Перевод в машинный код онлайн. Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления

Можно с помощью стандартных программных средств операционной системы Microsoft Windows. Для этого откройте меню «Пуск» на вашем компьютере, в появившемся меню кликните «Все программы», выберите папку «Стандартные» и найдите в ней приложение «Калькулятор». В верхнем меню калькулятора выберите пункт «Вид», а затем «Программист». Форма калькулятора преобразуется.

Теперь введите число для перевода. В специальном окне под полем ввода вы увидите результат перевода числа код. Так, например, после ввода числа 216 вы получите результат 1101 1000.

Если у вас под рукой нет ни компьютера, ни смартфона, вы можете самостоятельно попробовать число, записанное арабскими цифрами, в двоичный код. Для этого необходимо постоянно делить число на 2 до того момента, пока не останется последнего остатка или результат не достигнет нуля. Выглядит это так (на примере числа 19):

19: 2 = 9 – остаток 1
9: 2 = 4 – остаток 1
4: 2 = 2 – остаток 0
2: 2 = 1 – остаток 0
1: 2 = 0 – достигнут 1 (делимое меньше делителя)

Выпишите остаток в обратную сторону – с самого последнего к самому первому. Вы получите результат 10011 – это и есть число 19 в .

Для перевода дробного десятичного числа в систему вначале необходимо перевести целую часть дробного числа в двоичную систему счисления, как это было показано в примере выше. Затем нужно дробную часть привычного числа умножить на основание двоичной . В результате произведения необходимо выделить целую часть – она принимает значение первого разряда числа системе после запятой. Финал алгоритма наступает, когда дробная часть произведения обращается в ноль, или если достигнута требуемая точность вычислений.

Источники:

  • Алгоритмы перевода на Wikipedia

Кроме привычной десятичной системы счисления в математике есть множество других способов представления чисел, в том числе в виде . Для этого используются всего два символа, 0 и 1, что делает двоичную систему удобной при использовании в работе различных цифровых устройств.

Инструкция

Системы в предназначены для символического отображения чисел. В обычной , в основном, используется десятичная система, которая очень удобна для расчетов, в том числе в уме. В мире цифровых устройств, в том числе компьютерном, который стал теперь для многих вторым домом, наибольшее распространение имеет , далее по мере убывания популярности идут восьмеричная и шестнадцатеричная.

Эти четыре системы имеют одно общее качество – они позиционные. Это значит, что значение каждого знака в итоговом числе зависит от того, в какой позиции он стоит. Отсюда вытекает понятие разрядности, в двоичном виде единицей разрядности является число 2, в – 10 и т.д.

Существуют алгоритмы перевода чисел из одной системы в другую. Эти методы просты и не требуют больших знаний, однако для развития этих навыков требуется некоторая сноровка, которая достигается практикой.

Перевод числа из другой системы счисления в осуществляется двумя возможными способами: итерационным делением на 2 или с помощью записи каждого отдельного знака числа в виде четверки символов, которые являются табличными величинами, однако могут быть найдены и самостоятельно ввиду своей простоты.

Используйте первый способ для приведения в двоичный вид десятичного числа. Это тем более удобно, что десятичными числами легче оперировать в уме.

Например, переведите число 39 в двоичный видРазделите 39 на 2 - получится 19 и 1 в остатке. Сделайте еще несколько итераций деления на 2, пока в конечном итоге не будет равен нулю, а промежуточные остатки тем временем записывайте в строку справа налево. Итоговый набор единиц и нулей и будет вашим числом в двоичном виде:39/2 = 19 → 1;19/2 = 9 → 1;9/2 = 4 → 1;4/2 = 2 → 0;2/2 = 1 → 0;1/2 = 0 → 1.Итак, получилось двоичное число 111001.

Чтобы перевести в двоичный вид число из по основаниям 16 и 8, найдите или сделайте сами таблицы соответствующих обозначений каждого цифрового и символьного элемента этих систем. А именно: 0 0000, 1 0001, 2 0010, 3 0011, 4 0100, 5 0101, 6 0110, 7 0111, 8 1000, 9 1001, A 1010, B 1011, C 1100, D 1101, E 1110, F 1111.

Каждый знак исходного числа запишите в соответствии с данными этой таблицы. Примеры:Восьмеричное число 37 = = 00110111 в двоичном виде;Шестнадцатеричное число 5FEB12 = = 010111111110101100010010 системе.

Видео по теме

Некоторые нецелые числа могут быть записаны в десятичном виде. В этом случае после запятой, отделяющей целую часть числа , стоит некоторое количество цифр, характеризующих нецелую часть числа . В разных случаях удобно использовать либо десятичные числа , либо дробные. Десятичные числа можно переводить в дробные.

Вам понадобится

  • умение сокращать дроби

Инструкция

Если знаменатель равен 10, 100 или, в случае, 10^n, где n - натуральное число, то дробь может быть записана в виде . Количество знаков после запятой определяет знаменатель дроби. Он равен 10^n, где n - количество знаков. Значит, к примеру, 0,3 можно записать как 3/10, 0,19 как 19/100 и.т.д.

Если в конце десятичной дроби стоит один или более нулей, то эти нули можно отбросить и переводить число с оставшимся количеством знаков после запятой в дробное. Пример: 1,7300 = 1,73 = 173/100.

Видео по теме

Источники:

  • Десятичные дроби
  • как перевести дробное

Основная часть программных продуктов для Android написана на языке программирования (ЯП) Java. Разработчики системы также предлагают программистам фреймворки для проектирования приложений на C/C++, Python и Java Script через библиотеку jQuery и PhoneGap.

Motodev Studio for Android, созданный на основе Eclipse и позволяющий программировать непосредственно на основе Google SDK.

Для написания некоторых программ и участков кода, выполнение которых требует максимальной , могут быть использованы библиотеки C/C++. Использование этих ЯП возможно через специальный пакет для разработчиков Android Native Development Kit, ориентированный специально для создания приложений с использованием C++.

Пакет Embarcadero RAD Studio XE5 также позволяет писать нативные приложения для Android. При этом для тестирования программы достаточно одного Android-устройства или установленного эмулятора. Разработчику также предлагается возможность писать на C/C++ низкоуровневые модули путем использования некоторых стандартных библиотек Linux и разработанной для Android библиотеки Bionic.

Кроме C/C++, программисты имеют возможность использовать C#, средства которого пригодятся при написании нативных программ для платформы. Работа на C# с Android возможно через интерфейс Mono или Monotouch. Тем не менее первоначальная лицензия на C# обойдется программисту в $400, что актуально только при написании крупных программных продуктов.

PhoneGap

PhoneGap дает возможность разрабатывать приложения с использованием таких языков, как HTML, JavaScript (jQuery) и CSS. При этом программы, создаваемые на данной платформе, подходят для других операционных и могут быть модифицированы под другие девайсы без дополнительного внесения изменений в программный код. С использованием PhoneGap разработчики программ на Android могут применять средства JavaScript для написания кода и HTML с CSS в качестве средств для создания разметки.

Решение SL4A дает возможность использовать в написании и скриптовые языки. При помощи среды планируется введение таких ЯП, как Python, Perl, Lua, BeanShell, JRuby и т.п. Тем не менее количество разработчиков, которые на сегодняшний день используют SL4A для своих программ, невелико, а проект до сих пор находится в стадии -тестирования.

Источники:

  • PhoneGap

Давайте разберемся как же все таки переводить тексты в цифровой код ? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы («»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле: N = 2b

  • N - та самая мощность (множество символов),
  • b - Бит (вес взятого символа).

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

  • 8 бит всегда называют 1 байт:
  • 1 байт = 8 бит.

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

Как текстовая информация может выглядеть в памяти компьютера?

Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.

Поскольку, байт - это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно - удобство такого кодирование очевидно. Однако, 256 символов - это очень удобное количество для любой символьной информации.

Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?

Этот процесс условный, и мы вправе придумать различные способы для кодировки символов . Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.

Таблица для кодировки - это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.

ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.

Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)

Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.

Для русского алфавита тоже соблюдают принцип последовательного кодирования .

Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.

Одним из первых стандартов для кодирования русского алфавит а на персональных компьютерах считают КОИ8("Код обмена информацией, 8-битный"). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.

С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 ("CP" означает "Code Page", "кодовая страница").

Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.

Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита , которая называется ISO 8859-5.

А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.

С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.

Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.

Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.

Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

1 байт = 8 бит.

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII

Порядковый номер

Код

Символ

0 - 31

00000000 - 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 - 127

00100000 - 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 - 255

10000000 - 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII


Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII


К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 ("Код обмена информацией, 8-битный"). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Попробуем с помощью таблицы ASCII представить, как будут выглядеть слова в памяти компьютера.

Внутреннее представление слов в памяти компьютера

Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.

Двоичный код представляет собой форму записи информации в виде единиц и нулей. Такая является позиционной с основанием 2. На сегодняшний день двоичный код (таблица, представленная немного ниже, содержит некоторые примеры записи чисел) используется во всех без исключения цифровых устройствах. Его популярность объясняется высокой надежность и простотой данной формы записи. Двоичная арифметика весьма проста, соответственно, ее легко реализовать и на аппаратном уровне. компоненты (или как их еще называют - логические) весьма надежны, так как они оперируют в работе всего двумя состояниями: логической единицы (есть ток) и логического нуля (нет тока). Тем самым они выгодно отличаются от аналоговых компонентов, работа которых основана на переходных процессах.

Как составляется двоичная форма записи?

Давайте разберемся, каким образом формируется такой ключ. Один разряд двоичного кода может содержать всего два состояния: ноль и единицу (0 и 1). При использовании двух разрядов появляется возможность записать четыре значения: 00, 01, 10, 11. Трехразрядная запись содержит восемь состояний: 000, 001 … 110, 111. В результате получаем, что длина двоичного кода зависит от числа разрядов. Это выражение можно записать с помощью следующей формулы: N =2m, где: m - это количество разрядов, а N - число комбинаций.

Виды двоичных кодов

В микропроцессорах такие ключи применяются для записи разнообразной обрабатываемой информации. Разрядность двоичного кода может существенно превышать и его встроенной памяти. В таких случаях длинные числа занимают несколько ячеек запоминающего устройства и обрабатываются с помощью нескольких команд. При этом все сектора памяти, которые выделены под многобайтный двоичный код, рассматриваются в качестве одного числа.

В зависимости от необходимости предоставления той или иной информации, различают следующие виды ключей:

  • беззнаковые;
  • прямые целыезнаковые коды;
  • знаковые обратные;
  • знаковые дополнительные;
  • код Грея;
  • код Грея-Экспресс.;
  • дробные коды.

Рассмотрим более детально каждый из них.

Беззнаковый двоичный код

Давайте разберемся, что же представляет собой такой вид записи. В целых беззнаковых кодах каждый разряд (двоичный) представляет степень цифры два. При этом наименьшее число, которое можно записать в такой форме, равно нулю, а максимальное можно представить следующей формулой: М=2 п -1. Эти два числа полностью определяют диапазон ключа, которым можно выразить такой двоичный код. Давайте рассмотрим возможности упомянутой формы записи. При использовании данного вида беззнакового ключа, состоящего из восьми разрядов, диапазон возможных чисел составит от 0 до 255. Шестнадцатиразрядный код будет иметь диапазон от 0 до 65535. В восьмиразрядных процессорах для хранения и записи таких чисел используют два сектора памяти, которые располагаются в соседних адресатах. Работу с такими ключами обеспечивают специальные команды.

Прямые целые знаковые коды

В данном виде двоичных ключей старший разряд используется для записи знака числа. Нуль соответствует плюсу, а единица - минусу. В результате введения данного разряда диапазон закодированных чисел смещается в отрицательную сторону. Получается, что восьмиразрядный знаковый целый двоичный ключ может записать числа в диапазоне от -127 до +127. Шестнадцатиразрядный - в диапазоне от -32767 до +32767. В восьмиразрядных микропроцессорах для хранения подобных кодов используют два соседних сектора.

Недостатком такой формы записи является то, что знаковые и цифровые разряды ключа необходимо обрабатывать раздельно. Алгоритмы программ, работающих с этими кодами, получаются очень сложными. Для изменения и выделения знаковых разрядов необходимо применять механизмы маскировки этого символа, что способствует резкому увеличению размеров программного обеспечения и уменьшению его быстродействия. С целью устранения данного недостатка был введен новый вид ключа - обратный двоичный код.

Знаковый обратный ключ

Данная форма записи отличается от прямых кодов только тем, что отрицательное число в ней получается путем инвертирования всех разрядов ключа. При этом цифровые и знаковые разряды идентичны. Благодаря этому, алгоритмы работы с таким видом кодов существенно упрощаются. Однако обратный ключ требует специальный алгоритм для распознавания символа первого разряда, вычисления абсолютной величины числа. А также восстановления знака результирующего значения. Более того, в обратном и прямом кодах числа для записи нуля используют два ключа. Несмотря на то что это значение не имеет положительного или отрицательного знака.

Знаковый дополнительный код двоичного числа

Данный вид записи не имеет перечисленных недостатков предыдущих ключей. Такие коды позволяют проводить непосредственное суммирование как положительных, так и отрицательных чисел. При этом не проводится анализ знакового разряда. Все это стало возможным благодаря тому факту, что дополнительные числа представляют собой естественное кольцо символов, а не искусственные образования, такие как прямые и обратные ключи. Более того, важным фактором является, то что произвести вычисления дополнений в двоичных кодах чрезвычайно просто. Для этого достаточно к обратному ключу добавить единицу. При использовании данного вида знакового кода, состоящего из восьми разрядов, диапазон возможных чисел составит от -128 до +127. Шестнадцатиразрядный ключ будет иметь диапазон от -32768 до +32767. В восьмиразрядных процессорах для хранения таких чисел также используют два соседних сектора.

Двоичный дополнительный код интересен наблюдаемым эффектом, который называют явлением распространения знака. Давайте разберемся, что это значит. Данный эффект заключается в том, что в процессе преобразования однобайтового значения в двухбайтовое достаточно каждому биту старшего байта назначить значения знаковых битов младшего байта. Получается, что для хранения знакового можно воспользоваться старшими битами. При этом значение ключа совершенно не изменяется.

Код Грея

Данная форма записи, по сути, является одношаговым ключом. То есть в процессе перехода от одного значения к другому меняется всего лишь один бит информации. При этом погрешность при считывании данных приводит к переходу от одного положения к другому с незначительным смещением по времени. Однако получение совершенно неверного результата углового положения при таком процессе полностью исключается. Достоинством такого кода является его способность зеркально отображать информацию. Например, инвертируя старшие биты, можно просто менять направление отсчета. Это происходит благодаря управляющему входу Complement. При этом выдаваемое значение может быть как возрастающим, так и спадающим при одном физическом направлении вращения оси. Так как информация, записанная в ключе Грея, имеет исключительно кодированный характер, который не несет реальных числовых данных, то перед дальнейшей работой требуется предварительно преобразовать его в обычную бинарную форму записи. Осуществляется это с помощью специального преобразователя - декодера Грей-Бинар. Данное устройство легко реализуется на элементарных логических элементах как аппаратным, так и программным способом.

Код Грея-Экспресс

Стандартный одношаговый ключ Грей подходит для решений, которые представлены в виде чисел, два. В случаях, где необходимо реализовывать иные решения, из такой формы записи вырезают и используют только средний участок. В результате сохраняется одношаговость ключа. Однако в таком коде началом числового диапазона не является нуль. Он смещается на заданное значение. В процессе обработки данных от генерируемых импульсов отнимают половину разницы между начальным и редуцированным разрешением.

Представление дробного числа в двоичном ключе с фиксированной запятой

В процессе работы приходится оперировать не только целыми цифрами, но и дробными. Такие числа можно записывать с помощью прямых, обратных и дополнительных кодов. Принцип построения упомянутых ключей такой же, как и у целых. До сих пор мы считали, что двоичная запятая должна находиться справа от младшего разряда. Но это не так. Она может располагаться и слева от старшего разряда (в таком случае в качестве переменной можно записывать исключительно дробные числа), и посередине переменной (можно записывать смешанные значения).

Представление двоичного кода с плавающей запятой

Такая форма применяется для записи либо наоборот - очень малых. В качестве примера можно привести межзвездные расстояния или размеры атомов и электронов. При вычислении таких значений пришлось бы применять двоичный код с очень большой разрядностью. Однако нам нет необходимости учитывать космические расстояние с точностью до миллиметра. Поэтому форма записи с фиксированной запятой в данном случае неэффективна. Для отображения таких кодов используется алгебраическая форма. То есть число записывается как мантисса, умноженная на десять в степени, отображающей нужный порядок числа. Следует знать, что мантисса не должна быть больше единицы, а после запятой не должен записываться ноль.

Считается, что двоичное исчисление было изобретено в начале 18-го века математиком из Германии Готфридом Лейбницем. Однако, как недавно открыли ученые, задолго до полинезийского острова Мангареву использовали данный вид арифметики. Несмотря на то что колонизация практически полностью уничтожила оригинальные системы исчисления, ученые восстановили сложные двоичные и десятичные виды счета. Кроме того, ученый Когнитивист Нуньес утверждает, что кодирование двоичным кодом применялось в древнем Китае еще в 9-м веке до н. э. Другие древние цивилизации, например, индейцы майя, также использовали сложные комбинации десятичных и бинарных систем для отслеживания временных интервалов и астрономических явлений.

08. 06.2018

Блог Дмитрия Вассиярова.

Двоичный код — где и как применяется?

Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.

Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись. Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.

Зачем нужен двоичный код?

До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.

Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».

Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.

Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов. Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).

Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:

  • четырехбитным (как в примере на абзац выше 1011) позволяет записать 2^4 = 16 комбинаций-символов;
  • восьмибитным (например: 0101 0011; 0111 0001). Одно время он представлял наибольший интерес для программирования, поскольку охватывал 2^8 = 256 значений. Это давало возможность описать все десятичные цифры, латинский алфавит и специальные знаки;
  • шестнадцатибитным (1100 1001 0110 1010) и выше. Но записи с такой длинной – это уже для современных более сложных задач. Современные процессоры используют 32-х и 64-х битную архитектуру;

Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):

8 бит = 1 байт.

Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).

Бинарная кодировка в действии

Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:

  • первый 31 символ – управляющие (с 00000000 по 00011111). Служат для служебных команд, вывода на принтер или экран, звуковых сигналов, форматирования текста;
  • следующие с 32 по 127 (00100000 – 01111111) латинский алфавит и вспомогательные символы и знаки препинания;
  • остальные, до 255-го (10000000 – 11111111) – альтернативная, часть таблицы для специальных задач и отображения национальных алфавитов;

Расшифровка значений в ней показано в таблице.

Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:

  • байт из 8 знаков будем читать справа налево;
  • если в обычных числах у нас используются разряды единиц, десятков, сотен, то здесь (читая в обратном порядке) для каждого бита представлены различные степени «двойки»: 256-124-64-32-16-8- 4-2-1;
  • теперь смотрим на двоичный код числа, например 00011011. Там, где в соответствующей позиции есть сигнал «1» – берем значения этого разряда и суммируем их привычным способом. Соответственно: 0+0+0+32+16+0+2+1 = 51. В правильности данного метода вы можете убедиться, взглянув на таблицу кодов.

Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.

Язык, понятный современной технике

Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:

  • текстовую информацию с параметрами форматирования;
  • числа и любые операции с ними;
  • графические и видео изображения;
  • звуки, в том числе и выходящие и за предел нашей слышимости;

Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:HDD дисках ;

Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.

Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.

Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы. Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.

Лучше, если вы сами ее мне подскажите;)

До скорых встреч.