера DirectX 11, и использует несколько ядер и инструкции SIMD.

А теперь приступим к исследованию алгоритма, который легко можно распараллелить для выполнения на графическом процессоре. Реализация ниже принимает два вектора одинаковой длины и вычисляет поточечный результат. Сложно представить что-либо более прямолинейное:

Void VectorAddExpPointwise(float* first, float* second, float* result, int length) { for (int i = 0; i < length; ++i) { result[i] = first[i] + exp(second[i]); } }

Чтобы распараллелить этот алгоритм на обычном процессоре, требуется разбить диапазон итераций на несколько поддиапазонов и запустить по одному потоку выполнения для каждого из них. Мы посвятили достаточно много времени в предыдущих статьях именно такому способу распараллеливания нашего первого примера поиска простых чисел - мы видели, как можно это сделать, создавая потоки вручную, передавая задания пулу потоков и используя Parallel.For и PLINQ для автоматического распараллеливания. Вспомните также, что при распараллеливании похожих алгоритмов на обычном процессоре мы особо заботились, чтобы не раздробить задачу на слишком мелкие задания.

Для графического процессора эти предупреждения не нужны. Графические процессоры имеют множество ядер, выполняющих потоки очень быстро, а стоимость переключения контекста значительно ниже, чем в обычных процессорах. Ниже приводится фрагмент, пытающийся использовать функцию parallel_for_each из фреймворка C++ AMP:

#include #include using namespace concurrency; void VectorAddExpPointwise(float* first, float* second, float* result, int length) { array_view avFirst (length, first); array_view avSecond(length, second); array_view avResult(length, result); avResult.discard_data(); parallel_for_each(avResult.extent, [=](index<1> i) restrict(amp) { avResult[i] = avFirst[i] + fast_math::exp(avSecond[i]); }); avResult.synchronize(); }

Теперь исследуем каждую часть кода отдельно. Сразу заметим, что общая форма главного цикла сохранилась, но первоначально использовавшийся цикл for был заменен вызовом функции parallel_for_each. В действительности, принцип преобразования цикла в вызов функции или метода для нас не нов - ранее уже демонстрировался такой прием с применением методов Parallel.For() и Parallel.ForEach() из библиотеки TPL.

Далее, входные данные (параметры first, second и result) обертываются экземплярами array_view . Класс array_view служит для обертывания данных, передаваемых графическому процессору (ускорителю). Его шаблонный параметр определяет тип данных и их размерность. Чтобы выполнить на графическом процессоре инструкции, обращающиеся к данным, первоначально обрабатываемым на обычном процессоре, кто-то или что-то должен позаботиться о копировании данных в графический процессор, потому что большинство современных графических карт являются отдельными устройствами с собственной памятью. Эту задачу решают экземпляры array_view - они обеспечивают копирование данных по требованию и только когда они действительно необходимы.

Когда графический процессор выполнит задание, данные копируются обратно. Создавая экземпляры array_view с аргументом типа const, мы гарантируем, что first и second будут скопированы в память графического процессора, но не будут копироваться обратно. Аналогично, вызывая discard_data() , мы исключаем копирование result из памяти обычного процессора в память ускорителя, но эти данные будут копироваться в обратном направлении.

Функция parallel_for_each принимает объект extent, определяющий форму обрабатываемых данных и функцию для применения к каждому элементу в объекте extent. В примере выше мы использовали лямбда-функцию, поддержка которых появилась в стандарте ISO C++2011 (C++11). Ключевое слово restrict (amp) поручает компилятору проверить возможность выполнения тела функции на графическом процессоре и отключает большую часть синтаксиса C++, который не может быть скомпилирован в инструкции графического процессора.

Параметр лямбда-функции, index<1> объекта, представляет одномерный индекс. Он должен соответствовать используемому объекту extent - если бы мы объявили объект extent двумерным (например, определив форму исходных данных в виде двумерной матрицы), индекс также должен был бы быть двумерным. Пример такой ситуации приводится чуть ниже.

Наконец, вызов метода synchronize() в конце метода VectorAddExpPointwise гарантирует копирование результатов вычислений из array_view avResult, произведенных графическим процессором, обратно в массив result.

На этом мы заканчиваем наше первое знакомство с миром C++ AMP, и теперь мы готовы к более подробным исследованиям, а так же к более интересным примерам, демонстрирующим выгоды от использования параллельных вычислений на графическом процессоре. Сложение векторов - не самый удачный алгоритм и не самый лучший кандидат для демонстрации использования графического процессора из-за больших накладных расходов на копирование данных. В следующем подразделе будут показаны два более интересных примера.

Умножение матриц

Первый «настоящий» пример, который мы рассмотрим, - умножение матриц. Для реализации мы возьмем простой кубический алгоритм умножения матриц, а не алгоритм Штрассена, имеющий время выполнения, близкое к кубическому ~O(n 2.807). Для двух матриц: матрицы A размером m x w и матрицы B размером w x n, следующая программа выполнит их умножение и вернет результат - матрицу C размером m x n:

Void MatrixMultiply(int* A, int m, int w, int* B, int n, int* C) { for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int sum = 0; for (int k = 0; k < w; ++k) { sum += A * B; } C = sum; } } }

Распараллелить эту реализацию можно несколькими способами, и при желании распараллелить этот код для выполнения на обычном процессоре правильным выбором был бы прием распараллеливания внешнего цикла. Однако графический процессор имеет достаточно большое количество ядер и распараллелив только внешний цикл, мы не сможем создать достаточное количество заданий, чтобы загрузить работой все ядра. Поэтому имеет смысл распараллелить два внешних цикла, оставив внутренний цикл нетронутым:

Void MatrixMultiply (int* A, int m, int w, int* B, int n, int* C) { array_view avA(m, w, A); array_view avB(w, n, B); array_view avC(m, n, C); avC.discard_data(); parallel_for_each (avC.extent, [=](index <2> idx) restrict(amp) { int sum = 0; for (int k = 0; k < w; ++k) { sum + = avA(idx*w, k) * avB(k*w, idx); } avC = sum; }); }

Эта реализация все еще близко напоминает последовательную реализацию умножения матриц и пример сложения векторов, приводившиеся выше, за исключением индекса, который теперь является двумерным и доступен во внутреннем цикле с применением оператора . Насколько эта версия быстрее последовательной альтернативы, выполняемой на обычном процессоре? Умножение двух матриц (целых чисел) размером 1024 х 1024 последовательная версия на обычном процессоре выполняет в среднем 7350 миллисекунд, тогда как версия для графического процессора - держитесь крепче - 50 миллисекунд, в 147 раз быстрее!

Моделирование движения частиц

Примеры решения задач на графическом процессоре, представленные выше, имеют очень простую реализацию внутреннего цикла. Понятно, что так будет не всегда. В блоге Native Concurrency, ссылка на который уже приводилась выше, демонстрируется пример моделирования гравитационных взаимодействий между частицами. Моделирование включает бесконечное количество шагов; на каждом шаге вычисляются новые значения элементов вектора ускорений для каждой частицы и затем определяются их новые координаты. Здесь распараллеливанию подвергается вектор частиц - при достаточно большом количестве частиц (от нескольких тысяч и выше) можно создать достаточно большое количество заданий, чтобы загрузить работой все ядра графического процессора.

Основу алгоритма составляет реализация определения результата взаимодействий между двумя частицами, как показано ниже, которую легко можно перенести на графический процессор:

// здесь float4 - это векторы с четырьмя элементами, // представляющие частицы, участвующие в операциях void bodybody_interaction (float4& acceleration, const float4 p1, const float4 p2) restrict(amp) { float4 dist = p2 – p1; // w здесь не используется float absDist = dist.x*dist.x + dist.y*dist.y + dist.z*dist.z; float invDist = 1.0f / sqrt(absDist); float invDistCube = invDist*invDist*invDist; acceleration + = dist*PARTICLE_MASS*invDistCube; }

Исходными данными на каждом шаге моделирования является массив с координатами и скоростями движения частиц, а в результате вычислений создается новый массив с координатами и скоростями частиц:

Struct particle { float4 position, velocity; // реализации конструктора, конструктора копирования и // оператора = с restrict(amp) опущены для экономии места }; void simulation_step(array & previous, array & next, int bodies) { extent <1> ext(bodies); parallel_for_each (ext, [&](index <1> idx) restrict(amp) { particle p = previous; float4 acceleration(0, 0, 0, 0); for (int body = 0; body < bodies; ++body) { bodybody_interaction (acceleration, p.position, previous.position); } p.velocity + = acceleration*DELTA_TIME; p.position + = p.velocity*DELTA_TIME; next = p; }); }

С привлечением соответствующего графического интерфейса, моделирование может оказаться очень интересным. Полный пример, представленный командой разработчиков C++ AMP, можно найти в блоге Native Concurrency. На моей системе с процессором Intel Core i7 и видеокартой Geforce GT 740M, моделирование движения 10 000 частиц выполняется со скоростью ~2.5 кадра в секунду (шагов в секунду) с использованием последовательной версии, выполняющейся на обычном процессоре, и 160 кадров в секунду с использованием оптимизированной версии, выполняющейся на графическом процессоре - огромное увеличение производительности.

Прежде чем завершить этот раздел, необходимо рассказать еще об одной важной особенности фреймворка C++ AMP, которая может еще больше повысить производительность кода, выполняемого на графическом процессоре. Графические процессоры поддерживают программируемый кеш данных (часто называемый разделяемой памятью (shared memory) ). Значения, хранящиеся в этом кеше, совместно используются всеми потоками выполнения в одной мозаике (tile). Благодаря мозаичной организации памяти, программы на основе фреймворка C++ AMP могут читать данные из памяти графической карты в разделяемую память мозаики и затем обращаться к ним из нескольких потоков выполнения без повторного извлечения этих данных из памяти графической карты. Доступ к разделяемой памяти мозаики выполняется примерно в 10 раз быстрее, чем к памяти графической карты. Иными словами, у вас есть причины продолжить чтение.

Чтобы обеспечить выполнение мозаичной версии параллельного цикла, методу parallel_for_each передается домен tiled_extent , который делит многомерный объект extent на многомерные фрагменты мозаики, и лямбда-параметр tiled_index, определяющий глобальный и локальный идентификатор потока внутри мозаики. Например, матрицу 16x16 можно разделить на фрагменты мозаики размером 2x2 (как показано на рисунке ниже) и затем передать функции parallel_for_each:

Extent <2> matrix(16,16); tiled_extent <2,2> tiledMatrix = matrix.tile <2,2> (); parallel_for_each (tiledMatrix, [=](tiled_index <2,2> idx) restrict(amp) { // ... });

Каждый из четырех потоков выполнения, принадлежащих одной и той же мозаике, могут совместно использовать данные, хранящиеся в блоке.

При выполнении операций с матрицами, в ядре графического процессора, взамен стандартного индекса index<2>, как в примерах выше, можно использовать idx.global . Грамотное использование локальной мозаичной памяти и локальных индексов может обеспечить существенный прирост производительности. Чтобы объявить мозаичную память, разделяемую всеми потоками выполнения в одной мозаике, локальные переменные можно объявить со спецификатором tile_static.

На практике часто используется прием объявления разделяемой памяти и инициализации отдельных ее блоков в разных потоках выполнения:

Parallel_for_each(tiledMatrix, [=](tiled_index <2,2> idx) restrict(amp) { // 32 байта совместно используются всеми потоками в блоке tile_static int local; // присвоить значение элементу для этого потока выполнения local = 42; });

Очевидно, что какие-либо выгоды от использования разделяемой памяти можно получить только в случае синхронизации доступа к этой памяти; то есть, потоки не должны обращаться к памяти, пока она не будет инициализирована одним из них. Синхронизация потоков в мозаике выполняется с помощью объектов tile_barrier (напоминающего класс Barrier из библиотеки TPL) - они смогут продолжить выполнение только после вызова метода tile_barrier.Wait(), который вернет управление только когда все потоки вызовут tile_barrier.Wait. Например:

Parallel_for_each (tiledMatrix, (tiled_index <2,2> idx) restrict(amp) { // 32 байта совместно используются всеми потоками в блоке tile_static int local; // присвоить значение элементу для этого потока выполнения local = 42; // idx.barrier - экземпляр tile_barrier idx.barrier.wait(); // Теперь этот поток может обращаться к массиву "local", // используя индексы других потоков выполнения! });

Теперь самое время воплотить полученные знания в конкретный пример. Вернемся к реализации умножения матриц, выполненной без применения мозаичной организации памяти, и добавим в него описываемую оптимизацию. Допустим, что размер матрицы кратен числу 256 - это позволит нам работать с блоками 16 х 16. Природа матриц допускает возможность поблочного их умножения, и мы можем воспользоваться этой особенностью (фактически, деление матриц на блоки является типичной оптимизацией алгоритма умножения матриц, обеспечивающей более эффективное использование кеша процессора).

Суть этого приема сводится к следующему. Чтобы найти C i,j (элемент в строке i и в столбце j в матрице результата), нужно вычислить скалярное произведение между A i,* (i-я строка первой матрицы) и B *,j (j-й столбец во второй матрице). Однако, это эквивалентно вычислению частичных скалярных произведений строки и столбца с последующим суммированием результатов. Мы можем использовать это обстоятельство для преобразования алгоритма умножения матриц в мозаичную версию:

Void MatrixMultiply(int* A, int m, int w, int* B, int n, int* C) { array_view avA(m, w, A); array_view avB(w, n, B); array_view avC(m, n, C); avC.discard_data(); parallel_for_each (avC.extent.tile <16,16> (), [=](tiled_index <16,16> idx) restrict(amp) { int sum = 0; int localRow = idx.local, localCol = idx.local; for (int k = 0; k

Суть описываемой оптимизации в том, что каждый поток в мозаике (для блока 16 х 16 создается 256 потоков) инициализирует свой элемент в 16 х 16 локальных копиях фрагментов исходных матриц A и B. Каждому потоку в мозаике требуется только одна строка и один столбец из этих блоков, но все потоки вместе будут обращаться к каждой строке и к каждому столбцу по 16 раз. Такой подход существенно снижает количество обращений к основной памяти.

Чтобы вычислить элемент (i,j) в матрице результата, алгоритму требуется полная i-я строка первой матрицы и j-й столбец второй матрицы. Когда потоки мозаике 16x16, представленные на диаграмме и k=0, заштрихованные области в первой и второй матрицах будут прочитаны в разделяемую память. Поток выполнения, вычисляющий элемент (i,j) в матрице результата, вычислит частичное скалярное произведение первых k элементов из i-й строки и j-го столбца исходных матриц.

В данном примере применение мозаичной организации обеспечивает огромный прирост производительности. Мозаичная версия умножения матриц выполняется намного быстрее простой версии и занимает примерно 17 миллисекунд (для тех же исходных матриц размером 1024 х 1024), что в 430 быстрее версии, выполняемой на обычном процессоре!

Прежде чем закончить обсуждение фреймворка C++ AMP, нам хотелось бы упомянуть инструменты (в Visual Studio), имеющиеся в распоряжении разработчиков. Visual Studio 2012 предлагает отладчик для графического процессора (GPU), позволяющий устанавливать контрольные точки, исследовать стек вызовов, читать и изменять значения локальных переменных (некоторые ускорители поддерживают отладку для GPU непосредственно; для других Visual Studio использует программный симулятор), и профилировщик, дающий возможность оценивать выгоды, получаемые приложением от распараллеливания операций с применением графического процессора. За дополнительной информацией о возможностях отладки в Visual Studio обращайтесь к статье «Пошаговое руководство. Отладка приложения C++ AMP» на сайте MSDN.

Альтернативы вычислений на графическом процессоре в.NET

До сих пор в этой статье демонстрировались примеры только на языке C++, тем не менее, есть несколько способов использовать мощь графического процессора в управляемых приложениях. Один из способов - использовать инструменты взаимодействий, позволяющие переложить работу с ядрами графического процессора на низкоуровневые компоненты C++. Это решение отлично подходит для тех, кто желает использовать фреймворк C++ AMP или имеет возможность использовать уже готовые компоненты C++ AMP в управляемых приложениях.

Другой способ - использовать библиотеку, непосредственно работающую с графическим процессором из управляемого кода. В настоящее время существует несколько таких библиотек. Например, GPU.NET и CUDAfy.NET (обе являются коммерческими предложениями). Ниже приводится пример из репозитория GPU.NET GitHub, демонстрирующий реализацию скалярного произведения двух векторов:

Public static void MultiplyAddGpu(double a, double b, double c) { int ThreadId = BlockDimension.X * BlockIndex.X + ThreadIndex.X; int TotalThreads = BlockDimension.X * GridDimension.X; for (int ElementIdx = ThreadId; ElementIdx

Я придерживаюсь мнения, что гораздо проще и эффективнее освоить расширение языка (на основе C++ AMP), чем пытаться организовывать взаимодействия на уровне библиотек или вносить существенные изменения в язык IL.

Итак, после того как мы рассмотрели возможности параллельного программирования в.NET и использованием GPU наверняка ни у кого не осталось сомнений, что организация параллельных вычислений является важным способом повышения производительности. Во многих серверах и рабочих станциях по всему миру остаются неиспользуемыми бесценные вычислительные мощности обычных и графических процессоров, потому что приложения просто не задействуют их.

Библиотека Task Parallel Library дает нам уникальную возможность включить в работу все имеющиеся ядра центрального процессора, хотя при этом и придется решать некоторые интереснейшие проблемы синхронизации, чрезмерного дробления задач и неравного распределения работы между потоками выполнения.

Фреймворк C++ AMP и другие многоцелевые библиотеки организации параллельных вычислений на графическом процессоре с успехом можно использовать для распараллеливания вычислений между сотнями ядер графического процессора. Наконец, имеется, неисследованная ранее, возможность получить прирост производительности от применения облачных технологий распределенных вычислений, превратившихся в последнее время в одно из основных направлений развития информационных технологий.

Одной из наиболее скрытых функций, в недавнем обновлении Windows 10, является возможность проверить, какие приложения используют ваш графический процессор (GPU). Если вы когда-либо открывали диспетчер задач, то наверняка смотрели на использование вашего ЦП, чтобы узнать, какие приложения наиболее грузят ЦП. В последних обновлениях добавлена ​​аналогичная функция, но для графических процессоров GPU. Это помогает понять, насколько интенсивным является ваше программное обеспечение и игры на вашем графическом процессоре, не загружая программное обеспечение сторонних разработчиков. Есть и еще одна интересная функция, которая помогает разгрузить ваш ЦП на GPU. Рекомендую почитать, как выбрать .

Почему у меня нет GPU в диспетчере задач?

К сожалению, не все видеокарты смогут предоставить системе Windows статистику, необходимую для чтения графического процессора. Чтобы убедиться, вы можете быстро использовать инструмент диагностики DirectX для проверки этой технологии.

  1. Нажмите "Пуск " и в поиске напишите dxdiag для запуска средства диагностики DirectX.
  2. Перейдите во вкладку "Экран", справа в графе "драйверы " у вас должна быть модель WDDM больше 2.0 версии для использования GPU графы в диспетчере задач.

Включить графу GPU в диспетчере задач

Чтобы увидеть использование графического процессора для каждого приложения, вам нужно открыть диспетчер задач.

  • Нажмите сочетание кнопок Ctrl + Shift + Esc , чтобы открыть диспетчер задач.
  • Нажмите правой кнопкой мыши в диспетчере задач на поле пустое "Имя" и отметьте из выпадающего меню GPU. Вы также можете отметить Ядро графического процессора , чтобы видеть, какие программы используют его.
  • Теперь в диспетчере задач, справа видна графа GPU и ядро графического процессора.


Просмотр общей производительности графического процессора

Вы можете отслеживать общее использование GPU, чтобы следить за ним при больших нагрузках и анализировать. В этом случае вы можете увидеть все, что вам нужно, на вкладке "Производительность ", выбрав графический процессор.


Каждый элемент графического процессора разбивается на отдельные графики, чтобы дать вам еще больше информации о том, как используется ваш GPU. Если вы хотите изменить отображаемые графики, вы можете щелкнуть маленькую стрелку рядом с названием каждой задачи. На этом экране также отображается версия вашего драйвера и дата, что является хорошей альтернативой использованию DXDiag или диспетчера устройств.


Говоря о параллельных вычислениях на GPU мы должны помнить, в какое время мы живем, сегодняшний день это время когда все в мире ускоренно настолько, что мы с вами теряем счет времени, не замечая, как оно проноситься мимо. Всё, что мы делаем, связано с высокой точностью и скоростью обработки информации, в таких условиях нам непременно нужны инструменты для того, чтобы обработать всю информацию, которая у нас есть и преобразовать её в данные, к тому же говоря о таких задачах надо помнить, что данные задачи необходимы не только крупным организациям или мегакорпорациям, в решение таких задач сейчас нуждаются и рядовые пользователи, которые, которые решают свои жизненные задачи, связанные с высокими технологиями у себя дома на персональных компьютерах! Появление NVIDIA CUDA было не удивительным, а, скорее, обоснованным, потому, как в скором времени будет необходимо обрабатывать значительно более трудоёмкие задачи на ПК, чем ранее. Работа, которая ранее занимала очень много времени, теперь будет занимать считанные минуты, соответственно это повлияет на общую картину всего мира!

Что же такое вычисление на GPU

Вычисления на GPU — это использование GPU для вычисления технических, научных, бытовых задач. Вычисление на GPU заключает в себе использование CPU и GPU с разнородной выборкой между ними, а именно: последовательную часть программ берет на себя CPU , в то время как трудоёмкие вычислительные задачи остаются GPU . Благодаря этому происходит распараллеливание задач, которое приводит к ускорению обработки информации и уменьшает время выполнения работы, система становиться более производительной и может одновременно обрабатывать большее количество задач, чем ранее. Однако, чтобы добиться такого успеха одной лишь аппаратной поддержкой не обойтись, в данном случае необходима поддержка ещё и программного обеспечения, что бы приложение могло переносить наиболее трудоёмкие вычисления на GPU .

Что такое CUDA

CUDA — технология программирования на упрощённом языке Си алгоритмов, которые исполняються на графических процессорах ускорителей GeForce восьмого поколения и старше, а также соответствующих карт Quadro и Tesla от компании NVIDIA. CUDA позволяет включать в текст Си программы специальные функции. Эти функции пишутся на упрощённом языке программирования Си и выполняются на графическом процессоре. Первоначальная версия CUDA SDK была представлена 15 февраля 2007 года. Для успешной трансляции кода на этом языке, в состав CUDA SDK входит собственный Си-компилятор командной строки nvcc компании NVIDIA. Компилятор nvcc создан на основе открытого компилятора Open64 и предназначен для трансляции host-кода (главного, управляющего кода) и device-кода (аппаратного кода) (файлов с расширением .cu ) в объектные файлы, пригодные в процессе сборки конечной программы или библиотеки в любой среде программирования, например в Microsoft Visual Studio.

Возможности технологии

  1. Стандартный язык C для параллельной разработки приложений на GPU .
  2. Готовые библиотеки численного анализа для быстрого преобразования Фурье и базового пакета программ линейной алгебры.
  3. Специальный драйвер CUDA для вычислений с быстрой передачей данных между GPU и CPU .
  4. Возможность взаимодействия драйвера CUDA с графическими драйверами OpenGL и DirectX .
  5. Поддержка операционных систем Linux 32/64-bit, Windows XP 32/64-bit и MacOS.

Преимущества технологии

  1. Интерфейс программирования приложений CUDA (CUDA API) основан на стандартном языке программирования Си с некоторыми ограничениями. Это упрощает и сглаживает процеcс изучения архитектуры CUDA .
  2. Разделяемая между потоками память (shared memory) размером в 16 Кб может быть использована под организованный пользователем кэш с более широкой полосой пропускания, чем при выборке из обычных текстур.
  3. Более эффективные транзакции между памятью центрального процессора и видеопамятью.
  4. Полная аппаратная поддержка целочисленных и побитовых операций.

Пример применения технологии

cRark

Самое трудоёмкое в этой программе — это настойка. Программа имеет консольный интерфейс, но благодаря инструкции, которая прилагается к самой программе, ей можно пользоваться. Далее приведена краткая инструкция по настройке программы. Мы проверим программу на работоспособность и сравним её с другой подобной программой, которая не использует NVIDIA CUDA , в данном случае это известная программа «Advanced Archive Password Recovery».

Из скаченного архива cRark нам нужно только три файла: crark.exe , crark-hp.exe и password.def . Сrark.exe — это консольная утилита вскрытия паролей RAR 3.0 без шифрованных файлов внутри архива (т.е. раскрывая архив мы видим названия, но не можем распаковать архив без пароля).

Сrark-hp.exe — это консольная утилита вскрытия паролей RAR 3.0 с шифрованием всего архива (т.е. раскрывая архив мы не видим ни названия, ни самих архивов и не можем распаковать архив без пароля).

Password.def - это любой переименованный текстовой файл с очень небольшим содержанием (к примеру: 1-я строка: ## 2-я строка: ?* , в этом случае вскрытие пароля будет происходить с использованием всех знаков). Password.def — это руководитель програмы cRark. В файле содержаться правила вскрытия пароля (или область знаков которую crark.exe будет использовать в своей работе). Подробнее о возможностях выбора этих знаков написано в текстовом файле полученном при вскрытии скачанного на сайте у автора программы cRark: russian.def .

Подготовка

Сразу скажу, что программа работает только если ваша видеокарта основана на GPU с поддержкой уровня ускорения CUDA 1.1. Так что серия видеокарт, основанных на чипе G80, таких как GeForce 8800 GTX , отпадает, так как они имеют аппаратную поддержку ускорения CUDA 1.0. Программа подбирает с помощью CUDA только пароли на архивы RAR версий 3.0+. Необходимо установить все программное обеспечение, связанное с CUDA , а именно:

  • Драйверы NVIDIA , поддерживающие CUDA , начиная с 169.21
  • NVIDIA CUDA SDK , начиная с версии 1.1
  • NVIDIA CUDA Toolkit , начиная с версии 1.1

Создаём любую папку в любом месте (например на диске С:) и называем любым именем например «3.2». Помещаем туда файлы: crark.exe , crark-hp.exe и password.def и запароленный/зашифрованный архив RAR.

Далее, следует запустить консоль командной строки Windows и перейти в ней созданную папку. В Windows Vista и 7 следует вызвать меню «Пуск» и в поле поиска ввести «cmd.exe», в Windows XP из меню «Пуск» сначала следует вызвать диалог «Выполнить» и уже в нём вводить «cmd.exe». После открытия консоли следует ввести команду вида: cd C:\папка\ , cd C:\3.2 в данном случае.

Набираем в текстовом редакторе две строки (можно также сохранить текст как файл .bat в папке с cRark) для подбора пароля запароленного RAR-архива с незашифрованными файлами:

echo off;
cmd /K crark (название архива).rar

для подбора пароля запароленного и зашифрованного RAR-архива:

echo off;
cmd /K crark-hp (название архива).rar

Копируем 2 строки текстового файла в консоль и нажимаем Enter (или запускаем.bat файл).

Результаты

Процесс расшифровки показан на рисунке:

Скорость подбора на cRark с помощью CUDA составила 1625 паролей/секунду. За одну минуту тридцать шесть секунд был подобран пароль с 3-мя знаками: «q}$». Для сравнения: скорость перебора в Advanced Archive Password Recovery на моём двуядерном процессоре Athlon 3000+ равна максимум 50 паролей/секунду и перебор должен был бы длиться 5 часов. То есть подбор по bruteforce в cRark архива RAR с помощью видеокарты GeForce 9800 GTX+ происходит в 30 раз быстрее, чем на CPU .

Для тех, у кого процессор Intel, хорошая системная плата с высокой частотой системной шины (FSB 1600 МГц), показатель CPU rate и скорость перебора будут выше. А если у вас четырёхъядерный процессор и пара видеокарт уровня GeForce 280 GTX , то быстродействие перебора паролей ускоряется в разы. Подводя итоги примера надо сказать, что данная задача была решена с применением технологии CUDA всего за каких то 2 минуты вместо 5-ти часов что говорит о высоком потенциале возможностей для данной технологии!

Выводы

Рассмотрев сегодня технологию для параллельных вычислений CUDA мы наглядно увидели всю мощь и огромный потенциал для развития данной технологии на примере программы для восстановления пароля для RAR архивов. Надо сказать о перспективах данной технологии, данная технология непременно найдет место в жизни каждого человека, который решит ей воспользоваться, будь то научные задачи, или задачи, связанные с обработкой видео, или даже экономические задачи которые требуют быстрого точного расчета, всё это приведет к неизбежному повышению производительности труда, которое нельзя будет не заметить. На сегодняшний день в лексикон уже начинает входить словосочетание «домашний суперкомпьютер»; абсолютно очевидно, что для воплощения такого предмета в реальность в каждом доме уже есть инструмент под названием CUDA . Начиная с момента выхода карт, основанных на чипе G80 (2006 г.), выпущено огромное количество ускорителей на базе NVIDIA, поддерживающих технологию CUDA , которая способна воплотить мечты о суперкомпьютерах в каждом доме в реальность. Продвигая технологию CUDA , NVIDIA поднимает свой авторитет в глазах клиентов в виде предоставления дополнительных возможностей их оборудования, которое у многих уже куплено. Остается только лишь верить, что в скором времени CUDA будет развиваться очень быстро и даст пользователям в полной мере воспользоваться всеми возможностями параллельных вычислений на GPU .

Ядер много не бывает…

Современные GPU – это монструозные шустрые бестии, способные пережевывать гигабайты данных. Однако человек хитер и, как бы не росли вычислительные мощности, придумывает задачи все сложнее и сложнее, так что приходит момент когда с грустью приходиться констатировать – нужна оптимизацию 🙁

В данной статье описаны основные понятия, для того чтобы было легче ориентироваться в теории gpu-оптимизации и базовые правила, для того чтобы к этим понятиям, приходилось обращаться по-реже.

Причины по которой GPU эффективны для работы с большими объемами данных, требующих обработки:

  • у них большие возможности по параллельному исполнению задач (много-много процессоров)
  • высокая пропускная способность у памяти

Пропускная способность памяти (memory bandwidth) – это сколько информации – бит или гигабайт – может может быть передано за единицу времени секунду или процессорный такт.

Одна из задач оптимизации – задействовать по максимуму пропускную способность – увеличить показатели throughput (в идеале она должна быть равна memory bandwidth).

Для улучшения использования пропускной способности:

  • увеличить объем информации – использовать пропускной канал на полную (например каждый поток работает с флоат4)
  • уменьшать латентность – задержку между операциями

Задержка (latency) – промежуток времени между моментами, когда контролер запросил конкретную ячейку памяти и тем моментом, когда данные стали доступны процессору для выполнения инструкций. На саму задержку мы никак повлиять не можем – эти ограничения присутствуют на аппаратном уровне. Именно за счет этой задержки процессор может одновременно обслуживать несколько потоков – пока поток А запросил выделить ему памяти, поток Б может что-то посчитать, а поток С ждать пока к нему придут запрошенные данные.

Как снизить задержку (latency) если используется синхронизация:

  • уменьшить число потоков в блоке
  • увеличить число групп-блоков

Использование ресурсов GPU на полную – GPU Occupancy

В высоколобых разговорах об оптимизации часто мелькает термин – gpu occupancy или kernel occupancy – он отражает эффективность использования ресурсов-мощностей видеокарты. Отдельно отмечу – если вы даже и используете все ресурсы – это отнюдь не значит что вы используете их правильно.

Вычислительные мощности GPU – это сотни процессоров жадных до вычислений, при создании программы – ядра (kernel) – на плечи программиста ложиться бремя распределения нагрузки на них. Ошибка может привести к тому, что большая часть этих драгоценных ресурсов может бесцельно простаивать. Сейчас я объясню почему. Начать придется издалека.

Напомню, что варп (warp в терминологии NVidia, wavefront – в терминологии AMD) – набор потоков которые одновременно выполняют одну и туже функцию-кернел на процессоре. Потоки, объединенные программистом в блоки разбиваются на варпы планировщиком потоков (отдельно для каждого мультипроцессора) – пока один варп работает, второй ждет обработки запросов к памяти и т.д. Если какие-то из потоков варпа все еще выполняют вычисления, а другие уже сделали все что могли – имеет место быть неэффективное использование вычислительного ресурса – в народе именуемое простаивание мощностей.

Каждая точка синхронизации, каждое ветвление логики может породить такую ситуацию простоя. Максимальная дивергенция (ветвление логики исполнения) зависит от размера варпа. Для GPU от NVidia – это 32, для AMD – 64.

Для того чтобы снизить простой мультипроцессора во время выполнения варпа:

  • минимизировать время ожидания барьеров
  • минимизировать расхождение логики выполнения в функции-кернеле

Для эффективного решения данной задачи имеет смысл разобраться – как же происходит формирование варпов (для случая с несколькими размерностями). На самом деле порядок простой – в первую очередь по X, потом по Y и, в последнюю очередь, Z.

ядро запускается с блоками размерностью 64×16, потоки разбиваются по варпам в порядке X, Y, Z – т.е. первые 64 элемента разбиваются на два варпа, потом вторые и т.д.

Ядро запускается с блоками размерностью 16×64. В первый варп добавляются первые и вторые 16 элементов, во второй варп – третьи и четвертые и т.д.

Как снижать дивергенцию (помните – ветвление – не всегда причина критичной потери производительности)

  • когда у смежных потоков разные пути исполнения – много условий и переходов по ним – искать пути ре-структуризации
  • искать не сбалансированную загрузку потоков и решительно ее удалять (это когда у нас мало того что есть условия, дак еще из-за этих условиях первый поток всегда что-то вычисляет, а пятый в это условие не попадает и простаивает)

Как использовать ресурсы GPU по максимуму

Ресурсы GPU, к сожалению, тоже имеют свои ограничения. И, строго говоря, перед запуском функции-кернела имеет смысл определить лимиты и при распределении нагрузки эти лимиты учесть. Почему это важно?

У видеокарт есть ограничения на общее число потоков, которое может выполнять один мультипроцессор, максимальное число потоков в одном блоке, максимальное число варпов на одном процессоре, ограничения на различные виды памяти и т.п. Всю эту информацию можно запросить как программно, через соответствующее API так и предварительно с помощью утилит из SDK. (Модули deviceQuery для устройств NVidia, CLInfo – для видеокарт AMD).

Общая практика:

  • число блоков/рабочих групп потоков должно быть кратно количеству потоковых процессоров
  • размер блока/рабочей группы должен быть кратен размеру варпа

При этом следует учитывать что абсолютный минимум – 3-4 варпа/вейфронта крутятся одновременно на каждом процессоре, мудрые гайды советуют исходить из соображения – не меньше семи вейфронатов. При этом – не забывать ограничения по железу!

В голове все эти детали держать быстро надоедает, потому для расчет gpu-occupancy NVidia предложила неожиданный инструмент – эксельный(!) калькулятор набитый макросами. Туда можно ввести информацию по максимальному числу потоков для SM, число регистров и размер общей (shared) памяти доступных на потоковом процессоре, и используемые параметры запуска функций – а он выдает в процентах эффективность использования ресурсов (и вы рвете на голове волосы осознавая что чтобы задействовать все ядра вам не хватает регистров).

информация по использованию:
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#calculating-occupancy

GPU и операции с памятью

Видеокарты оптимизированы для 128-битных операций с памятью. Т.е. в идеале – каждая манипуляция с памятью, в идеале, должна изменять за раз 4 четырех-байтных значения. Основная неприятность для программиста заключается в том, что современные компиляторы для GPU не умеют оптимизировать такие вещи. Это приходится делать прямо в коде функции и, в среднем, приносит доли-процента по приросту производительности. Гораздо большее влияние на производительность имеет частота запросов к памяти.

Проблема обстоит в следующем – каждый запрос возвращает в ответ кусочек данных размером кратный 128 битам. А каждый поток использует лишь четверть его (в случае обычной четырех-байтовой переменной). Когда смежные потоки одновременно работают с данными расположенными последовательно в ячейках памяти – это снижает общее число обращений к памяти. Называется это явление – объединенные операции чтения и записи (coalesced access – good! both read and write ) – и при верной организации кода (strided access to contiguous chunk of memory – bad! ) может ощутимо улучшить производительность. При организации своего ядра – помните – смежный доступ – в пределах элементов одной строки памяти, работа с элементами столбца – это уже не так эффективно. Хотите больше деталей? мне понравилась вот эта pdf – или гуглите на предмет “memory coalescing techniques “.

Лидирующие позиции в номинации “узкое место” занимает другая операция с памятью – копирование данных из памяти хоста в гпу . Копирование происходит не абы как, а из специально выделенной драйвером и системой области памяти: при запросе на копирование данных – система сначала копирует туда эти данные, а уже потом заливает их в GPU. Скорость транспортировки данных ограничена пропускной способностью шины PCI Express xN (где N число линий передачи данных) через которые современные видеокарты общаются с хостом.

Однако, лишнее копирование медленной памяти на хосте – это порою неоправданные издержки. Выход – использовать так называемую pinned memory – специальным образом помеченную область памяти, так что операционная система не имеет возможности выполнять с ней какие либо операции (например – выгрузить в свап/переместить по своему усмотрению и т.п.). Передача данных с хоста на видеокарту осуществляется без участия операционной системы – асинхронно, через DMA (direct memory access).

И, на последок, еще немного про память. Разделяемая память на мультипроцессоре обычно организована в виде банков памяти содержащих 32 битные слова – данные. Число банков по доброй традиции варьируется от одного поколения GPU к другому – 16/32 Если каждый поток обращается за данными в отдельный банк – все хорошо. Иначе получается несколько запросов на чтение/запись к одному банку и мы получаем – конфликт (shared memory bank conflict ). Такие конфликтные обращения сериализуются и соответственно выполняются последовательно, а не параллельно. Если к одному банку обращаются все потоки – используется “широковещательный” ответ (broadcast ) и конфликта нет. Существует несколько способов эффективно бороться с конфликтами доступа, мне понравилось описание основных методик по избавлению от конфликтов доступа к банкам памяти – .

Как сделать математические операции еще быстрее? Помнить что:

  • вычисления двойной точности – это высокая нагрузка операции с fp64 >> fp32
  • константы вида 3.13 в коде, по умолчанию, интерпретируется как fp64 если явно не указывать 3.14f
  • для оптимизации математики не лишним будет справиться в гайдах – а нет ли каких флажков у компилятора
  • производители включают в свои SDK функции, которые используют особенности устройств для достижения производительности (часто – в ущерб переносимости)

Для разработчиков CUDA имеет смысл обратить пристальное внимание на концепцию cuda stream, позволяющих запускать сразу несколько функций-ядер на одному устройстве или совмещать асинхронное копирование данных с хоста на устройство во время выполнения функций. OpenCL, пока, такого функционала не предоставляет 🙁

Утиль для профилирования:

NVifia Visual Profiler – интересная утилитка, анализирует ядра как CUDA так и OpenCL.

P. S. В качестве более пространного руководства по оптимизации, могу порекомендовать гуглить всевозможные best practices guide для OpenCL и CUDA.

  • ,

Вычисления на графических процессорах

Технология CUDA (англ. Compute Unified Device Architecture) - программно-аппаратная архитектура, позволяющая производить вычисления с использованием графических процессоров NVIDIA, поддерживающих технологию GPGPU (произвольных вычислений на видеокартах). Архитектура CUDA впервые появились на рынке с выходом чипа NVIDIA восьмого поколения - G80 и присутствует во всех последующих сериях графических чипов, которые используются в семействах ускорителей GeForce, ION, Quadro и Tesla.

CUDA SDK позволяет программистам реализовывать на специальном упрощённом диалекте языка программирования Си алгоритмы, выполнимые на графических процессорах NVIDIA и включать специальные функции в текст программы на Cи. CUDA даёт разработчику возможность по своему усмотрению организовывать доступ к набору инструкций графического ускорителя и управлять его памятью, организовывать на нём сложные параллельные вычисления.

История

В 2003 г. Intel и AMD участвовали в совместной гонке за самый мощный процессор. За несколько лет в результате этой гонки тактовые частоты существенно выросли, особенно после выхода Intel Pentium 4.

После прироста тактовых частот (между 2001 и 2003 гг. тактовая частота Pentium 4 удвоилась с 1,5 до 3 ГГц), а пользователям пришлось довольствоваться десятыми долями гигагерц, которые вывели на рынок производители (с 2003 до 2005 гг.тактовые частоты увеличились 3 до 3,8 ГГц).

Архитектуры, оптимизированные под высокие тактовые частоты, та же Prescott, так же стали испытывать трудности, и не только производственные. Производители чипов столкнулись с проблемами преодоления законов физики. Некоторые аналитики даже предрекали, что закон Мура перестанет действовать. Но этого не произошло. Оригинальный смысл закона часто искажают, однако он касается числа транзисторов на поверхности кремниевого ядра. Долгое время повышение числа транзисторов в CPU сопровождалось соответствующим ростом производительности - что и привело к искажению смысла. Но затем ситуация усложнилась. Разработчики архитектуры CPU подошли к закону сокращения прироста: число транзисторов, которое требовалось добавить для нужного увеличения производительности, становилось всё большим, заводя в тупик.

Причина, по которой производителям GPU не столкнулись с этой проблемой очень простая: центральные процессоры разрабатываются для получения максимальной производительности на потоке инструкций, которые обрабатывают разные данные (как целые числа, так и числа с плавающей запятой), производят случайный доступ к памяти и т.д. До сих пор разработчики пытаются обеспечить больший параллелизм инструкций - то есть выполнять как можно большее число инструкций параллельно. Так, например, с Pentium появилось суперскалярное выполнение, когда при некоторых условиях можно было выполнять две инструкции за такт. Pentium Pro получил внеочередное выполнение инструкций, позволившее оптимизировать работу вычислительных блоков. Проблема заключается в том, что у параллельного выполнения последовательного потока инструкций есть очевидные ограничения, поэтому слепое повышение числа вычислительных блоков не даёт выигрыша, поскольку большую часть времени они всё равно будут простаивать.

Работа GPU относительно простая. Она заключается в принятии группы полигонов с одной стороны и генерации группы пикселей с другой. Полигоны и пиксели независимы друг от друга, поэтому их можно обрабатывать параллельно. Таким образом, в GPU можно выделить крупную часть кристалла на вычислительные блоки, которые, в отличие от CPU, будут реально использоваться.

GPU отличается от CPU не только этим. Доступ к памяти в GPU очень связанный - если считывается тексель, то через несколько тактов будет считываться соседний тексель; когда записывается пиксель, то через несколько тактов будет записываться соседний. Разумно организуя память, можно получить производительность, близкую к теоретической пропускной способности. Это означает, что GPU, в отличие от CPU, не требуется огромного кэша, поскольку его роль заключается в ускорении операций текстурирования. Всё, что нужно, это несколько килобайт, содержащих несколько текселей, используемых в билинейных и трилинейных фильтрах.

Первые расчёты на GPU

Самые первые попытки такого применения ограничивались использованием некоторых аппаратных функций, таких, как растеризация и Z-буферизация. Но в нынешнем веке, с появлением шейдеров, начали ускорять вычисления матриц. В 2003 г. на SIGGRAPH отдельная секция была выделена под вычисления на GPU, и она получила название GPGPU (General-Purpose computation on GPU) - универсальные вычисления на GPU).

Наиболее известен BrookGPU - компилятор потокового языка программирования Brook, созданный для выполнения неграфических вычислений на GPU. До его появления разработчики, использующие возможности видеочипов для вычислений, выбирали один из двух распространённых API: Direct3D или OpenGL. Это серьёзно ограничивало применение GPU, ведь в 3D графике используются шейдеры и текстуры, о которых специалисты по параллельному программированию знать не обязаны, они используют потоки и ядра. Brook смог помочь в облегчении их задачи. Эти потоковые расширения к языку C, разработанные в Стэндфордском университете, скрывали от программистов трёхмерный API, и представляли видеочип в виде параллельного сопроцессора. Компилятор обрабатывал файл.br с кодом C++ и расширениями, производя код, привязанный к библиотеке с поддержкой DirectX, OpenGL или x86.

Появление Brook вызвал интерес у NVIDIA и ATI и в дальнейшем, открыл целый новый его сектор - параллельные вычислители на основе видеочипов.

В дальнейшем, некоторые исследователи из проекта Brook перешли в команду разработчиков NVIDIA, чтобы представить программно-аппаратную стратегию параллельных вычислений, открыв новую долю рынка. И главным преимуществом этой инициативы NVIDIA стало то, что разработчики отлично знают все возможности своих GPU до мелочей, и в использовании графического API нет необходимости, а работать с аппаратным обеспечением можно напрямую при помощи драйвера. Результатом усилий этой команды стала NVIDIA CUDA.

Области применения параллельных расчётов на GPU

При переносе вычислений на GPU, во многих задачах достигается ускорение в 5-30 раз, по сравнению с быстрыми универсальными процессорами. Самые большие цифры (порядка 100-кратного ускорения и даже более!) достигаются на коде, который не очень хорошо подходит для расчётов при помощи блоков SSE, но вполне удобен для GPU.

Это лишь некоторые примеры ускорений синтетического кода на GPU против SSE-векторизованного кода на CPU (по данным NVIDIA):

Флуоресцентная микроскопия: 12x.

Молекулярная динамика (non-bonded force calc): 8-16x;

Электростатика (прямое и многоуровневое суммирование Кулона): 40-120x и 7x.

Таблица, которую NVIDIA, показывает на всех презентациях, в которой показывается скорость графических процессоров относительно центральных.

Перечень основных приложений, в которых применяются вычисления на GPU: анализ и обработка изображений и сигналов, симуляция физики, вычислительная математика, вычислительная биология, финансовые расчёты, базы данных, динамика газов и жидкостей, криптография, адаптивная лучевая терапия, астрономия, обработка звука, биоинформатика, биологические симуляции, компьютерное зрение, анализ данных (data mining), цифровое кино и телевидение, электромагнитные симуляции, геоинформационные системы, военные применения, горное планирование, молекулярная динамика, магнитно-резонансная томография (MRI), нейросети, океанографические исследования, физика частиц, симуляция свёртывания молекул белка, квантовая химия, трассировка лучей, визуализация, радары, гидродинамическое моделирование (reservoir simulation), искусственный интеллект, анализ спутниковых данных, сейсмическая разведка, хирургия, ультразвук, видеоконференции.

Преимущества и ограничения CUDA

С точки зрения программиста, графический конвейер является набором стадий обработки. Блок геометрии генерирует треугольники, а блок растеризации - пиксели, отображаемые на мониторе. Традиционная модель программирования GPGPU выглядит следующим образом:

Чтобы перенести вычисления на GPU в рамках такой модели, нужен специальный подход. Даже поэлементное сложение двух векторов потребует отрисовки фигуры на экране или во внеэкранный буфер. Фигура растеризуется, цвет каждого пикселя вычисляется по заданной программе (пиксельному шейдеру). Программа считывает входные данные из текстур для каждого пикселя, складывает их и записывает в выходной буфер. И все эти многочисленные операции нужны для того, что в обычном языке программирования записывается одним оператором!

Поэтому, применение GPGPU для вычислений общего назначения имеет ограничение в виде слишком большой сложности обучения разработчиков. Да и других ограничений достаточно, ведь пиксельный шейдер - это всего лишь формула зависимости итогового цвета пикселя от его координаты, а язык пиксельных шейдеров - язык записи этих формул с Си-подобным синтаксисом. Ранние методы GPGPU являются хитрым трюком, позволяющим использовать мощность GPU, но без всякого удобства. Данные там представлены изображениями (текстурами), а алгоритм - процессом растеризации. Нужно особо отметить и весьма специфичную модель памяти и исполнения.

Программно-аппаратная архитектура для вычислений на GPU компании NVIDIA отличается от предыдущих моделей GPGPU тем, что позволяет писать программы для GPU на настоящем языке Си со стандартным синтаксисом, указателями и необходимостью в минимуме расширений для доступа к вычислительным ресурсам видеочипов. CUDA не зависит от графических API, и обладает некоторыми особенностями, предназначенными специально для вычислений общего назначения.

Преимущества CUDA перед традиционным подходом к GPGPU вычислениям

CUDA обеспечивает доступ к разделяемой между потоками памяти размером в 16 Кб на мультипроцессор, которая может быть использована для организации кэша с широкой полосой пропускания, по сравнению с текстурными выборками;

Более эффективная передача данных между системной и видеопамятью;

Отсутствие необходимости в графических API с избыточностью и накладными расходами;

Линейная адресация памяти, и gather и scatter, возможность записи по произвольным адресам;

Аппаратная поддержка целочисленных и битовых операций.

Основные ограничения CUDA:

Отсутствие поддержки рекурсии для выполняемых функций;

Минимальная ширина блока в 32 потока;

Закрытая архитектура CUDA, принадлежащая NVIDIA.

Слабыми местами программирования при помощи предыдущих методов GPGPU является то, что эти методы не используют блоки исполнения вершинных шейдеров в предыдущих неунифицированных архитектурах, данные хранятся в текстурах, а выводятся во внеэкранный буфер, а многопроходные алгоритмы используют пиксельные шейдерные блоки. В ограничения GPGPU можно включить: недостаточно эффективное использование аппаратных возможностей, ограничения полосой пропускания памяти, отсутствие операции scatter (только gather), обязательное использование графического API.

Основные преимущества CUDA по сравнению с предыдущими методами GPGPU вытекают из того, что эта архитектура спроектирована для эффективного использования неграфических вычислений на GPU и использует язык программирования C, не требуя переноса алгоритмов в удобный для концепции графического конвейера вид. CUDA предлагает новый путь вычислений на GPU, не использующий графические API, предлагающий произвольный доступ к памяти (scatter или gather). Такая архитектура лишена недостатков GPGPU и использует все исполнительные блоки, а также расширяет возможности за счёт целочисленной математики и операций битового сдвига.

CUDA открывает некоторые аппаратные возможности, недоступные из графических API, такие как разделяемая память. Это память небольшого объёма (16 килобайт на мультипроцессор), к которой имеют доступ блоки потоков. Она позволяет кэшировать наиболее часто используемые данные и может обеспечить более высокую скорость, по сравнению с использованием текстурных выборок для этой задачи. Что, в свою очередь, снижает чувствительность к пропускной способности параллельных алгоритмов во многих приложениях. Например, это полезно для линейной алгебры, быстрого преобразования Фурье и фильтров обработки изображений.

Удобнее в CUDA и доступ к памяти. Программный код в графических API выводит данные в виде 32-х значений с плавающей точкой одинарной точности (RGBA значения одновременно в восемь render target) в заранее предопределённые области, а CUDA поддерживает scatter запись - неограниченное число записей по любому адресу. Такие преимущества делают возможным выполнение на GPU некоторых алгоритмов, которые невозможно эффективно реализовать при помощи методов GPGPU, основанных на графических API.

Также, графические API в обязательном порядке хранят данные в текстурах, что требует предварительной упаковки больших массивов в текстуры, что усложняет алгоритм и заставляет использовать специальную адресацию. А CUDA позволяет читать данные по любому адресу. Ещё одним преимуществом CUDA является оптимизированный обмен данными между CPU и GPU. А для разработчиков, желающих получить доступ к низкому уровню (например, при написании другого языка программирования), CUDA предлагает возможность низкоуровневого программирования на ассемблере.

Недостатки CUDA

Один из немногочисленных недостатков CUDA - слабая переносимость. Эта архитектура работает только на видеочипах этой компании, да ещё и не на всех, а начиная с серии GeForce 8 и 9 и соответствующих Quadro, ION и Tesla. NVIDIA приводит цифру в 90 миллионов CUDA-совместимых видеочипов.

Альтернативы CUDA

Фреймворк для написания компьютерных программ, связанных с параллельными вычислениями на различных графических и центральных процессорах. В фреймворк OpenCL входят язык программирования, который базируется на стандарте C99, и интерфейс программирования приложений (API). OpenCL обеспечивает параллелизм на уровне инструкций и на уровне данных и является реализацией техники GPGPU. OpenCL является полностью открытым стандартом, его использование не облагается лицензионными отчислениями.

Цель OpenCL состоит в том, чтобы дополнить OpenGL и OpenAL, которые являются открытыми отраслевыми стандартами для трёхмерной компьютерной графики и звука, пользуясь возможностями GPU. OpenCL разрабатывается и поддерживается некоммерческим консорциумом Khronos Group, в который входят много крупных компаний, включая Apple, AMD, Intel, nVidia, Sun Microsystems, Sony Computer Entertainment и другие.

CAL/IL(Compute Abstraction Layer/Intermediate Language)

ATI Stream Technology - это набор аппаратных и программных технологий, которые позволяют использовать графические процессоры AMD, совместно с центральным процессором, для ускорения многих приложений (не только графических).

Областями применения ATI Stream являются приложения, требовательные к вычислительному ресурсу, такие, как финансовый анализ или обработка сейсмических данных. Использование потокового процессора позволило увеличить скорость некоторых финансовых расчётов в 55 раз по сравнению с решением той же задачи силами только центрального процессора.

Технологию ATI Stream в NVIDIA не считают очень сильным конкурентом. CUDA и Stream - это две разные технологии, которые стоят на различных уровнях развития. Программирование для продуктов ATI намного сложнее - их язык скорее напоминает ассемблер. CUDA C, в свою очередь, гораздо более высокоуровневый язык. Писать на нём удобнее и проще. Для крупных компаний-разработчиков это очень важно. Если говорить о производительности, то можно заметить, что её пиковое значение в продуктах ATI выше, чем в решениях NVIDIA. Но опять всё сводится к тому, как эту мощность получить.

DirectX11 (DirectCompute)

Интерфейс программирования приложений, который входит в состав DirectX - набора API от Microsoft, который предназначен для работы на IBM PC-совместимых компьютерах под управлением операционных систем семейства Microsoft Windows. DirectCompute предназначен для выполнения вычислений общего назначения на графических процессорах, являясь реализацией концепции GPGPU. Изначально DirectCompute был опубликован в составе DirectX 11, однако позже стал доступен и для DirectX 10 и DirectX 10.1.

NVDIA CUDA в российской научной среде.

По состоянию на декабрь 2009 г., программная модель CUDA преподается в 269 университетах мира. В России обучающие курсы по CUDA читаются в Московском, Санкт-Петербургском, Казанском, Новосибирском и Пермском государственных университетах, Международном университете природы общества и человека "Дубна", Объединённом институте ядерных исследований, Московском институте электронной техники, Ивановском государственном энергетическом университете, БГТУ им. В. Г. Шухова, МГТУ им. Баумана, РХТУ им. Менделеева, Российском научном центре "Курчатовский институт", Межрегиональном суперкомпьютерном центре РАН, Таганрогском технологическом институте (ТТИ ЮФУ).