Pascal. Простые типы данных

Тип данных определяет множество допустимых значений и множество допустимых операций.

Простые типы.

Простые типы делятся на ПОРЯДКОВЫЕ и ВЕЩЕСТВЕННЫЕ.

1. ПОРЯДКОВЫЕ ТИПЫ , в свою очередь, бывают:

а) целые

В Паскале определено 5 целых типов, которые определяются в зависимости от знака и значения, которое будет принимать переменная.

Название типа

Длина (в байтах)

Диапазон значений

32 768...+32 767

2 147 483 648...+2 147 483 647

б) логический

Название этого типа BOOLEAN. Значениями логического типа может быть одна из логических констант: TRUE (истина) или FALSE (ложь).

в) символьный

Название этого типа CHAR - занимает 1 байт. Значением символьного типа является множество всех символов ПК. Каждому символу присваивается целое число в диапозоне 0…255. Это число служит кодом внутреннего представления символа.

2. ВЕЩЕСТВЕННЫЕ ТИПЫ .

В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов определяют произвольное число лишь с некоторой конечной точностью, зависящей от внутреннего формата вещественного числа.

Длина числового типа данных, байт

Название числового типа данных

Количество значащих цифр числового типа данных

Диапазон десятичного порядка числового типа данных

2*1063 +1..+2*1063 -1

СТРЕКТУРИРОВАННЫЕ ТИПЫ

Структурированные типы данных определяют упорядоченную совокупность скалярных переменных и характеризуются типом своих компонентов.

Структурированные типы данных в отличие от простых задают множества сложных значений с одним общим именем. Можно сказать, что структурные типы определяют некоторый способ образования новых типов из уже имеющихся.

Существует несколько методов структурирования. По способу организации и типу компонентов в сложных типах данных выделяют следующие разновидности: регулярный тип (массивы); комбинированный тип (записи); файловый тип (файлы); множественный тип (множества); строковый тип (строки); в языке Турбо Паскаль версии 6.0 и старше введен объектный тип (объекты).

В отличие от простых типов данных, данные структурированного типа характеризуются множественностью образующих этот тип элементов, т.е. переменная или константа структурированного типа всегда имеет несколько компонентов. Каждый компонент в свою очередь может принадлежать структурированному типу, т.е. возможна вложенность типов.

1. Массивы

Массивы в Турбо Паскале во многом схожи с аналогичными типами данных в других языках программирования. Отличительная особенность массивов заключается в том, что все их компоненты суть данные одного типа (возможно структурированного). Эти компоненты можно легко упорядочить и обеспечить доступ к любому из них простым указанием порядкового номера.

Описание массива задаётся следующим образом:

<имя типа> = array [<сп.инд.типов>] of <тип>

Здесь <имя типа> - правильный идентификатор;

Array, of – зарезервированные слова (массив, из);

<сп.инд.типов> - список из одного или нескольких индексных типов, разделённых запятыми; квадратные скобки, обрамляющие список, - требование синтаксиса;

<тип> - любой тип Турбо Паскаля.

В качестве индексных типов в Турбо Паскале можно использовать любые порядковые типы, кроме LongInt и типов-диапазонов с базовым типом LongInt.

Глубина вложенности структурированных типов вообще, а следовательно, и массивов – произвольная, поэтому количество элементов в списке индексов типов (размерность массива) не ограничено, однако суммарная длина внутреннего представления любого массива не может быть больше 65520 байт.

2. Записи

Запись – это структура данных, состоящая из фиксированного числа компонентов, называемых полями записи. В отличие от массива, компоненты (поля) записи могут быть различного типа. Чтобы можно было ссылаться на тот или иной компонент записи, поля именуются.

Структура объявления типа записи такова:

< имя типа > = RECORD < сп . полей > END

Здесь <имя типа> - правильный идентификатор;

RECORD, END – зарезервированные слова (запись, конец);

<сп.полей> - список полей; представляет собой последовательность разделов записи, между которыми ставится точка с запятой.

3. Множества

Множества – это набор однотипных логических связанных друг с другом объектов. Характер связей между объектами лишь подразумевается программистом и никак не контролируется Турбо Паскалем. количество элементов, входящих в множество, может меняться в пределах от 0до 256 (множество, не содержащее элементов, называется пустым).именно непостоянством количества своих элементов множества отличаются от массивов и записей.

Два множества считаются эквивалентными тогда и только тогда, когда все их элементы одинаковы, причём порядок следования элементов множества безразличен. Если все элементы одного множества входят также и в другое, говорят о включении первого множества во второе.

Описание типа множества имеет вид:

< имя типа > = SET OF < баз . тип >

Здесь <имя типа> - правильный индификатор;

SET, OF – зарезервированные слова (множество, из);

<баз.тип> - базовый тип элементов множества, в качестве которого может использоваться любой порядковый тип, кроме WORD, INTEGER и LONGINT.

Для задания множества используется так называемый конструктор множества: список спецификаций элементов множества, отделяемых друг от друга запятыми; список обрамляется квадратными скобками. Спецификациями элементов могут быть константы или выражения базового типа, а также – тип-диапазон того же базового типа.

4. Файлы

Под файлом понимается либо именованная область внешней памяти ПК, либо логическое устройство – потенциальный источник или приёмник информации.

Любой файл имеет три характерные особенности

    у него есть имя, что даёт возможность программе работать одновременно с несколькими файлами.

    он содержит компоненты одного типа. Типом компонентов может быть любой тип Турбо Паскаля, кроме файлов. Иными словами, нельзя создать «файл файлов».

    длина вновь создаваемого файла никак не оговаривается при его объявлении и ограничивается только ёмкостью устройств внешней памяти.

Файловый тип или переменную файлового типа можно задать одним из трёх способов:

< имя >= FILE OF < тип >;

< имя >=TEXT;

<имя> = FILE;

Здесь <имя> - имя файлового типа (правильный индификатор);

FILE, OF – зарезервированные слова (файл, из);

TEXT – имя стандартного типа текстовых файлов;

<тип> - любой тип Турбо Паскаля, кроме файлов.

В зависимости от способа объявления можно выделить три вида файлов:

· типизированные файлы (задаются предложением FILE OF…);

· текстовые файлы (определяются типом TEXT);

· нетипизированные файлы (определяются типом FILE).

О преобразовании числовых типов данных Паскаля

В Паскале почти невозможны неявные (автоматические) преобразования числовых типов данных. Исключение сделано только для типа integer, который разрешается использовать в выражениях типа real. Например, если переменные описаны следующим образом:

Var X: integer; Y: real;

то оператор

будет синтаксически правильным, хотя справа от знака присваивания стоит целочисленное выражение, а слева – вещественная переменная, компилятор сделает преобразование числовых типов данных автоматически. Обратное же преобразование автоматически типа real в тип integer в Паскале невозможно. Вспомним, какое количество байт выделяется под переменные типа integer и real: под целочисленный тип данных integer выделяется 2 байта памяти, а под real – 6 байта. Для преобразования real в integer имеются две встроенные функции: round(x) округляет вещественное x до ближайшего целого, trunc(x) усекает вещественное число путем отбрасывания дробной части.

Простейшим числовым типом данных в Паскале являются целые типы, предназначенные для хранения целых чисел. Целые числа в Паскале принято делить на два типа: со знаком и без знака. Числа со знаком – это целочисленный тип, в который входят как положительные, так и отрицательные числа, без знака – только положительные.

Ниже приведены две таблицы с целочисленными типами. Сначала выпишем типы целых чисел со знаком :


Тип Байт Диапазон значений
shortint 1 -128 ... 127
smallint 2 -32768 ... 32767
integer, longint 4 -2147483648 ... 2147483647
int64 8 -9223372036854775808 ... 9223372036854775807

А это целочисленные типы без знака :


Тип Байт Диапазон значений
byte 1 0 ... 255
word 2 0 ... 65535
longword, cardinal 4 0 ... 4294967295
uint64 8 0 ... 18446744073709551615

Как видно, в первой колонке стоит название типа, во второй – количество байт, занимаемое в памяти числами этого типа, в третьей – соответственно диапазон возможных значений. В числах со знаком есть два типа – integer и longint (буквально «целый» и «длинный целый»), которые являются синонимами. То есть вы можете в разделе описаний использовать как одно название, так и другое.

Аналогично во второй таблице (неотрицательные целые числа в Паскале) есть также два целочисленных типа-синонима размером 4 байта – longword и cardinal , поэтому используйте либо одно, либо другое.

Ещё можно заметить, что если числа первой таблицы условно перенести в правую часть относительно нуля (сдвинуть интервал вправо так, чтобы минимальным числом оказался 0), то мы получим интервалы целых чисел второй таблицы, лежащие в соответствующих строках. Так, если в 1-байтовом типе shortint к левой и правой границам прибавить 128, то получим тип byte (0..255); если в 2-байтовом типе smallint к границам прибавить 32768, то получим соответствующий 2-байтовый тип без знака word (0..65535) и т.д.

Всё это случается потому, что в целочисленных типах без знака числа могут быть разделены ровно надвое: половина чисел – в отрицательную часть, половина – в положительную. А почему тогда в числах со знаком левая граница по абсолютной величине на 1 больше за правую границу? – спросите вы. Например, в типе shortint минимум -128, тогда как максимум всего 127 (по модулю на 1 меньше). А это потому, что в правую часть входит также и 0, и об этом надо знать и помнить.

Так зачем же целые числа в Паскале делить на столько типов? Почему не обойтись, например, наибольшим из целочисленных типов в PascalABC.Net и Free Pascal – int64 – это почти 9 с половиной квинтиллионов (!) как с минусом, так и с плюсом? Да по простой банальной (?) причине – экономия памяти. Если вам надо сложить два небольших однобайтовых положительных числа (0..255), а вы эти числа описали как int64 (8 байт), то на это ушло в 8 раз больше памяти. А если программа большая и переменных много, то экономия памяти встает очень резко. Причем нет смысла использовать целые типы со знаком, если в задаче речь идет о таких величинах, как длина, масса, расстояние, время и т.п.

В разделе сайта Задачник Абрамяна (подраздел Integer) понаблюдайте за использованием различных целочисленных типов в Паскале.

Типы данных языка Паскаль

Любые данные (константы, переменные, значения функций или выражения) в Турбо Паскале характеризуются своими типами. Тип определяет множество допустимых значений, которые может иметь тот или иной объект, а также множество допустимых операций, которые применимы к нему. Тип также определяет формат внутреннего представления данных в памяти компьютера.

Существуют следующие типы данных в Турбо-Паскале.

1) Простые типы:

– вещественные;

– символьные;

– булевские (логические);

– перечисляемые;

– ограниченные (диапазонные).

2) Составные (структурированные) типы:

– регулярные (массивы);

– комбинированные (записи);

– файловые;

– множественные;

– строковые;

– объекты.

3) Ссылочные типы (типизированные и нетипизированные указатели).

4) Процедурные типы.

В Турбо Паскале предусмотрен механизм создания новых типов данных, благодаря чему общее количество типов, используемых в программе может быть сколь угодно большим.

Целый тип . Значениями целого типа являются элементы подмножества целых чисел. В Турбо-Паскале существует пять целых типов. Их названия, диапазон значений, длина представления в байтах приведены в табл. 6.

Таблица 6

Целые типы данных

Целые переменные описываются с использованием указанных выше зарезервированных слов:

i, j, k: integer;

Данные целого типа хранятся в памяти точно. Например, переменные типа integer занимают в памяти 2 байта (16 бит), которые распределяются следующим образом: 1 бит отводится для хранения знака числа (0, если число положительное, и 1, если число отрицательное) и 15 бит для хранения числа в двоичной системе счисления. Максимальное десятичное число, которое можно записать как двоичное в 15 бит – это 32767.

При использовании процедур и функций с целочисленными параметрами следует руководствоваться «вложенностью» типов, т.е. везде где используется word, допускается использование byte (но не наоборот), в longint «входит» integer, который, в свою очередь, включает в себя shortint.

Для целого типа определены пять основных операций, результатом которых также является целое число: +, -,*, div, mod (сложение, вычитание, умножение, целочисленное деление и остаток от целочисленного деления). В арифметических выражениях операции *, div, mod имеют более высокий приоритет по сравнению с операциями +, -. Примеры записи выражений:

Перечень процедур и функций, применимых к целочисленным типам, приведен в табл. 7. Буквами b, s, w, i, l обозначены выражения соответственно типа byte, shortint, word, integer, и longint; x – выражение любого из этих типов; идентификаторы vb, vs, vw, vi, vl, vx обозначают переменные соответствующих типов. В квадратных скобках указывается необязательный параметр.

Таблица 7

Стандартные процедуры и функции, применимые к целым типам

Обращение Тип результата Действие
Abs (x) x Возвращает модуль x
Chr (b) Char Возвращает символ по его коду
Dec (vx [, i]) - Уменьшает значение vx на i, а при отсутствии i – на 1
Inc (vx [, i]) - Увеличивает значение vx на i, а при отсутствии i – на 1
Hi (i) Byte Возвращает старший байт аргумента
Hi (i) Byte То же
Lo (i) Byte Возвращает младший байт аргумента
Lo (w) Byte То же
Odd (l) Byte Возвращает true, если аргумент – нечетное число
Random (w) Как у параметра Возвращает псевдослучайное число, равномерно распределенное в диапазоне 0…(w-1)
Sqr (x) x Возвращает квадрат аргумента
Swap (i) Integer
Swap (w) Word Меняет местами байты в слове
Succ(x) Как у параметра Возвращает следующее целое значение, т.е. x+1
Pred(x) Как у параметра Возвращает предшествующее целое значение, т.е. x-1

При действиях с целыми числами тип результата будет соответствовать типу операнда, а если операнды относятся к различным целым типам, - типу того операнда, который имеет максимальный диапазон значений. Возможное переполнение результата не контролируется, что может привести к ошибкам в программе.

Вещественный тип. Значения вещественных типов определяют произвольное число с некоторой конечной точностью, зависящей от внутреннего формата вещественного числа. В Турбо-Паскале существуют пять вещественных типов (табл. 8).

Таблица 8

Вещественные типы данных

Вещественные переменные описываются с использованием указанных выше зарезервированных слов:

Вещественное число в памяти компьютера состоит из 3-х частей:

Знаковый разряд числа;

Экспоненциальная часть;

Мантисса числа.

Мантисса имеет длину от 23 (Single) до 63 (Extended) двоичных разрядов, что и обеспечивает точность 7-8 для Single и 19-20 для Extended десятичных цифр. Десятичная точка (запятая) подразумевается перед левым (старшим) разрядом мантиссы, но при действиях с числом ее положение сдвигается влево или вправо в соответствии с двоичным порядком числа, хранящимся в экспоненциальной части, поэтому действия над вещественными числами называют арифметикой с плавающей точкой (запятой).

Доступ к типам Single, Double и Extended осуществляется только при особых режимах компиляции. Для включения данных режимов следует выбрать пункт меню Options , Compiler… и включить опцию 8087/80287 в группе Numeric processing .

Особое положение в Турбо Паскаль занимает тип Comp, который трактуется как вещественное число без экспоненциальной и дробной частей. Фактически, Comp – Это большое целое число со знаком, сохраняющее 19…20 значащих десятичных цифр. В то же время в выражениях Comp полностью совместим с любыми другими вещественными типами: над ним определены все вещественные операции, он может использоваться как аргумент математических операций и т.д.



Вещественные числа задаются в десятичной системе счисления в одной из двух форм .

В форме с фиксированной точкой запись состоит из целой и дробной частей, отделенных друг от друга точкой, например:

0.087 4.0 23.5 0.6

В форме с плавающей точкой запись содержит букву Е, которая означает «умножить на десять в степени», причем степень является целым числом, например:

7Е3 6.9Е-8 0.98Е-02 45Е+04

Над объектами вещественного типа определены следующие операции: +, -, *, /.

Операции «*» и «/» имеют более высокий приоритет по сравнению с операциями «+» и «-».

Если хотя бы один операнд вещественный, то операции +, -, *, / приводят к вещественному результату. Операция деления / приводит к вещественному результату и в случае двух целых операндов, например: 9/3 = 3.0.

Для работы с вещественными данными могут использоваться стандартные математические функции, представленные в табл. 9. Результат работы этих функций также является вещественным.

Таблица 9

Математические функции, работающие с вещественными данными

Переменные и константы типа REAL запрещается использовать:

– в функциях pred(x), succ(x), ord(x);

– в качестве индексов массивов;

– в качестве меток в операторах передачи управления;

– в качестве управляющих переменных (параметров цикла).

Для перевода вещественного числа в целое можно воспользоваться функциями:

trunc(x) – целая часть х (х – вещественное);

round(x) – округление до ближайшего целого (х- вещественное).

Символьный тип. Символьные переменные описываются с помощью зарезервированного слова char:

Значения этого типа выбираются из упорядоченного множества символов (из множества ASCII), состоящего из 256 символов. Каждому символу приписывается целое число из диапазона 0..255. Например, прописные буквы латинского алфавита A..Z имеют коды 65..90, а строчные буквы – коды 97..122.

Значением переменной символьного типа является один символ, заключенный в апострофы, например:

‘F’ ‘8’ ‘*’

Символьные переменные можно сравнивать между собой, при этом сравниваются коды символов.

Существуют функции, которые устанавливают соответствие между символом и его кодом:

ord(с) – выдает номер символа с;

chr(i) – выдает символ с номером i.

Эти функции являются обратными по отношению друг к другу.

Логический тип . Логические переменные описываются с помощью зарезервированного слова boolean:

p1, p2: boolean;

Переменные логического типа принимают два значения: true (истина), false (ложь).

Эти величины упорядочены следующим образом: false < true. false имеет порядковый номер 0, true имеет порядковый номер 1.

Переменным логического типа можно либо присвоить значение непосредственно, либо использовать логическое выражение. Например,

a, d, g, b: boolean;

Операции отношения (<, <=, >, >=, =, <>), применяемые к целым, вещественным и символьным переменным, дают логический результат.

Логические операции над операндами логического типа также дают логический результат (операции приведены в порядке убывания приоритета) (подробнее см. табл. 3 и 5):

not – отрицание (операция НЕ);

and – логическое умножение (операция И);

or – логическое сложение (операция ИЛИ);

xor – исключающее ИЛИ.

Выражение (not a) имеет значение, противоположное значению а.

Выражение (a and b) дает значение true, если только и а и b имеют значение true, в остальных случаях значение этого выражения есть false.

Выражение (a or b) дает значение false, если только и а и b имеют значение false, во всех остальных случаях результат true.

Перечисляемый тип . Нестандартный перечисляемый тип задается перечислением в виде имен значений, которые может принимать переменная. Каждое значение именуется некоторым идентификатором и располагается в списке, обрамленном круглыми скобками. Общий вид описания перечисляемого типа:

x = (w1, w2, …, wn);

где х – имя типа, w1, w2,…, wn – значения, которые может принимать переменная типа х.

Эти значения являются упорядоченными w1

К аргументу w перечисляемого типа применимы следующие стандартные функции:

succ(w), pred(w), ord(w).

color=(red, black, yellow, green)

ww=(left, up, right, down);

f: array of ww;

succ(d) = yellow;

Переменные а и в имеют тип w. они могут принимать одно из трех значений, причем on

К величинам перечисляемого типа применимы операции отношения: =, <>, <=, >=, <, >.

Допускается указывать константы перечисляемого типа непосредственно в разделе var без использования раздела type , например

c,d: (red, black, yellow, green);

Диапазонный (ограниченный) тип . При определении ограниченного типа указывают начальное и конечное значения, которые может принимать переменная диапазонного типа. Значения разделяют двумя точками.

Описание ограниченного типа имеет вид

Здесь а – имя типа, min, max – константы.

При задании ограниченного типа должны выполняться следующие правила:

– обе граничные константы min и max должны быть одинакового типа;

– ограниченный тип создается из данных базового типа, в качестве которого можно выбрать целый, символьный или перечисляемый типы. Например:

col = red.. yellow;

letter = ‘a’..’f’;

– переменные ограниченного типа можно описать в разделе var, не обращаясь к разделу type:

– ограниченный тип наследует все свойства базового типа, из которого он создается;

– граница min всегда должна быть меньше границы max.

Массивы . Массив – это сложный тип, представляющий собой структуру, состоящую из фиксированного числа компонент одного типа. Тип компонента называется базовым типом. Все компоненты массива можно легко упорядочить и обеспечить доступ к любому из них простым указанием его порядкового номера. Описание массива в разделе var имеет вид:

a: array of t2;

где а – имя массива, array , of – служебные слова (означают «массив из…»), t1 – тип индексов; t2 – тип компонент (базовый тип).

Количество индексов определяет размерность массива. Индексы могут быть целого (кроме longint), символьного, логического, перечисляемого и диапазонного типов. Индексы разделяются запятыми и заключаются в квадратные скобки. Компоненты массива могут быть любого типа, кроме файлового.

Пример 1. Рассмотрим одномерный массив С, значениями которого являются пять вещественных чисел:

4.6 6.23 12 -4.8 0.7

Описание этого массива выглядит следующим образом:

c: array of real;

По конкретному значению индекса можно выбрать определенную компоненту массива (например, C означает третий элемент массива С, т.е. число 12).

Пример 2. Рассмотрим двумерный массив В (матрицу В), значением которого является таблица из целых чисел:

Описание данного массива выглядит следующим образом:

b of integer;

Здесь b – имя массива, первый индекс является номером строки и принимает значения от 1 до 2, второй – номер столбца и принимает значения от 1 до 4. По конкретным значениям индексов можно выбрать определенную компоненту массива (например, b означает элемент таблицы, стоящий в первой строке и третьем столбце, т.е. число -4).

Индексы могут быть произвольными выражениями, соответствующими типу индексов из описания массива:

a: array of real;

a[(i+1)*2] := 24;

Набор операций над элементами массива полностью определяется типом этих элементов.

Строковый тип . Строковый тип – множество символьных цепочек произвольной длины (от нуля до заданного числа). Переменные строкового типа описываются с помощью служебного слова string :

b: string ;

Особенности:

– значение строковой переменной может быть введено с помощью клавиатуры, присвоено в операторе присваивания, прочитано из файла. При этом длина введенной строки может быть любой (меньше указанного размера, равна размеру или больше, в последнем случае, лишние символы отбрасываются); a:= ‘Результаты’;

– допускается использовать операцию конкатенации в операторе присваивания, так как строки могут динамически изменять свою длину: а:= a + ‘ вычислений’;

– максимальная длина строковой переменной 255 символов, это указание длины может быть опущено:

a: string ;

a1: string ;

Переменные а и а1 – одинаковы (эквивалентное описание).

– память под переменные строкового типа отводится по максимуму, но используется лишь часть памяти, реально занятая символами строки в данный момент. Для описания строковой переменной длины n используется n+1 байт памяти: n байтов - для хранения символов строки, n+1 –й байт – для хранения текущей длины.

– над значениями строковых типов определены операции сравнения: < <= > >= = <>. Короткая строка всегда меньше длинной. Если строки имеют одинаковую длину, то сравниваются коды символов.

– возможен доступ к отдельным элементам строки аналогично доступу к элементам массива: а, a. В квадратных скобках указывается номер элемента строки.

Процедуры и функции, ориентированные на работу со строками.

concat (s1, s2,…) – функция слияния строк, s1, s2, …- строки, число строк может быть произвольным. Результатом работы функции является строка. Если длина результирующей строки больше 255 символов, то строка усекается до 255 символов.

copy (s, index, count) – функция выделения строки из исходной строки s длиной count символов, начиная с символа под номером index .

delete (s, index, count) – процедура удаления из строки s подстроки длиной count символов, начиная с символа с номером index .

insert (s1, s2, index) – процедура вставки строки s1 в строку s2 , начиная с символа с номером index .

length(s) – функция определения текущей длины строки, возвращает число равное текущей длине строки.

pos(s1, s2) – функция поиска в строке s2 подстроки s1 . выдает номер позиции первого символа подстроки s1 в строке s2 (или 0, если этой строки нет).

val (st, x, code) – процедура преобразования строки s в целую или вещественную переменную x . Параметр code содержит 0, если преобразование прошло успешно (и в x помещается результат преобразования), или номер позиции строки, где обнаружен ошибочный символ (в таком случае значение x не меняется).

Совместимость и преобразование типов . Турбо Паскаль – это типизированный язык. Он построен на основе строго соблюдения концепции типов, в соответствии с которой все применяемые в языке операции определены только над операндами совместимых типов.

Два типа считаются совместимыми, если:

– оба они есть один и тот же тип;

– оба вещественные;

– оба целые;

– один тип есть тип-диапазон второго типа;

– оба являются типами диапазонами одного и того же базового типа;

– оба являются множествами, составленными из элементов одного и того же базового типа;

– оба являются упакованными строками (определены с предшествующим словом packed) одинаковой максимальной длины;

– один есть тип-строка, а другой – тип-строка или символ;

– один тип есть любой указатель, а другой – указатель на родственный ему объект;

– оба есть процедурные типы с одинаковым типом результата (для типа-функции), количеством параметров и типом взаимно соответствующих параметров.

Совместимость типов приобретает особое значение в операторах присваивания. Пусть t1 – тип переменной, а t2 – тип выражения, то есть выполняется присваивание t1:=t2. Это присваивание возможно в следующих случаях:

– t1 и t2 есть один и тот же тип, и этот тип не относится к файлам, массивам файлов, записям, содержащим поля-файлы, или массивам таких записей;

– t1 и t2 являются совместимыми порядковыми типами, и значение t2 лежит в диапазоне возможных значений t1;

– t1 и t2 являются вещественными типами, и значение t2 лежит в диапазоне возможных значений t1;

– t1 – вещественный тип и t2 – целый тип;

– t1 – строка и t2 – символ;

– t1 – строка и t2 – упакованная строка;

– t1 и t2 – совместимые упакованные строки;

– t1 и t2 – совместимые множества и все члены t2 принадлежат множеству возможных значений t1;

– t1 и t2 – совместимые указатели;

– t1 и t2 – совместимые процедурные типы;

– t1 – объект и t2 – его потомок.

В программе данные одного типа могут преобразовываться в данные другого типа. Такое преобразование может быть явным или неявным.

При явном преобразовании типов вызываются специальные функции преобразования, аргументы которых принадлежат одному типу, а значения – другому. Пример – уже рассмотренные функции ord, trunc, round, chr.

Неявное преобразование возможно только в двух случаях:

– в выражениях, составленных из вещественных и целочисленных переменных, последние автоматически преобразуются к вещественному типу, и все выражение в целом приобретает вещественный тип;

– одна и та же область памяти попеременно трактуется как содержащая данные то одного, то другого типа (совмещение в памяти данных разного типа).

Типы данных языка Pascal: классификация и описания. Арифметические и порядковые типы данных, действия с ними. Арифметические выражения: функции, операции и порядок действий. Совместимость и преобразования типов данных.

Компиляторы языка Pascal требуют, чтобы сведения об объёме памяти, необходимой для работы программы, были предоставлены до начала её работы. Для этого в разделе описания переменных (var ) нужно перечислить все переменные, используемые в программе. Кроме того, необходимо также сообщить компилятору, сколько памяти каждая из этих переменных будет занимать. А ещё было бы неплохо заранее условиться о различных операциях, применимых к тем или иным переменным...

Всё это можно сообщить программе, просто указав тип будущей переменной. Имея информацию о типе переменной, компилятор «понимает», сколько байт необходимо отвести под неё, какие действия с ней можно производить и в каких конструкциях она может участвовать.

Для удобства программистов в языке Pascal существует множество стандартных типов данных и плюс к тому возможность создавать новые типы.

Конструируя новые типы данных на основе уже имеющихся (стандартных или опять–таки определённых самим программистом), нужно помнить, что любое здание должно строиться на хорошем фундаменте. Поэтому сейчас мы и поговорим об этом «фундаменте».

На основании базовых типов данных строятся все остальные типы языка Pascal, которые так и называются: конструируемые .

Разделение на базовые и конструируемые типы данных в языке Pascal показано в таблице:

Типы данных, конструируемые программистом, описываются в разделе type по следующему шаблону:

type <имя_типа> = <описание_типа>;

Например:

type Lat_Bukvy = "a" .. "z", "A" .. "Z";

Базовые типы данных являются стандартными, поэтому нет нужды описывать их в разделе type . Однако при желании это тоже можно сделать, например, дав длинным определениям короткие имена . Скажем, введя новый тип данных

type Int = Integer;

можно немного сократить текст программы.

Стандартные конструируемые типы также можно не описывать в разделе type . Однако в некоторых случаях это всё равно приходится делать из–за требований синтаксиса. Например, в списке параметров процедур или функций конструкторы типов использовать нельзя (см. лекцию 8 ).

Порядковые типы данных

Среди базовых типов данных особо выделяются порядковые типы . Такое название можно обосновать двояко:

Стандартные подпрограммы, обрабатывающие порядковые типы данных

Только для величин порядковых типов определены следующие функции и процедуры:

  1. Функция Ord (x) возвращает порядковый номер значения переменной x (относительно того типа, к которому принадлежит переменная х).
  2. Функция Pred (x) возвращает значение, предшествующее х (к первому элементу типа неприменима).
  3. Функция Succ (x) возвращает значение, следующее за х (к последнему элементу типа неприменима).
  4. Процедура Inc (x) возвращает значение, следующее за х (для арифметических типов данных это эквивалентно оператору x:= x + 1).
  5. Процедура Inc (x, k) возвращает k–е значение, следующее за х (для арифметических типов данных это эквивалентно оператору x:= x + k).
  6. Процедура Dec (x) возвращает значение, предшествующее х (для арифметических типов данных это эквивалентно оператору x:= x - 1).
  7. Процедура Dec (x, k) возвращает k–e значение, предшествующее х (для арифметических типов данных это эквивалентно оператору x:= x - k).

На первый взгляд кажется, будто результат применения процедуры Inc (x) полностью совпадает с результатом применения функции Succ (x) . Однако разница между ними проявляется на границах допустимого диапазона. Функция Succ (x) не применима к максимальному элементу типа, а вот процедура Inc (x) не выдаст никакой ошибки, но, действуя по правилам машинного сложения, прибавит очередную единицу к номеру элемента. Номер, конечно же, выйдет за пределы диапазона и за счёт усечения превратится в номер минимального значения диапазона. Получается, что процедуры Inc () и Dec () воспринимают любой порядковый тип словно бы «замкнутым в кольцо»: сразу после последнего вновь идёт первое значение.

Поясним всё сказанное на примере. Для типа данных

type Sixteen = 0 .. 15 ;

попытка прибавить 1 к числу 15 приведёт к следующему результату:

1 1 1 1 1 1 0 0 0 0

Начальная единица будет отсечена, и потому получится, что Inc (15)=0 .

Аналогичная ситуация на нижней границе допустимого диапазона произвольного порядкового типа данных наблюдается для процедуры Dec (x) и функции Pred (x) :

Типы данных, относящиеся к порядковым

Опишем теперь порядковые типы данных более подробно.

  1. Логический тип Boolean имеет два значения: False и True , и для них выполняются следующие равенства:
  2. В символьный тип Char входит 256 символов расширенной таблицы ASCII (например, "a", "b", "я", "7", "#"). Номер символа, возвращаемый функцией Ord () , совпадает с номером этого символа в таблице ASCII .
  3. Целочисленные типы данных сведём в таблицу:
  4. Перечисляемые типы данных задаются в разделе type явным перечислением их элементов. Например:

    type Week = (sun, mon, tue, wed, thu, fri, sat); 0 1 2 3 4 5 6

    Напомним, что для этого типа данных:

  5. Интервальные типы данных задаются только границами своего диапазона. Например:

    type Month = 1 .. 12 ;
    Budni = Mon .. Fri;

  6. Программист может создавать и собственные типы данных, являющиеся комбинацией нескольких стандартных типов. Например:

    type Valid_For_Identifiers = "a" .. "z" , "A" .. "Z" , "_" , "0" .. "9" ;

Этот тип состоит из объединения нескольких интервалов, причём в данном случае изменён порядок латинских букв: если в стандартном типе

Понятие данных является одним из ключевых в программировании, да и вообще в компьютерных науках. Грубо говоря, данные в информатике это информация, находящиеся в состоянии хранении, обработки или передачи, в какой-то отрезок времени. В машинах Тьюринга информация имеет тип, а он в свою очередь, зависит от рода информации.

Типы данных в Паскале определяют возможные значения переменных, констант, выражений и функций. Они бывают встроенными и пользовательскими. Встроенные типы изначально присутствуют в языке программирования, а пользовательские создаются программистом.

По способу представления и обработки типы данных бывают:

  • простые
  • структурированные
  • указатели
  • объекты
  • процедуры

В этой статье будут рассмотрены лишь, наиболее простые типы данных, так как на начальных этапах обучения, вашей программе будет проще обойтись, например, без файлов и записей, чем без целочисленных или строковых переменных.

Целочисленный тип

Сюда входят несколько целочисленных типов, которые различаются диапазоном значений, количеством байт отведённых для их хранения и словом, с помощью которого объявляется тип.

Тип Диапазон Размер в байтах
shortint -128…127 1
integer -32 768…32 767 2
longint -2 147 483 648…2 147 483 647 4
byte 0…255 1
word 0…65 535 2

Объявить целочисленную переменную можно в разделе Var, например:

Над переменными этой категории можно выполнять все арифметические и логические операции за исключением деления (/), для него нужен вещественный тип. Также могут быть применены некоторые стандартные функции и процедуры.

Вещественный тип

В Паскале бывают следующие вещественные типы данных:

Тип Диапазон Память, байт Количество цифр
Real 2.9e-39 … 1.7e38 6 11-12
Single 1.5e-45 … 3.4e38 4 7-8
Double 5.0e-324 …1.7e308 8 15-16
Extended 3.4e-4932 … 1.1e493 10 19-20
Comp -9.2e63 … (9.2e63)-1 8 19-20

Над ними может быть выполнено большее количество операций и функций, чем над целыми. Например, эти функции возвращают вещественный результат:

sin(x) – синус;

cos(x) – косинус;

arctan(x) – арктангенс;

ln(x) – натуральный логарифм;

sqrt(x) – квадратный корень;

exp(x) – экспонента;

Логический тип

Переменная, имеющая логический тип данных может принимать всего два значения: true (истина) и false (ложь). Здесь истине соответствует значение 1, а ложь тождественная нулю. Объявить булеву переменную можно так:

Над данными этого типа могут выполняться операции сравнения и логические операции: not , and, or, xor.

Символьный тип

Символьный тип данных – это совокупность символов, используемых в том или ином компьютере. Переменная данного типа принимает значение одного из этих символов, занимает в памяти компьютера 1 байт. Слово Char определяет величину данного типа. Существует несколько способов записать символьную переменную (или константу):

  1. как одиночный символ, заключенный в апострофы: ‘W’, ‘V’, ‘п’;
  2. указав код символа, значение которого должно находиться в диапазоне от 0 до 255.
  3. при помощи конструкции ^K, где K – код управляющего символа. Значение K должно быть на 64 больше кода соответствующего управляющего символа.

К величинам символьного типа данных применимы операции отношения и следующие функции:

Succ(x) - возвращает следующий символ;

Pred(x) - возвращает предыдущий символ;

Ord(x) - возвращает значение кода символа;

Chr(x) - возвращает значение символа по его коду;

UpCase(x) - переводит литеры из интервала ‘a’..’z’ в верхний регистр.

Для плодотворной работы с символьным типом рекомендую пользоваться .

Строковый тип

Строка в Паскале представляет собой последовательность символов заключенных в апострофы, и обозначается словом String . Число символов (длина строки) должно не превышать 255. Если длину строки не указывать, то она автоматически определиться в 255 символов. Общий вид объявления строковой переменной выглядит так:

Var <имя_переменной>: string[<длина строки>];

Каждый символ в строке имеет свой индекс (номер). Индекс первого байта – 0, но в нем храниться не первый символ, а длина всей строки, из чего следует, что переменная этого типа будет занимать на 1 байт больше числа переменных в ней. Номер первого символа – 1, например, если мы имеем строку S=‘stroka’, то S=s;. В одном из следующих уроков строковый тип данных будет рассмотрен подробнее.

Перечисляемый тип данных

Перечисляемый тип данных представляет собой некоторое ограниченное количество идентификаторов. Эти идентификаторы заключаются в круглые скобки, и отделяются друг от друга запятыми.

Type Day=(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

Переменная A может принимать лишь значения определенные в разделе Type. Также можно объявить переменную перечисляемого типа в разделе Var:

Var A: (Monday, Tuesday);

К данному типу применимы операции отношения, при этом заранее определенно, что Monday

Интервальный тип данных

Когда необходимо задать какой то диапазон значений, то в таких ситуациях применяется интервальный тип данных. Для объявления используется конструкция m..n , где m – минимальное (начальное) значение, а n – максимально (конечное); здесь m и n являются константами, которые могут быть целого, символьного, перечисляемого или логического типа. Описываться величины интервального типа могут как в разделе типов, так и в разделе описания переменных.

Общий вид:

TYPE <имя_типа> = <мин. значение>..<макс. значение>;