Рассмотрим пример задачи линейного программирования. Решение задач линейного программирования в Excel - Реферат

Рассмотрим линейное программирование в Excel на примере задачи, ранее решенной .

Задача. Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно. Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд. На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц. Необходимо определить количество единиц продуктов А и В, которые Николай доложен производить в следующем месяце для максимизации маржинальной прибыли.

Скачать заметку в формате , пример в формате

1. Воспользуемся математической моделью построенной . Вот эта модель:

Максимизировать: Z = 2500 * х 1 + 3500 *х 2

При условии, что: 3 * х 1 + 10 * х 2 ≤ 330

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

2. Создадим экранную форму и введем в нее исходные данные (рис. 1).

Рис. 1. Экранная форма для ввода данных задачи линейного программирования

Обратите внимание на формулу в ячейке С7. Это формула целевой функции. Аналогично, в ячейки С16:С18 введены формулы для расчета левой части ограничений.

3. Проверьте, если у вас установлена надстройка «Поиск решения» (рис. 2), пропустите этот пункт.

Рис. 2. Надстройка Поиск решения установлена; вкладка «Данные», группа «Анализ»

Если надстройки «Поиск решения» вы на ленте Excel не обнаружили, щелкните на кнопку Microsoft Office, а затем Параметры Excel (рис. 3).

Рис. 3. Параметры Excel

Выберите строку Надстройки, а затем в самом низу окна «Управление надстройками Microsoft Excel» выберите «Перейти» (рис. 4).

Рис. 4. Надстройки Excel

В окне «Надстройки» установите флажок «Поиск решения» и нажмите Ok (рис. 5). (Если «Поиск решения» отсутствует в списке поля «Надстройки», чтобы найти надстройку, нажмите кнопку Обзор. В случае появления сообщения о том, что надстройка для поиска решения не установлена на компьютере, нажмите кнопку Да, чтобы установить ее.)

Рис. 5. Активация надстройки «Поиск решения»

После загрузки надстройки для поиска решения в группе Анализ на вкладке Данные становится доступна команда Поиск решения (рис. 2).

4. Следующим этапом заполняем окно Excel «Поиск решения» (рис. 6)

Рис. 6. Заполнение окна «Поиск решения»

В поле «Установить целевую ячейку» выбираем ячейку со значением целевой функции – $C$7. Выбираем, максимизировать или минимизировать целевую функцию. В поле «Изменяя ячейки» выбираем ячейки со значениями искомых переменных $C$4:$D$4 (пока в них нули или пусто). В области «Ограничения» с помощью кнопки «Добавить» размещаем все ограничения нашей модели. Жмем «Выполнить». В появившемся окне «Результат поиска решения» выбираем все три типа отчета (рис. 7) и жмем Ok. Эти отчеты нужны для анализа полученного решения. Подробнее о данных, представленных в отчетах, можно почитать .

Рис. 7. Выбор типов отчета

На основном листе появились значения максимизированной целевой функции – 130 000 руб. и изменяемых параметров х 1 = 10 и х 2 = 30. Таким образом, для максимизации маржинального дохода Николаю в следующем месяце следует произвести 10 единиц продукта А и 30 единиц продукта В.

Если вместо окна «Результат поиска решения» появилось что-то иное, Excel`ю найти решение не удалось. Проверьте правильность заполнения окна «Поиск решения». И еще одна маленькая хитрость. Попробуйте уменьшить точность поиска решения. Для этого в окне «Поиск решения» щелкните на Параметры (рис. 8.) и увеличьте погрешность вычисления, например, до 0,001. Иногда из-за высокой точности Excel не успевает за 100 итераций найти решение. Подробнее о параметрах поиска решения можно почитать .

Рис. 8. Увеличение погрешности вычислений

Лабораторная работа "Использование средства Поиск решения"

Задание:

Решить в Excel все приведенные ниже задачи (каждую на отдельном листе) и сохранить решения в файле LAB4.xls на своем пользовательском диске.

Задача 1 1

Решение задачи линейного программирования с помощью EXCEL. 2

Задача 2 4

Задача планирования производства красок 4

Задача 3 5

Решение транспортной задачи с помощью средства Поиск решения 5

Задача 1

Задача распределения ресурсов.

Если финансы, оборудование, сырье и даже людей полагать ресурсами, то значительное число задач в экономике можно рассматривать как задачи распределения ресурсов. Достаточно часто математической моделью таких задач является задача линейного программирования.

Например:

Требуется определить, в каком количестве надо выпускать продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье, финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведена ниже.Составим математическую модель, для чего введем следущие обозначения:

x j - количество выпускаемой продукции j-го типа, j=1,4 ;

b i - количество располагаемого ресурса i-го вида, i=1,3 ;

a ij - норма расхода i-го ресурса для выпуска единицы продукции j-го типа;

c j - прибыль, получаемая от реализации единицы продукции j-го типа.

Теперь приступим к составлению модели.

Для выпуска единицы Прод1 требуется 6 единиц сырья, значит, для выпуска всей продукции Прод1 требуется 6 х 1 единиц сырья, где х 1 - количество выпускаемой продукции Прод1. С учетом того, что для других видов продукции зависимости аналогичны, ограничение по сырью будет иметь вид:

1 +5х 2 +4х 3

В этом ограничении левая часть равна величине потребного ресурса, а правая показывает количество имеющегося ресурса. Аналогично можно составить ограничения для остальных ресурсов и написать зависимость для целевой функции. Тогда математическая модель задачи будет иметь вид:

F=60x 1 +70x 2 +120x 3 +130x 4 --> max

x 1 +x 2 +x 3 +x 4

6x 1 +5x 2 +4x 3 +3x 4

4x 1 +6x 2 +10x 3 +13x 4

x j >=0; j=1,4

Решение задачи линейного программирования с помощью EXCEL.

1
. Сделать активной ячейку F6.

2. Мастер функций Математические СУММПРОИЗВ на жмите кнопку Далее. На экране диалоговое окно


3. Введите зависимости для левых частей ограничений.

Работа в диалоговом окне Поиск решения.

1

. Сервис, Поиск решения...

2 . Курсор в поле Установить целевую ячейку и введите адрес F6.

3 . Введите направление целевой функции: Максимальному значению .

4 . Курсор в поле Изменяя ячейки и введите адреса B3:E3

5. Нажмите кнопку Добавить... и в ведите граничные условия на переменные

6. После ввода ограничений, нажмите кнопку Выполнить . В результате вычислений в ячейках В3:Е3, будут отражены найденные числовые значения х i , а в ячейке F6 – значение целевой функции.

Т.О, видно, что в оптимальном решении Прод1=В3=10, Прод2=С3=0, Прод3=D3=6, Прод4=Е3=0.

При этом максимальная прибыль будет составлять F6=1320 , количество использованных ресурсов равно трудовых=F9=16, сырья=F10=84, финансов=F11=100.




С помощью диалогового окна Результат поиска решения. Решение найдено можно получить отчеты трех типов: результаты, устойчивость, пределы.

Задача 2

Задача планирования производства красок

Для производства красок для наружных и внутренних работ используют два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 6 и 8 тонн, соответственно.

Суточный спрос на краску для внутренних работ никогда не превышает спроса на краску для наружных работ более чем на 1т.

Спрос на краску для внутренних работ не превышает 2т. в сутки.

Оптовые цены одной тонны красок равны: 3000 руб. для краски для наружных работ и 2000 руб. для краски для внутренних работ .

Какое количество краски каждого вида следует производить, чтобы доход от реализации был максимальным?

Расходы продуктов А и В на 1т. приведены в таблице:

исходный продукт

расход исходных продуктов на тонну краски

максимально возможный запас

для внутренних работ

для наружных работ

х 1 - суточный объем производства краски для внутренних работ

х 2 - суточный объем производства краски для наружных работ

f -суммарная суточная прибыль от производства обоих видов красок (целевая функция)

f = 3000х 1 +2000х 2

Определить при каких допустимых значениях х 1 и х 2 значение f - максимальное

Ограничения:

Решение задачи в Excel

Переменные

Целевая функция:

3000*А3+2000*В3

Ограничения

Выполните: Cервис, Поиск решения

Целевая ячейка С4

Установить: М аксимальному значению

Изменяемые ячейки: А3:В3

Ограничения:

После ввода данных нажмите кнопку Выполнить

Полученное решение:

Переменные

Целевая функция:

Ограничения:

Вывод: оптимальным является производство 3,3 т. краски для наружных работ и 1,3 т. краски для внутренних работ в сутки. Этот объем принесет прибыль 12,7 тыс. руб.

Задача 3

Решение транспортной задачи с помощью средства Поиск решения

Фирма имеет четыре фабрики: А, В, С, D и пять центров распределения ее товаров: №1, №2, №3, №4, №5.

Производственные возможности фабрик соответственно составляют:

А – 200, В – 150, С – 225, D – 175 единиц продукции ежедневно.

Потребности центров распределения соответственно составляют:

№1 – 100, №2 – 200, №3 – 50, №4 – 250, №5 – 150 единиц продукции ежедневно.

Хранение на фабрике единицы продукции, не поставленной в центр распределения, составляет $0,75 в день.

Штраф за просроченную поставку единицы продукции, заказанной потребителем в центре распределения, но там не находящейся, равен $2,5 в день.

Стоимость перевозки единицы продукции с фабрик в пункты распределения представлена в таблице:

Спланировать перевозки так, чтобы минимизировать суммарные транспортные расходы.

Модель рассматриваемой задачи сбалансирована (суммарный объем произведенной продукции равен суммарному объему потребностей в ней), значит не нужно учитывать издержки, связанные как со складированием, так и с недопоставками продукции. В противном случае в модель следует ввести:

    В случае перепроизводства – фиктивный пункт распределения, стоимость перевозок единицы продукции, в который полагается равной стоимости складирования, а объемы перевозок – объемам складирования излишков продукции на фабриках.

    В случае дефицита – фиктивную фабрику, стоимость перевозок единицы продукции с которой полагается равной стоимости штрафов за недопоставку продукции, а объемы перевозок – объемам недопоставок продукции в пункты распределения.

x ij – объем перевозок с i-й фабрики в j-й центр распределения.

c ij – стоимость перевозки единицы продукции с i-й фабрики в j-й центр распределения.

а i – объем производства на i-й фабрике.

в j – спрос в j-м центре распределения.

Т

ребуется минимизировать суммарные транспортные расходы, т.е.

Ограничения:

x



ij 0 , i , j

Механизм решения задачи в Excel с использованием средства Поиск решения

    В ячейки А1:Е4 введите стоимости перевозок.

    А6:Е9 – отведите под значения неизвестных (объемы перевозок).

    В ячейки G6:G9 введите объемы производства на фабриках.

    В А11:Е11 – потребность в продукции в пунктах распределения.

    В ячейку F10 – введите целевую функцию

    В А10:Е10 –введите формулы, определяющие объем продукции, ввозимой в центры распределения

    В F6: F9 – формулы, вычисляющие объем продукции, вывозимой с фабрик.

СУММ(A6:E6)

СУММ(A7:E7)

СУММ(A8:E8)

СУММ(A9:E9)

СУММ(A6:A9)

СУММ(B6:B9)

СУММ(C6:C9)

СУММ(D6:D9)

СУММ(E6:E9)

СУММПРОИЗВ(A1:E4;A6:E9)

    Сервис Поиск решения

    В окне диалога Поиск решения:
    Установить целевую ячейку $F$10
    Равной мин имальному значению
    Изменяя ячейки: $А$6:$E$9
    Ограничения:
    $А$10:$E$10=$A$11:$E$11
    $А$6:$E$9>=0
    $F$6:$F$9=$G$6:$G$9

    Щелкните на кнопке Параметры… и установите флажок Линейная модель

    Нажмите кнопку Выполнить

    Оптимальное решение транспортной задачи будет отражено в диапазоне А6:Е9

Решите транспортную задачу самостоятельно, используя выше описанный механизм.

Excel необходимо: ...

  • Задачи линейного программирования. Графический метод решения задач линейного программирования

    Решение

    Microsoft Excel . Решение задач выпуклого программирования при помощи линейной аппроксимации. Приближённое решение задач математического программирования методом сепарабельного программирования . Экономические задачи , решаемые с помощью ...

  • Инструкция по использованию microsoft Excel для решения задач лп 5 3 Одноиндексные задачи лп 6 > 3 Ввод исходных данных 6 > 3 Решение задачи 13

    Инструкция

    1. ЛАБОРАТОРНАЯ РАБОТА №1 “РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ Microsoft Excel ” 1.1. ЦЕЛЬ РАБОТЫ Приобретение навыков решения задач линейного программирования (ЛП) в табличном...

  • Некоторые понятия линейного программирования

    Документ

    Мы приведем решение этой задачи с помощью программы Tora. рассмотрим реализацию задачи линейного программирования в... задачи с помощью Microsoft Excel . 1. Осуществляем ввод данных в таблицу Excel (рис. 1). Рис. 1. Заполнение листа для решения задачи ...

  • Рассмотрим пример задачи линейного программирования.

    Требуется определить, в каком количестве надо выпустить продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены на рис. 1.

    Ресурс

    Прод1

    Прод2

    Прод3

    Прод4

    Знак

    Наличие

    Прибыль

    Трудовые

    Сырье

    Финансы

    Рисунок 1.

    Математическая модель задачи имеет вид:

    где x j – количество выпускаемой продукции j-го типа; F – функция цели; в левых частях выражений ограничений указаны величины потребного ресурса , а правые части показывают количество имеющегося ресурса .

    Ввод условий задачи

    Для решения задачи с помощью Excel следует создать форму для ввода исходных данных и ввести их. Форма ввода показана на рис. 2.

    В ячейку F6 введено выражение целевой функции как суммы произведений значений прибыли от выпуска единицы продукции каждого типа на количество выпускаемой продукции соответствующего типа. Для наглядности на рис. 3 представлена форма ввода исходных данных в режиме вывода формул.

    В ячейки F8:F10 введены левые части ограничений для ресурсов каждого вида.

    Рисунок 2.

    Рисунок 3.

    Решение задачи линейного программирования

    Для решения задач линейного программирования в Excel используется мощный инструмент, называемый Поиск решения . Обращение к Поиску решения осуществляется из меню Сервис , на экран выводится диалоговое окно Поиска решения (рис. 4).

    Рисунок 4.

    Ввод условий задачи для поиска ее решения состоит из следующих шагов:

    1 Назначить целевую функцию, для чего установить курсор в поле Установить целевую ячейку окна Поиск решения и щелкнуть в ячейке F6 в форме ввода;

    2 Включить переключатель значения целевой функции, т.е. указать ее Равной Максимальному значению ;

    3 Ввести адреса изменяемых переменных (x j): для этого установить курсор в поле Изменяя ячейки окна Поиск решения, а затем выделить диапазон ячеек B3:E3 в форме ввода;

    4 Нажать кнопку Добавить окна Поиск решения для ввода ограничений задачи линейного программирования; на экран выводится окно Добавление ограничения (рис. 5) :

    Ввести граничные условия для переменных x j (x j ³0), для этого в поле Ссылка на ячейку указать ячейку В3, соответствующую х 1 , выбрать из списка нужный знак (³), в поле Ограничение указать ячейку формы ввода, в которой хранится соответствующее значение граничного условия, (ячейка В4), нажать кнопку Добавить ; повторить описанные действия для переменных х 2 , х 3 и х 4 ;

    Ввести ограничения для каждого вида ресурса, для этого в поле Ссылка на ячейку окна Добавление ограничения указать ячейку F9 формы ввода, в которой содержится выражение левой части ограничения, наложенного на трудовые ресурсы, в полях Ограничение указать знак £ и адрес Н9 правой части ограничения, нажать кнопку Добавить ; аналогично ввести ограничения на остальные виды ресурсов;

    После ввода последнего ограничения вместо Добавить нажать ОК и возвратиться в окно Поиск решения.

    Рисунок 5.

    Решение задачи линейного программирования начинается с установки параметров поиска:

    В окне Поиск решения нажать кнопку Параметры , на экран выводится окно Параметры поиска решения (рис. 6);

    Установить флажок Линейная модель, что обеспечивает применение симплекс-метода;

    Указать предельное число итераций (по умолчанию – 100, что подходит для решения большинства задач);

    Установить флажок , если необходимо просмотреть все этапы поиска оптимального решения;

    Нажать ОК , возврат в окно Поиск решения .

    Рисунок 6.

    Для решения задачи нажать кнопку Выполнить в окне Поиск решения , на экране – окно Результаты поиска решения (рис. 7), в котором содержится сообщение Решение найдено. Все ограничения и условия оптимальности выполнены. Если условия задачи несовместны, то выводится сообщение Поиск не может найти подходящего решения . Если целевая функция не ограничена, то появляется сообщение Значения целевой ячейки не сходятся .

    Рисунок 7.

    Для рассматриваемого примера решение найдено и результат оптимального решения задачи выводится в форме ввода: значение целевой функции, соответствующее максимальной прибыли и равное 1320, указывается в ячейке F6 формы ввода, оптимальный план выпуска продукции х 1 =10, х 2 =0, х 3 =6, х 4 =0 указывается в ячейках В3:С3 формы ввода (рис. 8).

    Количество использованных для выпуска продукции ресурсов выводится в ячейки F9:F11: трудовых – 16, сырья – 84, финансов – 100.

    Рисунок 8.

    Если при установке параметров в окне Параметры поиска решения (рис. 6) был установлен флажок Показывать результаты итераций , то будут показаны последовательно все шаги поиска. На экран будет выводиться окно (рис. 9). При этом текущие значения переменных и функции цели будут показаны в форме ввода. Так, результаты первой итерации поиска решения исходной задачи представлены в форме ввода на рисунке 10 .

    Рисунок 9.

    Рисунок 10.

    Чтобы продолжить поиск решения, следует нажимать кнопку Продолжить в окне Текущее состояние поиска решения .

    Анализ оптимального решения

    Прежде чем, перейти к анализу результатов решения, представим исходную задачу в форме

    введя дополнительные переменные у i , представляющие собой величины неиспользованных ресурсов.

    Составим для исходной задачи двойственную задачу и введем дополнительные двойственные переменные v i .

    Анализ результатов поиска решения позволит увязать их с переменными исходной и двойственной задач.

    С помощью окна Результаты поиска решения можно вызвать отчеты трех типов, позволяющие анализировать найденное оптимальное решение:

    Результаты,

    Устойчивость,

    Пределы.

    Для вызова отчета в поле Тип отчета выделить название нужного типа и нажать ОК .

    1 Отчет по результатам (рис. 11) состоит из трех таблиц:

    Таблица 1 содержит сведения о целевой функции; в столбце Исходно указывается значение целевой функции до начала вычислений;

    Таблица 2 содержит значения искомых переменных x j , полученных в результате решения задачи (оптимальный план выпуска продукции);

    Таблица 3 показывает результаты оптимального решения для ограничений и для граничных условий.

    Для Ограничений в графе Формула приведены зависимости, которые были введены при задании ограничений в окне Поиск решения ; в графе Значение указаны величины использованного ресурса; в графе Разница показано количество неиспользованного ресурса. Если ресурс используется полностью, то в графе Состояние выводится сообщение связанное ; при неполном использовании ресурса в этой графе указывается не связан. Для Граничных условий приводятся аналогичные величины с той лишь разницей, что вместо неиспользованного ресурса показана разность между значением переменной x j в найденном оптимальном решении и заданным для нее граничным условием (x j ³0).

    Именно в графе Разница можно увидеть значения дополнительных переменных y i исходной задачи в формулировке (2). Здесь у 1 =у 3 =0, т.е. величины неиспользованных трудовых и финансовых ресурсов равны нулю. Эти ресурсы используются полностью. Вместе с тем, величина неиспользованных ресурсов для сырья у 2 =26, значит, имеются излишки сырья.

    Рисунок 11.

    2 Отчет по устойчивости (рис. 12)состоит из двух таблиц.

    В таблице 1 приводятся следующие значения:

    Результат решения задачи (оптимальный план выпуска);

    - Нормир. стоимость , т.е. величины, показывающие, насколько изменится целевая функция при принудительном включении единицы продукции соответствующего типа в оптимальный план;

    Коэффициенты целевой функции;

    Предельные значения приращения коэффициентов целевой функции, при которых сохраняется оптимальный план выпуска.

    В таблице 2 содержатся аналогичные данные для ограничений:

    Величины использованных ресурсов;

    - Теневая цена , показывающая, как изменится целевая функция при изменении величины соответствующего ресурса на единицу;

    Допустимые значения приращений ресурсов, при которых сохраняется оптимальный план выпуска продукции.

    Рисунок 12.

    Отчет по устойчивости позволяет позволяет получить двойственные оценки.

    Как известно, двойственные переменные z i показывают, как изменится целевая функция при изменении ресурса i-го типа на единицу. В отчете Excel двойственная оценка называется Теневой ценой .

    В нашем примере сырье не используется полностью и его ресурс у 2 =26. Очевидно, что увеличение количества сырья, например, до 111 не повлечет за собой увеличения целевой функции. Следовательно, для второго ограничения двойственная переменная z 2 =0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка этого ограничения равна нулю.

    В рассматриваемом примере трудовые ресурсы и финансы использовались полностью, поэтому их дополнительные переменные равны нулю (у 1 =у 3 =0). Если ресурс используется полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции, и следовательно, на величину целевой функции. Двойственные оценки ограничений на трудовые и финансовые ресурсы отличны от нуля, т.е. z 1 =20, z 3 =10.

    Значения двойственных оценок находим в Отчете по устойчивости , в таблице 2, в графе Теневая цена .

    При увеличении (уменьшении) трудовых ресурсов на единицу целевая функция увеличится (уменьшится) на 20 единиц и будет равна

    F=1320+20×1=1340 (при увеличении).

    Аналогично, при увеличении объема финансов на единицу целевая функция будет

    F=1320+10×1=1330.

    Здесь же, в графах Допустимое увеличение и Допустимое уменьшение таблицы 2, показаны допустимые пределы изменения количества ресурсов j-го вида. Например, для при изменении приращения величины трудовых ресурсов в пределах от –6 до 3,55, как показано в таблице, структура оптимального решения сохраняется, т.е наибольшую прибыль обеспечивает выпуск Прод1 и Прод3, но в других количествах.

    Дополнительные двойственные переменные также отражены в Отчете по устойчивости в графе Нормир. стоимость таблицы 1.

    Если основные переменные не вошли в оптимальное решение, т.е. равны нулю (в примере х 2 =х 4 =0), то соответствующие им дополнительные переменные имеют положительные значения (v 2 =10, v 4 =20). Если же основные переменные вошли в оптимальное решение (х 1 =10, х 3 =6), то их дополнительные двойственные переменные равны нулю (v 1 =0, v 3 =0).

    Эти величины показывают, насколько уменьшится (поэтому знак минус в значениях переменных v 2 и v 4) целевая функция при принудительном выпуске единицы данной продукции. Следовательно, если мы захотим принудительно выпустить единицу продукции вида Прод3, то целевая функция уменьшится на 10 единиц и будет равна 1320 -10×1 =1310.

    Обозначим через Dс j изменение коэффициентов целевой функции в исходной модели (1). Эти коэффициенты определяют прибыль, получаемую при реализации единицы продукции j-го вида.

    В графах Допустимое увеличение и Допустимое Уменьшение таблицы 1 Отчета по устойчивости показаны пределы изменения Dс j , при которых сохраняется структура оптимального плана, т.е. будет выгодно по-прежнему выпускать продукцию вида Продj. Например, при изменении Dс 1 в пределах -12£ Dс 1 £ 40, как показано в отчете, по-прежнему будет выгодно выпускать продукцию вида Прод1. При этом значение целевой функции будет F=1320+x 1 ×Dс j =1320+10×Dс j .

    3 Отчет по пределам приведен на рис. 13. В нем показывается, в каких пределах могут изменяться значения x j , вошедшие в оптимальное решение, при сохранении структуры оптимального решения. Кроме этого, для каждого типа продукции приводятся значения целевой функции, получаемые при подстановке в оптимальное решение значения нижнего предела выпуска изделий соответствующего типа при неизменных значениях выпуска остальных типов. Например, если при оптимальном решении х 1 =10, х 2 =0, х 3 =6, х 4 =0 положить х 1 =0 (нижний предел) при неизменных х 2 , х 3 и х 4 , то значение целевой функции будет равно 60×0+70×0+120×6+130×0=720.

    Ввод условий задачи состоит из следующих основных шагов:

      Создание формы для ввода условий задачи.

      Ввод исходных данных.

      Ввод зависимостей из математической модели.

      Назначение целевой функции.

      ввод ограничений и граничных условий.

    Ход решения задачи:

    Форма для ввода условий задачи:

    Переменные

    Значение

    Коэффициент в целевой функции

    (формула)

    Ограничения

    Коэффициенты в ограничениях

    Правая часть ограничения

    Поочередно в представленную форму заносятся коэффициенты целевой функции, ограничений, их знаки, формулы описания целевой функции и ограничений, представленные в математической модели задачи.

    Для описания формулы целевой функции и ограничений используется диалоговое окно Мастер функций; категория функций – математические; функция СУММПРОИЗВ. (в диалоговом окне в массиве 1 указывается интервал ячеек значения переменной В3:С3, в массиве 2 – коэффициенты при этих переменных. В функции это интервал ячеек В4:С4, в ограничениях – В8:C8, В9:C9 и т.д.)

    Решение задачи осуществляется с использованием команд Сервис, Поиск решения…

    В диалоговом окне Поиск решения заполняем строки, указывая адреса ячеек:

    Целевая функция: Е4

    Равная: max (min)

    Изменяя ячейки: указывается месторасположения переменных (В3:C3)

    Ограничения: с использованием клавиши Добавить записываются адреса ячеек с указанием условий ограничений (например: D8>= F8 и т.д.). Обязательным является ввод ограничения целочисленного решения.

    Если при вводе задачи возникает необходимость в изменении или удалении внесенных ограничений или граничных условий, то это осуществляется с помощью команд Изменить.., Удалить.

    Для получения оптимального решения задачи линейного программирования в Поиске решения задействуется клавиша Параметры…:

    Максимальное время: 100 сек

    Предельное число итераций: 100

    Относительная погрешность 0,000001

    Допустимое отклонение: 5%

    Устанавливаем флажок Линейная модель, что обеспечивает применение симплекс-метода.

    В появившемся окне Поиск решения выполняем команду Выполнить.

    Решение найдено, результат оптимального решения приведен в исходной таблице.

    Решение задач линейного программирования в Excel

    Используя данные прямой двойственной задачи, решите ее в системе Excel, с помощью следующих таблиц

    Переменные

    Ограничения

    Вид ресурса

    Коэффициенты в ограничениях

    Левая часть ограничения (формула)

    Правая часть ограничения

    Требуется определить, в каком количестве надо выпустить продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены на рис. 1.

    Ресурс

    Прод1

    Прод2

    Прод3

    Прод4

    Знак

    Наличие

    Прибыль

    Трудовые

    Сырье

    Финансы

    Рисунок 1.

    Математическая модель задачи имеет вид:

    где x j – количество выпускаемой продукции j-го типа; F – функция цели; в левых частях выражений ограничений указаны величины потребного ресурса , а правые части показывают количество имеющегося ресурса .

    Ввод условий задачи

    Для решения задачи с помощью Excel следует создать форму для ввода исходных данных и ввести их. Форма ввода показана на рис. 2.

    В ячейку F6 введено выражение целевой функции как суммы произведений значений прибыли от выпуска единицы продукции каждого типа на количество выпускаемой продукции соответствующего типа. Для наглядности на рис. 3 представлена форма ввода исходных данных в режиме вывода формул.

    В ячейки F8:F10 введены левые части ограничений для ресурсов каждого вида.

    Рисунок 2.

    Рисунок 3.

    Решение задачи линейного программирования

    Для решения задач линейного программирования в Excel используется мощный инструмент, называемый Поиск решения . Обращение к Поиску решения осуществляется из меню Сервис , на экран выводится диалоговое окно Поиска решения (рис. 4).

    Рисунок 4.

    Ввод условий задачи для поиска ее решения состоит из следующих шагов:

    1 Назначить целевую функцию, для чего установить курсор в поле Установить целевую ячейку окна Поиск решения и щелкнуть в ячейке F6 в форме ввода;

    2 Включить переключатель значения целевой функции, т.е. указать ее Равной Максимальному значению ;

    3 Ввести адреса изменяемых переменных (x j): для этого установить курсор в поле Изменяя ячейки окна Поиск решения, а затем выделить диапазон ячеек B3:E3 в форме ввода;

    4 Нажать кнопку Добавить окна Поиск решения для ввода ограничений задачи линейного программирования; на экран выводится окно Добавление ограничения (рис. 5) :

    Ввести граничные условия для переменных x j (x j ³0), для этого в поле Ссылка на ячейку указать ячейку В3, соответствующую х 1 , выбрать из списка нужный знак (³), в поле Ограничение указать ячейку формы ввода, в которой хранится соответствующее значение граничного условия, (ячейка В4), нажать кнопку Добавить ; повторить описанные действия для переменных х 2 , х 3 и х 4 ;

    Ввести ограничения для каждого вида ресурса, для этого в поле Ссылка на ячейку окна Добавление ограничения указать ячейку F9 формы ввода, в которой содержится выражение левой части ограничения, наложенного на трудовые ресурсы, в полях Ограничение указать знак £ и адрес Н9 правой части ограничения, нажать кнопку Добавить ; аналогично ввести ограничения на остальные виды ресурсов;

    После ввода последнего ограничения вместо Добавить нажать ОК и возвратиться в окно Поиск решения.

    Рисунок 5.

    Решение задачи линейного программирования начинается с установки параметров поиска:

    В окне Поиск решения нажать кнопку Параметры , на экран выводится окно Параметры поиска решения (рис. 6);

    Установить флажок Линейная модель, что обеспечивает применение симплекс-метода;

    Указать предельное число итераций (по умолчанию – 100, что подходит для решения большинства задач);

    Установить флажок , если необходимо просмотреть все этапы поиска оптимального решения;

    Нажать ОК , возврат в окно Поиск решения .

    Рисунок 6.

    Для решения задачи нажать кнопку Выполнить в окне Поиск решения , на экране – окно Результаты поиска решения (рис. 7), в котором содержится сообщение Решение найдено. Все ограничения и условия оптимальности выполнены. Если условия задачи несовместны, то выводится сообщение Поиск не может найти подходящего решения . Если целевая функция не ограничена, то появляется сообщение Значения целевой ячейки не сходятся .

    Рисунок 7.

    Для рассматриваемого примера решение найдено и результат оптимального решения задачи выводится в форме ввода: значение целевой функции, соответствующее максимальной прибыли и равное 1320, указывается в ячейке F6 формы ввода, оптимальный план выпуска продукции х 1 =10, х 2 =0, х 3 =6, х 4 =0 указывается в ячейках В3:С3 формы ввода (рис. 8).

    Количество использованных для выпуска продукции ресурсов выводится в ячейки F9:F11: трудовых – 16, сырья – 84, финансов – 100.

    Рисунок 8.

    Если при установке параметров в окне Параметры поиска решения (рис. 6) был установлен флажок Показывать результаты итераций , то будут показаны последовательно все шаги поиска. На экран будет выводиться окно (рис. 9). При этом текущие значения переменных и функции цели будут показаны в форме ввода. Так, результаты первой итерации поиска решения исходной задачи представлены в форме ввода на рисунке 10 .

    Рисунок 9.

    Рисунок 10.

    Чтобы продолжить поиск решения, следует нажимать кнопку Продолжить в окне Текущее состояние поиска решения .

    Анализ оптимального решения

    Прежде чем, перейти к анализу результатов решения, представим исходную задачу в форме

    введя дополнительные переменные у i , представляющие собой величины неиспользованных ресурсов.

    Составим для исходной задачи двойственную задачу и введем дополнительные двойственные переменные v i .

    Анализ результатов поиска решения позволит увязать их с переменными исходной и двойственной задач.

    С помощью окна Результаты поиска решения можно вызвать отчеты трех типов, позволяющие анализировать найденное оптимальное решение:

    Результаты,

    Устойчивость,

    Пределы.

    Для вызова отчета в поле Тип отчета выделить название нужного типа и нажать ОК .

    1 Отчет по результатам (рис. 11) состоит из трех таблиц:

    Таблица 1 содержит сведения о целевой функции; в столбце Исходно указывается значение целевой функции до начала вычислений;

    Таблица 2 содержит значения искомых переменных x j , полученных в результате решения задачи (оптимальный план выпуска продукции);

    Таблица 3 показывает результаты оптимального решения для ограничений и для граничных условий.

    Для Ограничений в графе Формула приведены зависимости, которые были введены при задании ограничений в окне Поиск решения ; в графе Значение указаны величины использованного ресурса; в графе Разница показано количество неиспользованного ресурса. Если ресурс используется полностью, то в графе Состояние выводится сообщение связанное ; при неполном использовании ресурса в этой графе указывается не связан. Для Граничных условий приводятся аналогичные величины с той лишь разницей, что вместо неиспользованного ресурса показана разность между значением переменной x j в найденном оптимальном решении и заданным для нее граничным условием (x j ³0).

    Именно в графе Разница можно увидеть значения дополнительных переменных y i исходной задачи в формулировке (2). Здесь у 1 =у 3 =0, т.е. величины неиспользованных трудовых и финансовых ресурсов равны нулю. Эти ресурсы используются полностью. Вместе с тем, величина неиспользованных ресурсов для сырья у 2 =26, значит, имеются излишки сырья.

    Рисунок 11.

    2 Отчет по устойчивости (рис. 12)состоит из двух таблиц.

    В таблице 1 приводятся следующие значения:

    Результат решения задачи (оптимальный план выпуска);

    - Нормир. стоимость , т.е. величины, показывающие, насколько изменится целевая функция при принудительном включении единицы продукции соответствующего типа в оптимальный план;

    Коэффициенты целевой функции;

    Предельные значения приращения коэффициентов целевой функции, при которых сохраняется оптимальный план выпуска.

    В таблице 2 содержатся аналогичные данные для ограничений:

    Величины использованных ресурсов;

    - Теневая цена , показывающая, как изменится целевая функция при изменении величины соответствующего ресурса на единицу;

    Допустимые значения приращений ресурсов, при которых сохраняется оптимальный план выпуска продукции.

    Рисунок 12.

    Отчет по устойчивости позволяет позволяет получить двойственные оценки.

    Как известно, двойственные переменные z i показывают, как изменится целевая функция при изменении ресурса i-го типа на единицу. В отчете Excel двойственная оценка называется Теневой ценой .

    В нашем примере сырье не используется полностью и его ресурс у 2 =26. Очевидно, что увеличение количества сырья, например, до 111 не повлечет за собой увеличения целевой функции. Следовательно, для второго ограничения двойственная переменная z 2 =0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка этого ограничения равна нулю.

    В рассматриваемом примере трудовые ресурсы и финансы использовались полностью, поэтому их дополнительные переменные равны нулю (у 1 =у 3 =0). Если ресурс используется полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции, и следовательно, на величину целевой функции. Двойственные оценки ограничений на трудовые и финансовые ресурсы отличны от нуля, т.е. z 1 =20, z 3 =10.

    Значения двойственных оценок находим в Отчете по устойчивости , в таблице 2, в графе Теневая цена .

    При увеличении (уменьшении) трудовых ресурсов на единицу целевая функция увеличится (уменьшится) на 20 единиц и будет равна

    F=1320+20×1=1340 (при увеличении).

    Аналогично, при увеличении объема финансов на единицу целевая функция будет

    F=1320+10×1=1330.

    Здесь же, в графах Допустимое увеличение и Допустимое уменьшение таблицы 2, показаны допустимые пределы изменения количества ресурсов j-го вида. Например, для при изменении приращения величины трудовых ресурсов в пределах от –6 до 3,55, как показано в таблице, структура оптимального решения сохраняется, т.е наибольшую прибыль обеспечивает выпуск Прод1 и Прод3, но в других количествах.

    Дополнительные двойственные переменные также отражены в Отчете по устойчивости в графе Нормир. стоимость таблицы 1.

    Если основные переменные не вошли в оптимальное решение, т.е. равны нулю (в примере х 2 =х 4 =0), то соответствующие им дополнительные переменные имеют положительные значения (v 2 =10, v 4 =20). Если же основные переменные вошли в оптимальное решение (х 1 =10, х 3 =6), то их дополнительные двойственные переменные равны нулю (v 1 =0, v 3 =0).

    Эти величины показывают, насколько уменьшится (поэтому знак минус в значениях переменных v 2 и v 4) целевая функция при принудительном выпуске единицы данной продукции. Следовательно, если мы захотим принудительно выпустить единицу продукции вида Прод3, то целевая функция уменьшится на 10 единиц и будет равна 1320 -10×1 =1310.

    Обозначим через Dс j изменение коэффициентов целевой функции в исходной модели (1). Эти коэффициенты определяют прибыль, получаемую при реализации единицы продукции j-го вида.

    В графах Допустимое увеличение и Допустимое Уменьшение таблицы 1 Отчета по устойчивости показаны пределы изменения Dс j , при которых сохраняется структура оптимального плана, т.е. будет выгодно по-прежнему выпускать продукцию вида Продj. Например, при изменении Dс 1 в пределах -12£ Dс 1 £ 40, как показано в отчете, по-прежнему будет выгодно выпускать продукцию вида Прод1. При этом значение целевой функции будет F=1320+x 1 ×Dс j =1320+10×Dс j .

    3 Отчет по пределам приведен на рис. 13. В нем показывается, в каких пределах могут изменяться значения x j , вошедшие в оптимальное решение, при сохранении структуры оптимального решения. Кроме этого, для каждого типа продукции приводятся значения целевой функции, получаемые при подстановке в оптимальное решение значения нижнего предела выпуска изделий соответствующего типа при неизменных значениях выпуска остальных типов. Например, если при оптимальном решении х 1 =10, х 2 =0, х 3 =6, х 4 =0 положить х 1 =0 (нижний предел) при неизменных х 2 , х 3 и х 4 , то значение целевой функции будет равно 60×0+70×0+120×6+130×0=720.