Связь со спутником. Спутниковая связь. Спутниковые системы связи

Наболевшие проблемы решаемы цепочкой космических станций периодом обращения 24 часа, оккупировавших высоту 42000 км относительно центра Земли… в плоскости экватора.

А. Кларк, 1945 год.

В каменном веке связная сеть работает путём многократного повторения действий по регулированию объёма испускаемого костром дыма. Земля знала скороходов, лучшим стал Маленький Мук. Современная система использует космические летательные аппараты. Плюсом спутника назовём большое покрытие территории. Волны используют преимущественно короткие, способные распространяться по прямой. Мир один – везде свои цены…

Предпосылки использования

Идею ретрансляции зародил Эмиль Гуарини-Форезио в 1899 году. Концепцию опосредованной передачи сигнала опубликовал немецкий Журнал для электротехника (том 16, 35-36). Артур Кларк в 1945 году озвучил концепцию системы связи меж геостационарными космическими аппаратами. Писатель отказался брать патент, отнекиваясь двумя умозаключениями:

  1. Малая вероятность осуществления задумки.
  2. Необходимость подарить идею человечеству целиком.

Одновременно учёный указал координаты наилучшего покрытия областей поверхности планеты:

  • 30 градусов в.д. – Африка, Европа.
  • 150 градусов в.д. – Китай, Океания.
  • 90 градусов з.д. – Америка.

Писатель занизил рабочую частоту, высказав намерение применить 3 МГц, уменьшив гипотетические рефлекторы (несколько футов).

Наземные системы СВЧ

Англо-французский консорциум, возглавляемый Андре Клавиром, пошёл дальше. Первые успешные попытки использования диапазона СВЧ связью датированы 1931 годом. Английский Канал продемонстрировал передачу информации частотой 1,7 ГГц (современный сотовый диапазон) на 64 километра станциями, оснащёнными тарелками диаметром 3 метра, соединяя Дувр и Кале.

Интересно! Первый коммерческий телевизионный канал УКВ использовал частоту 300 МГц.

Историки склонны считать Вторую мировую войну лошадкой, вывезшей отрасль на вершину. Изобретение клистрона, усовершенствование технологий изготовления параболоидов внесли неоценимый вклад. Расцвет трансатлантических отношений датируется 50-ми годами XX века.

Для справки! Первая релейная линия, образованная восемью ретрансляторами, Нью-Йорк – Бостон, построена в 1947 году.

Америка и Европа наладили передачу информации ретрансляторами (радиосвязь, называемая релейной). Немедля началось коммерческое телевещание. Особенностью СВЧ связи называют возможность точного предсказания результата уже на этапе проектирования системы.

Для справки! Релейная связь – технология передачи цифровых, аналоговых сигналов меж приёмниками, находящимися в поле видимости.

Космические аппараты

Первый советский спутник (1957 год) нёс связную аппаратуру. Тремя годами позже американцы подняли на высоту 1500 км надувной шар, служивший пассивным ретранслятором, благодаря металлизированному покрытию сферы. 20 августа 1964 года 11 стран, включая СССР, подписали договор о создании Intelsat (международная связь). Советский блок шёл путём секретности, пока запад зарабатывал. Восточный блок создал собственную программу в 1971 году.

Спутники явились настоящей находкой, позволяя соединить противоположные берега океана. Альтернативой выступает оптическое волокно.

Первыми тёмную лошадку запустили военные наравне с тропосферной связью, использовавшей эффект отражения волны верхними слоями. Советскую микроволновую связь перехватывала небесная группа Риолит. Система, разработанная для ЦРУ (США). Аппарат занимал позицию, захватываемую наземным лучом советской релейной связи, записывая послания. Контролировались территории Китая, Восточной Европы. Диаметр зонтоподобных рефлекторов достигал 20 метров.

Руководство США всегда знало намерения руководителей СССР, прослушивая все, вплоть до телефонных звонков. Сегодня спутниковые системы позволяют, благодаря эффекту Допплера, дистанционно посещать любые «конфиденциальные» беседы, проводимые в помещениях, снабжённых типичным оконным стеклопакетом.

Зарегистрированы первые попытки осуществить идеи Николы Тесла в космосе: беспроводная передача электроэнергии спутниковыми антеннами. Эпопея стартовала в 1975 году. Ныне концепция вернулась домой. Башня Ворденклифф давно разрушена, однако главный остров Гавайи получил свою порцию 20 Вт беспроводным путём.

Для справки! Использование космической связи оказалось экономически оправданной альтернативой оптического волокна.

Особенности сигнала

Неудивительно использование спутников, учитывая сказанное.

Окна прозрачности

Явление поглощения атмосферой волн известно давно. Учёные, исследовав феномен, заключили:

  • Затухание сигнала определено частотой.
  • Наблюдаются окна прозрачности.
  • Явление модулируется погодными условиями.

Например, миллиметровый диапазон (30-100 ГГц) сильно угнетается дождём. Окрестности частоты 60 ГГц поглощают молекулы кислорода, 22 ГГц – водой. Частоты ниже 1 ГГц отсекаются излучениями галактики. Негативное влияние оказывают температурные шумы атмосферы.

Сказанное объясняет выбор современных частот космической связи. Полный перечень характеристик сигнала Ku-диапазона демонстрирует рисунок.

Используется также С-диапазон.

Зоны приёма

Луч, пересекая поверхность Земного шара, формирует изотропные кривые эквивалентного приёма. Суммарные потери составляют:

  1. 200 дБ – С-диапазон.
  2. 206 дБ – Ku-диапазон.

Солнечные помехи способны помешать ловле пакетов. Наихудшие условия длительностью 5-6 дней создаются межсезоньем (зима, осень). Интерференция светила снабжает техников наземных станций гарантированной работой. На время природного явления отключают системы слежения. Иначе тарелки могут поймать Солнце, отдав неправильные команды бортовым системам стабилизации. Банки, аэропорты получают предупреждение: связь временно нарушится.

Зоны Френеля

Препятствия вокруг вышки связи провоцируют сложение волн, формируя зоны затухания/подъёма сигнала. Феномен объясняет необходимость наличия чистого пространства близ приёмопередатчика. К счастью, СВЧ лишены указанного недостатка. Благодаря важной особенности, каждый дачник ловит НТВ+ тарелкой.

Мерцания

Непредсказуемые изменения атмосферы заставляют сигнал постоянно меняться. Колебания до 12 дБ амплитудой затрагивают полосу шириной 500 МГц. Явление длится 2-3 часа максимум. Мерцания мешают наземным станциям отслеживать спутник, требуя принятия превентивных мер.

Линейность луча

Особенностью СВЧ считают прямолинейную траекторию луча. Явление позволяет сконцентрировать мощность, понижая требования к бортовым системам. Наверняка первоначальной задачей стал шпионаж. Позже антенны перестали быть узконаправленными, покрывая громадные территории, как например, Россия.

Инженеры называют свойство недостатком: невозможно обогнуть горы, овраги.

Особенности сложения волн

Практически отсутствует интерференционная картина. Позволительно значительно уплотнить соседние частотные каналы.

Ёмкость

Теорема Котельникова определяет верхнюю границу спектра передаваемого сигнала. Порог напрямую задан частотой несущей. СВЧ, благодаря высоким значениям, вмещают до 30 раз больше информации, нежели УКВ.

Возможность регенерации

Развитие цифровых технологий открыло дорогу методикам коррекции ошибок. Искусственный спутник:

  • принимал слабый сигнал;
  • декодировал;
  • исправлял ошибки;
  • кодировал;
  • передавал дальше.

Превосходное качество спутниковой связи стало «притчей во языцах».

Наземные антенны

Спутниковые тарелки называют параболоидами. Диаметр достигает 4 метра. Помимо указанных доступны 2 вида антенн релейной связи (оба наземные):

  1. Диэлектрические линзы.
  2. Рупорные антенны.

Параболоиды обеспечивают высокую избирательность, позволяя установить связь, преодолевшему тысячи километров лучу. Типичная тарелка неспособна передать сигнал, требуются более высокие характеристики.

Принцип действия

Спутники шпионы постоянно двигались, обеспечивая относительную неуязвимость и скрытность наблюдения. Использование мирных технологий пошло иным путём. Реализована концепция Кларка:

  • Экваториальная орбита служит пристанищем сотен геостационарных спутников.
  • Непоколебимость положения обеспечивает простоту наведения наземного оборудования.
  • Высота орбиты (35786 метров) фиксированная, поскольку необходимо уравновесить силой центробежной земное тяготение.

Аппарат покрывает часть территории планеты.

Система Intelsat сформирована 19-ю спутниками, сгруппированными по четырём регионам. Абонент видит 2-4 одновременно.

Время жизни системы составляет 10-15 лет, затем отживающее срок оборудование меняют. Гравитационные эффекты планет, Солнца выявляют потребность использовать системы стабилизации. Процесс коррекций заметно снижает топливный ресурс аппаратов. Комплекс Intelsat допускает отклонения положения до 3-х градусов, продляя жизнь орбитального роя (свыше трёх лет).

Частоты

Окно прозрачности ограничено диапазоном 2-10 ГГц. Intelsat использует область 4-6 ГГц (С-диапазон). Повышение загрузки вызвало переход части трафика на Ku-диапазон (14, 11, 12 ГГц). Рабочий участок раздают порциями транспондерам. Земной сигнал принимается, усиливается, излучается назад.

Проблемы

  1. Дороговизна запуска. Преодоление 35 тысяч километров отнимает немало ресурсов.
  2. Задержка распространения сигнала превышает четверть секунды (достигая 1 с).
  3. Малый угол наклона линии визирования искусственного летательного аппарата повышает энергетические затраты.
  4. Площадь приёма покрыта неэффективно. Гигантские пространства лишены абонентов. КПД вещания чрезвычайно низок.
  5. Окна прозрачности узкие, наземные станции приходится разносить территориально, менять поляризацию.

Пути решения

Частично недостатки устраняет внедрение наклонной орбиты. Спутник перестаёт быть геостационарным (см. выше спутники-шпионы времён Холодной войны). Необходимо минимум три равноудалённых аппарата, чтобы обеспечить связь круглосуточно.

Полярная орбита

Полярная орбита одна способна покрыть поверхность. Однако потребуется несколько периодов обращения космического аппарата. Рой спутников, разнесённых по углу, способен решить задачу. Полярные орбиты обошли стороной коммерческое вещание, став верным помощником систем:

  • навигации;
  • метеорологии;
  • наземных станций управления.

Наклонная орбита

Наклон успешно использовался советскими спутниками. Орбита характеризуется следующими параметрами:

  • период обращения – 12 часов;
  • наклон – 63 градуса.

Видимые 8/12 часов три спутника обеспечивают связь полярным регионам, недоступным с экватора.

Спутниковый телефон

Мобильный гаджет напрямую ловит космос, минуя наземные вышки. Первый Inmarsat 1982 года обеспечивал доступ морякам. Семью годами позже создан наземный вид. Канада первой осознала преимущества оборудования пустынных территорий с редкими жителями. Вслед программу освоили США.

Проблему решает запуск низко летающих спутников:

  1. Период обращения – 70..100 минут.
  2. Высота 640..1120 км.
  3. Зона покрытия – круг радиусом 2800 км.

Учитывая физические параметры, длительность индивидуального сеанса связи охватывает диапазон 4-15 минут. Поддержание работоспособности требует известных усилий. Пара коммерсантов США в 90-е обанкротились, не сумев набрать достаточно абонентов.

Массо-габаритные характеристики непрерывно улучшаются. Globalstar предлагает фирменное ПО смартфона, посредством Bluetooth ловящего сигнал сравнительно громоздкого приёмника спутников.

Спутниковым телефонам требуется мощная приёмная антенна, желательно зафиксированная. Оборудуют преимущественно здания, транспорт.

Операторы

  1. ACeS охватывает одним-единственным спутником Азию.
  2. Inmarsat старейший оператор (1979 год). Оборудует яхты, корабли. Обладая 11 летательными аппаратами, компания медленно осваивает рынок мобильных устройств, заручившись помощью ACeS.
  3. Thuraya обслуживает Азию, Австралию, Европу, Африку, Средний восток.
  4. MSAT/SkyTerra американский провайдер, использующей оборудование эквивалентное Inmarsat.
  5. Terrestar покрывает Северную Америку.
  6. IDO Global Communications на стадии бездействия.

Сети

Коммерческие проекты ограниченны.

GlobalStar

GlobalStar – совместное детище Qualcomm и Loral Corporation, позже поддержанное Alcatel, Vodafone, Hyundai, AirTouch, Deutsche Aerospace. Запуск 12 спутников был сорван, первый звонок состоялся 1 ноября 1998 года. Начальная стоимость (февраль 2000 года) составила 1,79 доллар/мин. Претерпев ряд банкротств и преобразований, компания обеспечивает клиентов 120 стран.

Обеспечивает 50% трафика США (свыше 10000 вызовов). Работоспособность поддерживают наземные репитеры. Всего 40, включая 7, вмещаемых Северной Америкой. Территории, лишённые наземных репитеров, образуют зону молчания (Южная Азия, Африка). Хотя аппараты регулярно бороздят небесную высь.

Абоненты получают американские телефонные номера, исключая Бразилию, где присваивают код +8818.

Список услуг:

  • Голосовые вызовы.
  • Системы определения местоположения с погрешностью 30 км.
  • 9,6 кбит/с пакетный доступ в интернет.
  • Мобильная связь CSD GSM.
  • Роуминг.

Телефоны используют технологии Qualcomm CDMA, исключая Ericsson и Telit, принимающие традиционные SIM-карты. Базовые станции вынуждены поддерживать оба стандарта.

Iridium

Провайдер использует полярную орбиту, обеспечивая 100% покрытие планеты. Организаторы потерпели банкротство, компания возрождена в 2001 году.

Это интересно! Iridium – виновник ночных небесных вспышек. Летящие спутники хорошо видны невооружённым глазом.

Флотилия компании включает 66 спутников, используя 6 низкоорбитальных траекторий высотой 780 км. Аппараты общаются, задействовав Ka-диапазон. Львиная доля запущена бывшими банкротами. На январь 2017 обновлено 7 единиц. Регенерация продолжается: первая группа (10 штук) улетела 14 января, вторая – 25 июня, третья – 9 октября.

Это интересно! Спутник Iridium 33 10 февраля 2009 года протаранил русский Космос 2251. Небесные обломки сегодня летают над Сибирью.

Компания продолжает оказывать услуги 850 тысячам абонентов. 23% прибыли выплачено государством. Стоимость звонка составляет 0,75 – 1,5 доллара/мин. Обратные вызовы сравнительно дороги – 4 доллара/мин (Google Voice). Типичные сферы деятельности нанимателей:

  1. Нефтедобыча.
  2. Морской флот.
  3. Авиация.
  4. Путешественники.
  5. Учёные.

Особую благодарность просили передать обитатели южной полярной станции Амундсена-Скотта. Компания повсеместно продаёт пакеты вызовов длительностью 50-5000 минут. Валидность первых оставляет желать лучшего, дорогие (5000 минут = 4000 долларов) сохраняют работоспособность 2 года. Месячно продление – 45 долларов:

  • 75 минут стоят 175 долларов, срок использования – 1 месяц.
  • 500 минут – 600-700 долларов, срок использования – 1 год.

Телефоны

Бывшие владельцы снабжали клиентов телефонными аппаратами двух изготовителей:

Моторола 9500 стал соратником первой коммерческой пробы компании. Бытующая поныне мобильная ударопрочная версия 9575 рождена 2011 годом, дополнена экстренной кнопкой вызова GSM, интерфейсом продвинутого определения местоположения. Аппарат настраивает Wi-Fi хот-спот, позволяя пользователям рядовых смартфонов посылать электронные письма, СМС, посещать интернет.

Техника Kyocera заброшена производителем. Модели распродают перекупщики. KI-G100 на базе GSM-телефона частоты 900 МГц снабжён чемоданчиком, оснащённым мощной антенной, ловящей вещание. Возможность приёма СМС обеспечена, отравлять могут лишь отдельные модели (9522). SS-66K снабжён нетипичной шаровой антенной.

  1. 9575 ударопрочный, водонепроницаемый телефон, снабжённый пылезащитным корпусом. Выдерживает температуры минус 20 – плюс 50 градусов Цельсия.
  2. 9555 – снабжён встроенной гарнитурой, USB-интерфейсом, переходником на последовательный порт RS-232.
  3. 9505А – здоровенный гаджет формы кирпича. Снабжён родным интерфейсом RS-232.
  4. SS-55K выпущен ограниченной партией. Неимоверных размеров, продаётся перекупщиками eBay.

Прочее оборудование компании включало:

  1. Пейджеры.
  2. Таксофоны.
  3. Оснастку яхт, самолётов.

Буи

Плавучие бакены, напоминающие систему отслеживание цунами, способны вести приём/передачу коротких сообщений. Интерфейс позволит использовать функционал фирменного телефона, отказывающегося ловить спутники.

На нашем сайте каждый желающий имеет возможность смотреть в прямом эфире онлайн трансляцию с МКС (Международной космической станции) абсолютно бесплатно. Высококачественная веб-камера позволяет насладиться удивительной красотой планеты Земля в формате HD, которая уже на протяжении многих лет транслирует видео с орбиты в режиме реального времени.

Съемка ведется с борта МКС, которая находится постоянно в движении, осуществляя полет по орбите. Сотрудники NASA, находящиеся на борту совместно с представителями космической индустрии других стран, ежедневно ведут наблюдение из иллюминатора, изучая особенности космоса.

МКС – искусственный спутник Земли, осуществляющий время от времени стыковку с другими космическими аппаратами и станциями для передачи материалов исследований и замены персонала. С помощью веб-камеры НАСА можно увидеть удивительные космические пейзажи в космосе именно в эту минуту.

Вид на Землю из космоса в реальном времени

Каждый день на нашей планете происходят различные события природного характера, поэтому с МКС в режиме онлайн можно увидеть: удары молнии и ураганы, северное сияние, процесс возникновения цунами и его передвижение, удивительные ночные пейзажи больших мегаполисов, закат и восход Солнца, выброс лавы вулканами, падение небесных тел. Кроме того, можно наблюдать завораживающую картину работы космонавтов в открытом космосе, ощутить через экран те необыкновенные эмоции, которые испытывают они. Почти каждый из нас в детстве мечтал стать космонавтом, однако жизнь преподнесла нам иной путь. Возможно, именно поэтому для всех жителей Земли создали возможность исполнить свою маленькую мечту через интернет – путешествовать онлайн вместе с Международной космической станцией по орбите.

Запущенные в космос спутники связи, как правило, поступают на геостационарные орбиты, то есть они летают со скоростью вращения Земли и оказываются в неизменном положении по отношению к поверхности планеты. Циркулируя на высоте 22 300 миль над экватором, один такой спутник может принимать радиосигналы с одной трети планеты.

Первоначальные спутники, такие как Эхо, запущенный на орбиту в 1960 году, просто отражали направленные на них радиосигналы. Усовершенствованные модели не только принимают сигналы, но и усиливают их и передают в указанные точки земной поверхности. Со времен запуска первого коммерческого спутника связи INTELSAT в 1965 году эти устройства значительно усложнились. Последняя модель спутника, работающего на солнечной энергии, оперирует с 30 000 телефонными звонками или обслуживает четыре телевизионные передачи одновременно. Сигналы поступают с антенн станции связи Земля-ЛА и принимаются транспондером спутника. Этот электронный прибор усиливает сигнал и переключает его на антенну, которая передает его на ближайшую станцию связи ЛА-Земля. С целью избежать интерференции, идущие вверх и вниз сигналы передаются на различных частотах.

Запущенные на геостационарные орбиты, три спутника INTELSAT (слева) осуществляют передачу длинноволновых радиосигналов по всему миру. Обслуживая регионы бассейнов Тихого, Индийского и Атлантического океанов, спутники делают возможной высокоскоростную телефонную, телевизионную и телеграфную связь. В этом отношении проигрывают радиосигналы высоких частот, поскольку они отталкиваются от заряженных частиц, составляющих слои Е и F атмосферы.

Эта параболическая антенна может принимать даже очень слабые сигналы со спутника, большинство подобных систем могут так же служить для связи Земля-ЛА.

INTELSAT-6

Радиосигналы, поступающие к спутнику, на длительном пути постепенно слабеют до такого уровня, что едва ли могут быть переданы обратно на Землю. Спутники типа INTELSAT, модель которого приводится вверху, усиливают поступающие сигналы, используя энергию солнечных батарей. Каждый спутник также имеет запас твердого горючего, позволяющего ему придерживаться своей орбиты.

На рисунке сверху статьи:

  1. элемент солнечной батареи электропитания
  2. параболические рефлекторы
  3. параболические рефлекторы
  4. параболические рефлекторы
  5. параболические рефлекторы

Как и наземные антенны, эта спутниковая антенна состоит из зубовидного устройства, называемого первичным эмиттером, и рефлектирующего параболического щита. Два элемента этой системы обеспечивают принятие поступающих радиоволн и уничтожение чужеродных волн.

Станции, расположенные на поверхности планеты, взаимодействуют с INTELSAT через огромные, в 30 футов шириной параболические антенны, подобные той, что показана на илл. сверху.

СПУТНИКОВАЯ СВЯЗЬ

На прошедшем салоне МАКС-2001 за громом показательных полетов российских пилотов спутниковые проекты привлекали внимание только ограниченного круга посетителей. Тем не менее сегодня это передовой край прикладных исследований в области новых технологий при создании противоракетной обороны (ПРО), нанотехнологий и микроспутников. При этом если ПРО и нанотехнологии - область деятельности ведущих фирм в развитых странах, то создание микроспутников - доступный способ выхода в космос для всех стран, стремящихся не отстать от передовых государств.

Система связи спутника "Рубин-2"

Создание новых глобальных спутниковых систем типа Iridium и Globalstar привело к освоению производства спутников большими сериями. Сегодня в космосе развернуты системы связи, в которых число спутников измеряется десятками. Техника производства и запуска спутников все более совершенствуется. На 2007 г. NASA планирует запуск сразу 98 спутников с помощью одной ракеты. Этот эксперимент поможет разрешению ключевой задачи физики магнитосферы - построению количественной схемы развития магнитосферной суббури. Детали этой программы можно найти на сайте stp.gsfc. nasa.gov/magcom.htm.

Важнейшими при запуске микроспутников являются вопросы управления и связи, вернее, передачи данных (телеметрии) c борта космических аппаратов. Если для спутников на круговых, полярных орбитах высотой до 1000 км можно обойтись простыми средствами, то с удалением спутников на расстояния в несколько тысяч километров связь становится ключевой проблемой. Для микроспутника массой 10-20 кг и мощностью энергетической установки не более 15-20 Вт обеспечение устойчивой связи простыми средствами представляется весьма трудной задачей. И тут вполне подходят приемы и опыт организации наземной сотовой связи в комбинации с системами спутниковой связи. Очевидный шаг в этом направлении - использование систем Globalstar и Orbcomm для связи с микроспутниками. Именно такие “связные” эксперименты заложены в программу по микроспутникам, выполняемую ведущими американскими университетами на деньги ВВС США (см. www.nanosat.usu.edu).

На МАКС-2001 один из таких микроспутников “Рубин-2” представила фирма OHB-Systems (www.fuchs-gruppe.com/ohb-systems), входящая в Fuchs Gruppe и занимающаяся космическими аппаратами около 10 лет. Первым итогом ее деятельности стал малый спутник “Сапфир”. “Рубин-2” является результатом продолжения этих работ и нацелен на выполнение целой серии технологических и связных экспериментов. Программа создания микроспутника “Рубин-2” имеет интересные показатели: от момента начала разработки до запуска - 10 месяцев, масса спутника - всего 30 кг, предполагается запуск с помощью конверсионной ракеты “Днепр” вместе с другими микроспутниками. Спутник имеет трехосную ориентацию, которая включает магнитную кольцевую систему и шесть солнечных датчиков. В кооперации с итальянской фирмой Carlo Gavazzi (www.carlogavazzi.com) на спутнике будут установлены солнечные батареи нового типа, электрический микродвигатель, GPS-приемник, новые литиево-ионные батареи, лазерное зеркало.

В качестве основной схемы связи для микроспутника “Рубин-2” выбрана система Orbcomm. Она позволяет решить сразу две задачи - обеспечить глобальную связь с микроспутником и избавиться от необходимости создавать свою наземную инфраструктуру контроля и управления спутником. Экономическая выгода такого подхода очевидна, а использование Интернета гарантирует надежность исполнения управляющих команд. В дополнение к терминалу Orbcomm на спутнике имеется система пакетной связи Safir-m, которая уже была испытана на предыдущих микроспутниках, изготовленных и запущенных компанией OHB-Systems несколько лет тому назад. На рисунке представлена схема связных экспериментов на микроспутнике “Рубин-2”. Основной канал управления работает через систему Orbcomm, сброс служебной информации осуществляется через пакетный канал со скоростью 9600 бит/с.

В заключение следует отметить, что фирма OHB-Systems самым тесным образом связана с российскими организациями, ведущими эксперименты в космосе. В предыдущие годы фирма выполнила ряд совместных экспериментов с ОКБ МЭИ, у нее есть свой офис в Москве. В планах всех космических организаций число разработок микроспутников увеличивается. Это в полной мере относится как к Германии, так и к России, и логично ожидать, что скоро появятся совместные работы в этом направлении. Посмотрим, что будет представлено на МАКС-2003.