Срок службы аккумуляторов для солнечной батареи. Сколько служат солнечные батареи и как продлить этот срок. Что происходит с батарей к концу срока службы

В сети набрел на диссертацию Зезина Дениса Анатольевича от 2014 года на тему

ДЕГРАДАЦИОННЫЕ ПРОЦЕССЫ В ТОНКОПЛЁНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ

Вашему вниманию представлена последняя глава, где оценена продолжительность жизненного цикла солнечной электростанции и некоторые выводы.

[...]Далее было проведено моделирование простой солнечной станции. При создании макета станции требовалось получить заданную мощность (от 1 до100МВт) при использовании типового модуля (60 монокристаллических пластин, спаянных в виде двух лент по 30 элементов), мощностью 150 Вт (15 В, 10 А). При этом максимальное напряжение по постоянному току не должно превышать 1кВ (использовались требования правил эксплуатации энергоустановок в Евросоюзе).

Для того чтобы удовлетворить этим требованиям, солнечные модули соединялись последовательно до получения максимально возможного напряжения, недостающая мощность вырабатывалась аналогичными цепочками модулей, соединёнными параллельно, за счёт вырабатываемого тока.

Безотказная работа модулей определяется надёжностью самих солнечные ячеек, а также паяных соединений, обеспечивающих электрический контакт между ячейками. При соединении модулей в цепочки необходимо использовать штекеры, поскольку внешние выводы, в отличие от паяных соединений, находятся в непосредственном контакте с окружающей средой. Кроме того, каждая такая цепочка снабжается инвертором, который необходим для преобразования постоянного тока в переменный. По этим причинам безотказная работа солнечной электростанции также зависит от надёжности штекеров и инверторов.

При расчётах надёжности предполагалось, что все необходимые электротехнические соединения и оборудование (паяные соединения, штекеры и инверторы) подчиняются экспоненциальному закону распределения. То есть, их отказы рассматривались только как внезапные, интенсивность которых не меняется со временем.

Средние время наработки на отказ для каждого элемента модели были выбраны близкими к реальным : паяное соединение - 105 [ч] (~10 лет), штекер и инвертор – 5*104 [ч] (~5 лет).

На рисунках представлены результаты моделирования. На этих графиках можно заметить, что благодаря большому количеству включённых параллельно цепочек модулей, вероятность безотказной работы солнечной электростанции, близкая к 100%, имеет место на более длительном промежутке времени. Затем наблюдается стремительное снижение вероятности безотказной работы, пропорциональное количеству элементов. Подобное поведение системы напоминает интегральные схемы с резервированием.

Вероятность безотказной работы стандартного модуля и солнечных электростанций

Вероятность безотказной работы солнечных электростанций разной мощности

Одна из особенностей солнечных электростанций – требование большого количества свободной площади. При этом возможности транспорта ограничивают размер одного фотоэлектрического модуля. Как следствие для постройки электростанции мощностью, например, в 100 МВт из стандартных модулей мощностью, скажем, 100 Вт необходимо сформировать миллион соединений. Кроме того, каждый солнечный модуль также состоит из 20-60 солнечных элементов, которые тоже необходимо соединить. Потребность современных солнечных электростанций в большом количестве соединений напоминает аналогичную потребность электроники при переходе от навесного монтажа к интегральным технологиям.

В качестве мер для повышения надёжности можно предложить использование «умных модулей» - устройств, которые по своему прямому назначению выполняют ту же функцию, что и солнечные модули, однако они снабжены дополнительной электроникой, которая обеспечивает закорачивание вышедших из строя элементов. Подобная система необходима, поскольку один вышедший из строя элемент отключает всю цепочку модулей. Безусловно, на крупных электростанциях большое количество параллельных соединений позволяет отсрочить момент выхода электростанции, но потери мощности будут накапливаться. Подобные системы сейчас только разрабатываются в разрезе обеспечения работы батареи в условиях частичного затенения (например ), поскольку плохо освещённая оказывается фактически не работающей. Подобные разработки могут оказаться полезными и для обеспечения надёжности солнечных батарей.

Перед установкой автономного энергоснабжения возникают обычно два вопроса: «Сколько прослужит система?» и «За какой период она окупится?». Ведь именно от ответов на эти вопросы и зависит целесообразность расходов на приобретение и монтаж автономного контура. Срок службы солнечных панелей различен. Он зависит прежде всего от типа самих панелей.

Сроки службы

Как показали практические испытания, ресурс гелиопанелей составляет не менее 20 лет. После определенного количества времени (15-20 лет, в зависимости от типа и особенностей фотоячеек) наблюдается некоторое снижение мощности, которое и продолжается в дальнейшем. Как правило, батареи на монокристаллах работают до 30 лет, на поликристаллах – 20-25 лет. Тонкопленочные батареи последних поколение также служат порядка 20 лет.

Стандартная гарантия для большинства производителей солнечных панелей варьируется в достаточно значительных пределах – от 10 до 25 лет. Связан такой разброс с особенностями самих фотоячеек, их типом (поли-, моно-), классом («A», «B», «C»), качеством защитного лицевого покрытия и т.д.

Производители гарантируют, что в течение этого срока мощность их продукции снизится не более, чем на 10%. Падение мощности на более значительную величину чревато критическим снижением выработки всей системы, поскольку для солнечных электростанций очень важен каждый ватт произведенной энергии. Батареи из аморфного кремния, как правило, теряют 10-40% мощности в первые сезоны, после чего их выработка «замирает» на этом уровне.

Что влияет на срок службы

Стандартный расчетный срок использования кристаллических солнечных панелей – 30 лет. Чтобы выяснить скорость реального старения элементов, проводятся целые серии разного рода тестов. Они показывают, что сами фотоячейки имеют очень большой ресурс, их деградация после нескольких десятилетий использования минимальна.
Падение же производительности солнечных батарей связано с тремя факторами:

  • разрушение герметизирующей модуль пленки;
  • замутнение пленочной прослойки между фотоячейками и защитным стеклом;
  • разрушение тыльной пленки солнечной батареи.

Для герметизации солнечных панелей (равно как и в качестве пленочной прослойки) применяется пленка EVA (ethylene vinyl acetate, так называемая «этиленвинилацетатная»). Тыльная же сторона панели обычно представляет собой поливинилфосфатную пленку.

Такая пленочная защита необходима для предохранения фотоячеек и паяных соединений панели от действий влаги. Под действием УФ-лучей солнечного спектра пленки постепенно разрушаются, они теряют свою эластичность и легче поддаются механическим воздействиям. Как следствие, ухудшается герметичность и влага начинает активнее просачиваться внутрь панели.

Кроме того, EVA-пленка между стеклом и фотоячейками теряет и свою оптическую прозрачность, что приводит к уменьшению поглощения солнечных лучей. А из-за микрокапель влаги паяные соединения постепенно начинают корродировать, что приводит к увеличению сопротивления контакта, его перегреву и последующему разрушению.

Как правило, производители гарантируют ухудшение работы своих солнечных батарей не более, чем на 20% за 25 лет. Однако это относится только к зарекомендовавшим себя фирмам, которые тщательно следят за качеством продукции. Менее добросовестные компании при сборке панелей экономят на всем, чтобы выставить как можно более низкую итоговую цену продукта.

Такая экономия приводит к тому, что для герметизации используются некачественные (или неподходящие для специфичных условий солнечных батарей) материалы. Как следствие, разрушение контактов может наблюдаться уже на следующий сезон, что приводит к резкому падению мощности (вплоть до 30-40%). Особенно часто подобное явление можно наблюдать на дешевых садовых светильниках с фотобатареями.

Дополнительные факторы

На срок службы влияет и качество самой EVA-пленки, равно как и защитного ламинирующего покрытия. Некачественное покрытие дает ощутимую усадку уже в первый же сезон. Это приводит к практически полной разгерметизации панели, резкому снижению КПД и выходу изделия из строя.

Еще один аспект – толщина соединительных проводников и токопроводящих шин. Она должна быть достаточной для пропускания токов именно той мощности, которая заявлена в паспорте солнечной панели. Причем толщина шины должна быть больше, чем у проводников, соединяющих между собой фотоячейки. Если шина будет слишком тонкой (что нередко встречается в дешевых панелях малоизвестных фирм), то в скором времени она выйдет из строя.

Также влияет на срок работы и качество паяных соединений. Плохо выполненная пайка разрушается очень быстро и без воздействия коррозии, так как такие контакты сами по себе сильно перегреваются. Поэтому надежность паяных соединений – непременное условие длительной работоспособности.

Период окупаемости

Сроки окупаемости солнечных панелей зависят от нескольких факторов:

  • Тип оборудования (поли- или моноячейки, одно- или многослойная структура солнечной батареи). От этого зависят первоначальные расходы, так как стоимость солнечных панелей разных типов варьируется довольно сильно.
  • Количество устанавливаемых панелей. Именно поэтому очень важно заранее провести точный расчет всей системы.
  • Географическая широта, точнее, величина инсоляции: чем больше солнца попадает на рабочую поверхность модуля, тем больше он вырабатывает энергии и тем быстрее «отбивает» затраты.
  • Расценки на энергоресурсы в регионе. От стоимости киловатт-часа электроэнергии будет зависеть разница в стоимости выработанной солнцем энергии и энергии, полученной из центральной электросети. Иными словами, насколько выгоднее вырабатывать «солнечное электричество».

В среднем для частного дома сроки окупаемости составляют 2,5-3,5 года в среднеевропейских странах и 1,5-2 года в южноевропейских. Для России этот показатель варьируется в средних пределах от 2-х до 5-ти лет. Однако нужно помнить, что с совершенствованием технологий изготовления повышается КПД (энерговыработка) панелей, а значит, постепенно снижается и срок окупаемости.

Срок службы солнечных панелей и их выработка зависит от многих факторов, среди которых климат, тип модуля и монтажной системы.

На солнечные панели даются две гарантии, два типа: 1) гарантия на продукт (от производственного брака), по-английски её называют product warranty и 2) гарантия на мощность (performance warranty).

Первый тип гарантии характерен для любого продукта/товара, который мы приобретаем. Это гарантия от поломки вследствие производственного брака. Для солнечных панелей он выше, чем стандартные сроки гарантии на многие другие товары. Обычный, наиболее распространённый срок гарантии от брака для солнечных модулей: 10-12 лет. Бывают исключения, например, американская SunPower дает 25-летнюю гарантию от поломок.

Наиболее распространенный срок performance warranty (гарантии на мощность) для солнечных панелей: 25 лет при сохранении 80% исходной мощности. Это не означает, что срок службы солнечной панели через 25 лет заканчивается. Нет, она может проработать и 40, и 50 лет, просто дальнейшая деградация модуля никак не описывается производителем и не связывается с какими-либо обязательствами с его стороны.

Иногда дают «ступенчатую» гарантию: 90% исходной мощности – первые 10 лет, 80% - еще пятнадцать. Более современной и распространённой сегодня является линейная гарантия. То есть гарантируется постепенная деградация оборудования (см. фото):

Долговечность – важный фактор экономики солнечной энергетики.

Чем дольше работает солнечная панель, тем больше электроэнергии она выработает за срок своей службы, тем дешевле получится каждый произведенный ей киловатт-час.

Поэтому производители стремятся увеличить срок службы модулей, и сегодня все чаще появляются примеры 30-летних гарантий на мощность.

Например, журнал PV-Europe сообщает, что немецкая компания Solarwatt дает на свои модули гарантию 30 лет с сохранением 87,5% исходной мощности. Более того, производственная гарантия расширена также на 30 лет (уникальный пример).

Если 30 лет для солнечных панелей станет стандартом, это повлечет влечет за собой корректировки в калькуляции стоимости производства энергии (LCOE). Сегодня для расчетов, как правило, берется срок службы объекта в 20 или 25 лет. Если 25 поменять на 30 лет, это приводит к снижению LCOE для объекта солнечной генерации на несколько процентов (до 10%).

Недавно американская лаборатория возобновляемых источников энергии NREL (подразделение министерства энергетики США) опубликовала любопытную информацию.

Срок службы солнечных панелей и их выработка зависит от многих факторов, среди которых климат, тип модуля и монтажной системы. Снижение выработки солнечного модуля с течением времени называется деградацией.

В соответствии с исследованием NREL, коэффициент деградации солнечных панелей равен 0,5% в год в среднем (медианное значение), но скорость деградации может быть выше в жарком климате и в кровельных системах. Степень деградации 0,5% означает, что выработка солнечной батареи будет снижаться со скоростью 0,5% в год. То есть на 20-й год службы модуль будет производить около 90% электроэнергии, произведенной в первый год.

На картинке представлен результат исследования в графическом виде.

Что касается полного срока службы, то соответствующих данных попросту нет. Нельзя с точностью сказать, сколько прослужит солнечная панель. Вон, в Швейцарии, например, 35 лет уже работает солнечная электростанция. Производители дают гарантию на сохранение какой-то доли номинальной мощности (performance warranty) на 20-30 лет, а после этого панели вырабатывают электроэнергию уже без всякой гарантии. опубликовано Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника - от 5 до 20 лет.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Наиболее богатым опытом эксплуатации обладают кристаллические модули. Их начали устанавливать еще 50-х годах прошлого века, а массовое использование началось в конце 1970-х. Поэтому именно о долговечности таких модулей уже можно делать какие-то выводы.

Расчетный срок службы кристаллических модулей обычно 30 лет. Производители делают ускоренные тесты по эксплуатации модуля для того, чтобы оценить его реальный срок службы. Сами солнечные элементы, используемые в солнечных модулях, имеют практически неограниченный срок службы и показывают отсутствие деградации по прошествии десятков лет эксплуатации. Однако, выработка модулей со временем падает. Это результат 2 основных факторов - постепенное разрушение пленки, используемой для герметизации модуля (обычно используется этиленвинилацетатная пленка - ethylene vinyl acetate; EVA) и разрушение задней поверхности модуля (обычно поливинилфосфатная пленка), а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.

Герметик модуля защищает солнечные элементы и внутренние электрические соединения от воздействия влаги. Так как практически невозможно полностью защитить элементы от влаги, модули на самом деле "дышат", но это крайне трудно заметить. Влага, попавшая внутрь, выводится наружу днем, когда температура модуля возрастает. Солнечный свет постепенно разрушает герметизирующие элементы за счет ультрафиолетового излучения, и они становятся менее эластичными и более податливыми на механические воздействия. Со временем, это приводит к ухудшению защиты модуля от влаги. Влага, попавшая внутрь модуля, ведет к коррозии электрических соединений, увеличению сопротивления в месте коррозии, перегреву и разрушению контакта или к уменьшению выходного напряжения модуля.

Что влияет на КПД и эффективность работы солнечных батарей?

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей. Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком. Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации. В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей.

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи. Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно. Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.


Теперь непосредственно о самом КПД. Эта величина вычисляется делением мощности электроэнергии на мощность солнечной энергии, попадающей на панель. У современных солнечных батарей эта величина лежит в интервале 12─25 процентов (на практике не выше 15%). Теоретически можно поднять КПД до 80─85 процентов. Такая разница существует из-за материалов для изготовления панелей. В основе лежит кремний, который не поглощает ультрафиолет, а лишь инфракрасный спектр. Получается, что энергия ультрафиолетового излучения уходит впустую.

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии. Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов. Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.



Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность. В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца. Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.



Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.


А срок окупаемости существенно меньше, чем срок службы. Но многих останавливает первоначальная стоимость батарей. Вкупе с низким КПД у многих людей это вызывает сомнения в выгодности приобретения гелиосистем. Поэтому решение здесь нужно принимать с учётом погоды и климата в вашем регионе, условий использования и т. п.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.


Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.