Ток и напряжение в катушке индуктивности. Реальная катушка в цепи переменного тока

Катушки индуктивности позволяют запасать электрическую энергию в магнитном поле. Типичными областями их применения являются сглаживающие фильтры и различные селективные цепи.

Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Ниже приведены основные факторы, которые следует учитывать при выборе катушки индуктивности:

а) требуемое значение индуктивности (Гн, мГн, мкГн, нГн),

б) максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности,

в) точность выполнения индуктивности,

г) температурный коэффициент индуктивности,

д) стабильность, определяемая зависимостью индуктивности от внешних факторов,

е) активное сопротивление провода обмотки,

ж) добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений,

з) частотный диапазон катушки.

В настоящее время выпускаются радиочастотные катушки индуктивности на фиксированые значения частоты с индуктивностями от 1 мкГн до 10 мГн. Для подстройки резонансных контуров желательно иметь катушки с регулируемой индуктивностью.

Однослойные с незамкнутым магнитопроводом катушки индуктивности применяются в цепях настройки приборов.

Многослойные с не замкнутым магнитопроводом катушки используются в фильтрах и высокочастотных трансформаторах. Многослойные катушки индуктивности броневого типа с сердечником из феррита применяются в фильтрах низких и средних частот и трансформаторах, а аналогичные катушки, но со стальным сердечником используются в сглаживающих дросселях и низкочастотных фильтрах.

Формулы для расчета катушки индуктивности

Основные аппроксимирующие соотношения, используемые при проектировании катушек индуктивности, имеют следующий вид.

1. Параметры однослойных катушек индуктивности у которых отношение длины к диаметру больше 5, определяются в виде

где L - индуктивность, мкГн, М- число витков, d - диаметр катушки, см, l - длина намотки, см.

2. Параметры многослойных катушек индуктивности, у которых отношение диаметра к длине больше 1, определяются в виде

где L - индуктивность, мкГн, N - число витков, d м - средний диаметр обмотки, см, d - толщина обмотки, см.

Одно- и многослойные катушки с незамкнутым ферритовым магнитопроводом будут иметь индуктивность в 1,5 - 3 раза больше в зависимости от свойств и конфигурации сердечника. Латунный сердечник, вставленный вместо ферритового. уменьшит индуктивность до 60-90% по сравнению с ее значением без сердечника.

Для сокращения числа витков при сохранении той же индуктивности можно использовать ферритовый сердечник.

При изготовлении катушек индуктивностью от 100 мкГн до 100 мГн для областей низких и средних частот целесообразно применить чашечные ферритовые броневые сердечники серии КМ. Магнитопровод в этом случае состоит из двух подогнанных друг к другу чашек, к которым прилагаются односекционная катушка, две крепежные клипсы и подстроечный стержень.

Необходимая индуктивность и число витков могут быть вычислены по формулам

где N - число витков, L - индуктивность, нГн, Аl - коэффициент индуктивности, нГн/ вит.

Всегда нужно помнить о том, что прежде, чем рассчитывать индуктивность, следует определить число витков, которые могут поместиться на данной катушке.

Чем меньше диаметр провода, тем больше число витков, но тем больше сопротивление провода и, естественно, его нагрев из-за выделяющейся мощности, равной I 2 R . Действующее значение тока катушки не должно превышать 100 мА для провода диаметром 0,2 мм. 750 мА - для 0,5 мм и 4 А - для 1 мм.

Небольшие замечания и советы

Индуктивность катушек со стальным сердечником очень быстро уменьшается с ростом постоянной составляющей тока обмотки. Это нужно иметь в виду особенно при проектировании сглаживающих фильтров источников электропитания.

Максимальный ток катушки индуктивности зависит от температуры окружающей среда, причем он дал жен уменьшаться с ее увеличением. Поэтому для обеспечения надежной работы устройства следует обеспечить большой запас по току.

Ферритовые тороидальные сердечники эффективны для изготовления фильтров и трансформаторов на частотах выше 30 МГц. При этом обмотки состоят всего лишь из нескольких витков.

При использовании любых типов сердечников часть магнитных силовых линий замыкается не по магнитопроводу, а через окружающее его пространство. Особенно сильно этот эффект проявляется в случае незамкнутых магнитопроводов. Заметим, что эти магнитные поля рассеяния являются источниками помех, поэтому в аппаратуре сердечники нужно размещать так, чтобы по возможности уменьшить эти помехи.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца - Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле - реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

а индуктивность - конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = I m sinωt . Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции e L поэтому ток зависит от действия приложенного напряжения и эдс e L. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых u R равно падению напряжения в активном сопротивлении, а другое u L уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух ( , ) статьях получим — u R совпадает по фазе с током, U L опережает ток на 90°.

u = R*I m sinωt + ωLI m sin(ωt+π/2).

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

U mR = RI m ; U mL = ωLI m ,

а действующие величины

U R = RI; U L = X L I .

Вектор общего напряжения

U = U R + U L

Для того чтобы найти величину вектора U , построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I . Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор U R по направлению совпадает с вектором тока I , а вектор U L направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ >0, но φ <90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях U R и U L :

U R = Ucosφ

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается U a . Для катушки по схеме рис. 13.9 при U a = U R

U = Usinφ (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается U p . Для катушки U p = U L

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде

U = U m sin(ωt+φ)

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I . Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = U R /I и индуктивное X L = U L /I , сопротивления, а гипотенузой величина Z = U/I .

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи.
Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.
Из треугольника сопротивлений следует

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

Из треугольников сопротивления и напряжения определяются

cosφ = U R /U = R/Z; sinφ = U L /U = X L /Z; tgφ = U L /U R = X L /R. (13.18)

Мощность реальной катушки

Мгновенная мощность катушки

p = ui = U m sin(ωt+φ) * I m sinωt

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’ , сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном - наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих ( , ) статьях — в активном сопротивлении P = U R I Q = 0; а в индуктивном Р = 0; Q = U L I.

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная - реактивной мощности в индуктивном сопротивлении X L . Подставляя значения U R = Ucosφ и U L = Usinφ , определяемые из треугольника напряжений по формулам (13.18), получим:

P = UIcosφ (13.19)

Q = UIsinφ (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S , которая определяется произведением действующих величин напряжения и тока цепи;

S = UI = I 2 Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

Для реальной катушки можно составить и другую расчетную схему - с параллельным соединением двух ветвей: с активной G и индуктивной B L проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

I = I G + I L (13.24)

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: I G -ток в ветви с активной проводимостью, по фазе совпадает с напряжением; I L - ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

Вектор тока I и его составляющие I G и I L образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе

I G = Icosφ

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается I а . Для катушки по схеме на рис. 13.12, б I a = I G .

Составляющая тока в реактивном элементе

I L = Isinφ

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается . Для катушки I р = I L .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = I G /U и индуктивная В L = I L /U проводимости, а гипотенузой - величина Y = I/U , называемая полной проводимостью цепи.

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

Катушка индуктивности -винтовая ,спиральная или винтоспиральная катушка из свёрнутого изолированногопроводника , обладающая значительнойиндуктивностью при относительно малойёмкости и маломактивном сопротивлении . Такая система способна накапливать магнитнуюэнергию при протеканииэлектрического тока .

Устройство

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали,пермаллоя , карбонильного железа,ферритов . Также сердечники используют для изменения индуктивности катушек в небольших пределах.

Свойства катушки индуктивности

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току , поскольку при изменении тока в катушке возникает ЭДС самоиндукции , препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением величина которого равна: , где- индуктивность катушки,-циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

При протекании тока катушка запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой

Характеристики катушки индуктивности

] Индуктивность

Основным параметром катушки индуктивности является её индуктивность , которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн .

Индуктивность соленоида

Индуктивность торойда

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной натороидальном сердечнике

μ 0 -магнитная постоянная

μ i -магнитная проницаемость материала сердечника (зависит от частоты)

s e - площадь сечения сердечника

l e - длина средней линии сердечника

N - число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек.

При параллельном соединении катушек общая индуктивность равна

Сопротивление потерь

Потери в проводах

Потери в проводах вызваны тремя причинами:

    Во-первых, провода обмотки обладают омическим (активным) сопротивлением.

    Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено скин-эффектом , суть которого состоит в том, что ток протекает не по всему сечению проводника, а по кольцевой части поперечного сечения.

    В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведёт к дополнительному возрастанию сопротивления провода.

Потери в диэлектрике

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

Потери в экране

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране.

Добротность

С сопротивлениями потерь тесно связана другая характеристика - добротность . Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат ».

Температурный коэффициент индуктивности (ТКИ)

ТКИ - это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки.

Разновидности катушек индуктивности

Контурные катушки индуктивности

Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность идобротность .

Катушки связи

Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы иколлектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

Вариометры

Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника.

Дроссели

Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включаются в цепях питания усилительных устройств. Предназначены для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники.

Сдвоенный дроссель

Сдвоенные дроссели

две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны при тех же габаритных размерах. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Применениекатушек индуктивности

    Катушки индуктивности (совместно с конденсаторами и/илирезисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепейобратной связи ,колебательных контуров и т. п..

    Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.

    Две и более индуктивно связанные катушки образуют трансформатор .

    Катушка индуктивности, питаемая импульсным током от транзисторного ключа , иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-засамоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

    Катушки используются также в качестве электромагнитов .

    Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы .

    Для радиосвязи - излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).

    • Рамочная антенна

    • Индукционная петля

    Для разогрева электропроводящих материалов в индукционных печах .

    Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

    Катушка индуктивности используется в индукционных датчиках магнитного поля. Индукционные магнитометры были разработаны и широко использовались во временаВторой мировой войны .

Если катушка индуктивности включена в цепь переменного тока , то в такой цепи, фаза тока всегда отстает от фазы напряжения . Разберем причины этого отставания на простейшем примере, когда в цепи имеется только индуктивное сопротивление , а омического сопротивления нет вовсе, или вернее омическим сопротивлением провода катушки самоиндукции можно пренебречь, так как оно мало.

Для удобства рассмотрения явлений будем считать, что мы присоединяем катушку индуктивности к источнику переменного тока в тот момент, когда напряжение U на его зажимах имеет максимальное амплитудное значение (рис. 1а.). Этот момент будем считать началом периода.

Рисунок 1. Самоиндукция-инерция. а) соотношения фаз тока, напряжения и ЭДС самоиндукции при включение катушки индуктивности в цепь переменного тока; б) соотношение фаз скорости движения, внешней силы и силы инерции

В момент включения катушки в ней немедленно возникнет электрический ток. Но ток не может сразу достичь своего амплитудного значения потому, что при его возникновении вокруг катушки начнет появляться магнитное поле, которое будет наводить в катушке ЭДС самоиндукции, направленную против внешнего напряжения, т. е. напряжения источника переменного тока. Электродвижущая сила самоиндукции будет препятствовать быстрому нарастанию силы тока в катушке. Поэтому нарастание тока будет длиться целую четверть периода.

По мере приближения к концу первой четверти периода скорость нарастания тока в катушке постепенно уменьшается.

Но вместе с тем ослабевает и ЭДС самоиндукции, так как величина ее зависит от скорости изменения силы тока.

Итак, в конце первой четверти периода внешнее напряжение, приложенное к катушке, будет равно нулю, ЭДС самоиндукции также будет, равна нулю, а ток в катушке и магнитный поток вокруг нее будут иметь максимальные амплитудные значения. В магнитном поле катушки будет запасено некоторое количество энергии, полученной от источника тока.

С началом второй четверти периода внешнее напряжение, переменив свое направление, будет возрастать, вследствие чего ток в катушке, текущий все еще в прежнем направлении, начнет уменьшаться. Но теперь в катушке снова возникнет ЭДС самоиндукции, обусловленная уменьшением магнитного потока, которая будет поддерживать ток в прежнем направлении.

В течение всей второй четверти периода внешнее напряже¬ние будет увеличиваться, а сила тока - уменьшаться. Ско¬рость уменьшения силы тока, оставаясь небольшой в начале второй четверти, станет постепенно нарастать и в конце этой четверти достигнет наибольшей величины.

Итак, к концу второй четверти периода внешнее напряжение приближается к амплитудному значению, а сила тока и магнитный ноток приближаются к нулю, убывая все с большей скоростью, вследствие чего ЭДС самоиндукции достигает своего амплитудного значения. Направление ЭДС самоиндукции, как всегда, остается противоположным направлению внешнего напряжения. Энергия, запасенная в магнитном поле за первую четверть периода, теперь возвращается обратно в цепь.

В течение второй половины (третья и четвертая четверти) периода все явления будут происходить в том же порядке, с той лишь разницей, что направления тока, внешнего напряжения и ЭДС самоиндукции изменяются на противоположные (рис. 1а.).

Таким образом, фаза тока все время отстает от фазы напряжения, причем нетрудно заметить, что сдвиг фаз тока и напряжения равен 90°.

Представим себе, что мы толкаем вдоль по рельсам груженую вагонетку. В первый момент, когда вагонетка только начинает трогаться с места, мы прилагаем к ней максимум усилий, которые по мере увеличения скорости вагонетки будем постепенно уменьшать. При этом мы почувствуем, что вагонетка, обладая инерцией, как бы сопротивляется нашим усилиям. Это противодействие (реакция) вагонетки будет особенно сильным вначале, по мере же ослабления наших усилий будет ослабевать и противодействие вагонетки, она постепенно будет переставать «упрямиться» и покорно покатится по рельсам.

Затем мы вовсе перестанем толкать вагонетку и даже, наоборот, начнем понемногу тянуть ее в обратном направлении. При этом мы почувствуем, что вагонетка снова сопротивляется нашим усилиям. Если мы будем все сильнее и сильнее тянуть вагонетку назад, то и ее противодействие будет соответственно все более и более возрастать. Наконец, нам удастся остановить вагонетку и даже изменить направление ее движения. Когда вагонетка покатится обратно, мы будем постепенно ослаблять наши усилия, т. е. будем тянуть ее все слабее и слабее, однако, несмотря на это, скорость вагонетки будет все-таки увеличиваться (при слабом трении в подшипниках).

Когда вагонетка пройдет половину пути в обратном направлении, мы совсем перестанем тянуть ее и снова переменим направление наших усилий, т. е. начнем ее снова задерживать, постепенно увеличивая силу торможения до тех пор, пока вагонетка не остановится, заняв первоначальное (исходное) положение. После этого мы можем продолжать все наши действия сначала.

В этом примере наши усилия, прилагаемые к вагонетке, соответствуют внешней ЭДС , противодействие вагонетки, обусловленное ее инерцией, - ЭДС самоиндукции , а скорость вагонетки - электрическому току . Если изобразить графически изменение наших усилий, а также изменение противодействия вагонетки и ее скорости с течением времени, то мы получим графики (рис. 1б), в точности соответствующие графикам рис.1а.

Из этого примера становится более понятной сущность реактивного (безваттного) сопротивления. В самом деле, в течение первой четверти периода мы толкали вагонетку, а она противодействовала нашим усилиям; в течение второй четверти периода она катилась сама, а мы «упирались»; в течение третьей четверти периода мы опять тянули ее, а вагонетка снова оказывала противодействие нашим усилиям и, наконец, в течение четвертой четверти периода она снова катилась сама, а мы ее тормозили.

Короче говоря, в течение первой и третьей четверти периода мы работали «на вагонетку», а в течение второй и четвертой четвертей она работала «на нас», возвращая обратно полученную то нас энергию. В результате наша работа оказалась «безваттной».

Таким образом катушка индуктивности в цепи переменного тока может работать как безваттный резистор.

§ 54. Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L - индуктивность катушки;
- скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается X L и измеряется в омах.


Таким образом, индуктивное сопротивление катушки X L , зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

X L = ωL , (58)

где X L - индуктивное сопротивление, ом ;
ω - угловая частота переменного тока, рад/сек ;
L - индуктивность катушки, гн .
Так как угловая частота переменного тока ω = 2πf , то индуктивное сопротивление

X L = 2πf L , (59)

где f - частота переменного тока, гц .

Пример. Катушка, обладающая индуктивностью L = 0,5 гн , присоединена к источнику переменного тока, частота которого f = 50 гц . Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц ;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц .
Решение . Индуктивное сопротивление переменному току при f = 50 гц

X L = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом .

При частоте тока f = 800 гц

X L = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом .

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки X L равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.
Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.
На графике (рис. 57, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции е с, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.


Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U . В связи с этим напряжение и э. д. с. самоиндукции е с также сдвинуты по фазе друг относительно друга на 180°.
Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.
Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе (рис. 57, б.)
Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.
Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.
Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.
В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии - генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.
Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.
Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии.
Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.