Реляционная модель данных. Основные сведения о БД. Понятия: БД, Предметная область, Структурирование данных, Системы управления БД

В данной главе выделим и характеризируем основные классы СУБД.

Основная классификация СУБД основывается на используемой модели баз данных. По этому критерию выделяют несколько классов СУБД: иерархические, сетевые, реляционные, объектные и другие. Некоторые СУБД могут одновременно поддерживать несколько моделей данных.

Более ранние СУБД такие как иерархические и сетевые имеют древовидную структуру и построены по принципу "Предок - потомок". Но такие системы уже отжили своё и применяются все реже.

На смену иерархическим и сетевым пришли реляционные СУБД.

Характеристика реляционных СУБД

Первые теоретические разработки в области реляционных СУБД были получены еще в 70-х, в то же время появились первые прототипы реляционных СУБД. Долгое время считалось невозможным добиться эффективной реализации таких систем. Однако постепенное накопление методов и алгоритмов организации реляционных баз данных и управления ими привели к тому, что уже в середине 80-х годов реляционные системы практически вытеснили с мирового рынка ранние СУБД.

Реляционный подход организации СУБД предполагает наличие набора отношений (двумерных таблиц), связанных между собой. Связь в данном случае - это ассоциирование двух или более отношений (таблиц). База данных, не имеющая связей между отношениями, имеет очень ограниченную структуру и реляционной называться не может. Запросы к таким базам данных возвращает таблицу, которая повторно может участвовать в следующем запросе. Данные в одних таблицах, как мы говорили, связаны с данными других таблиц, откуда и произошло название "реляционные".

Реляционный подход в построении СУБД имеет ряд достоинств Байдак А.Я., Булгаков А.А. Современные СУБД и их применение в энергетике [Электронный ресурс]. - Режим доступа: http: //masters. donntu.edu.ua/2010/etf/baydak/library/article2. htm. - Загл. с экрана:

Наличие небольшого набора абстракций, которые позволяют сравнительно просто моделировать большую часть распространенных предметных областей и допускают точные формальные определения, оставаясь интуитивно понятными;

Наличие простого и в то же время мощного математического аппарата, опирающегося главным образом на теорию множеств и математическую логику и обеспечивающего теоретический базис реляционного подхода к организации баз данных;

Возможность ненавигационного манипулирования данными без необходимости знания конкретной физической организации баз данных во внешней памяти.

Реляционная модель имеет строгое теоретическое обоснование. Эта теория способствовала созданию декларативного языка SQL, который в настоящее время стал стандартным в отношении определения и манипулирования реляционными базами данных. Другие сильные стороны реляционной модели - простота, пригодность для систем интерактивной обработки транзакций (OLTP), обеспечение независимости от данных. Однако реляционная модель данных и реляционная СУБД, в частности, имеют и определенные недостатки.

Главным недостатком реляционных СУБД считается присущая этим системам ограниченность использования в областях, в которых требуются достаточно сложные структуры данных. Одним из основных аспектов традиционной реляционной модели данных является атомарность (единственность и неделимость) данных, которые хранятся на пересечении строк и столбцов таблицы. Такое правило было заложено в основу реляционной алгебры при ее разработке как математической модели данных. Кроме того, специфика реализации реляционной модели не позволяет адекватно отражать реальные связи между объектами в описываемой предметной области. Данные ограничения существенно мешают эффективной реализации современных приложений, которые требуют уже несколько иных подходов к организации данных.

Основной принцип реляционной модели - устранять повторяющиеся поля и группы с помощью процесса, который называется нормализацией. Плоские нормализованные таблицы универсальны, просты в понимании и теоретически достаточны для представления данных любой предметной области. Они хорошо подходят для приложений, связанных с хранением и отображением данных в традиционных отраслях, таких как банковские или учетные системы, но их применение в системах, основанных на более сложных структурах данных, часто является затруднительным. В основном, это связано с примитивностью механизмов хранения данных, лежащих в основе реляционной модели Никитин М. Закончилась ли эпоха реляционных СУБД? [Электронный ресурс]. - Режим доступа: http: //www.cnews.ru/reviews/free/marketBD/articles/articles2. shtml. - Загл. с экрана.

На сегодняшний день известные фирмы производители реляционных СУБД следующие - ORACLE, Informix, IBM (DB2), Sybase, Microsoft (MS SQL Server), Progress и другие. В своих продуктах производители СУБД ориентируются на работу на различных типах компьютеров (от майнфреймов до портативных) и на различных операционных системах (ОС). Также производители СУБД не обошли вниманием продукты, работающие на настольных компьютерах, такие как dBase, FoxPro, Access и им подобные. Данные СУБД предназначены для работы на РС и решают локальные задачи на одном РС или небольшой группе РС. Часто данные СУБД используются, как зеркальное отображения небольшой части общей корпоративной СУБД, для минимизации требуемых аппаратных и ресурсных затрат для решения небольших задач.

Различные СУБД работают под управлением разных ОС и аппаратной части. Наиболее известные среди таких ОС - UNIX, VAX, Solaris, Windows. В зависимости от объема хранения данных, количества пользователей, осуществляющих одновременный доступ к данным, сложности задач - используются различные СУБД на различных платформах. Например, СУБД Oracle на Unix, инсталлированная на многопроцессорный сервер позволяет решать задачи по обеспечению данными сотни тысяч пользователей Пономарева И.С. Системы управления базами данных [Электронный ресурс]. - Режим доступа: http: //mathmod. aspu.ru/images/File/Ponomareva/TM10_About%20BD. pdf. - С. 2.

В настоящее время наибольший интерес представляют СУБД ориентированные на операционную систему Windows использующие платформу Intel.

Логическая модель данных, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных.

  • Структурный аспект (составляющая) - данные в базе данных представляют собой набор отношений.
  • Аспект (составляющая) целостности - отношения (таблицы) отвечают определенным условиям целостности. РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных.
  • Аспект (составляющая) обработки (манипулирования) - РМД поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).

Кроме того, в состав реляционной модели данных обычно включают теорию нормализации.

Реляционная модель данных является приложением к задачам обработки данных таких разделов математики как теория множеств и формальная логика.

Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране.

Для лучшего понимания РМД следует отметить три важных обстоятельства:

  • модель является логической, т.е. отношения являются логическими (абстрактными), а не физическими (хранимыми) структурами;
  • для реляционных баз данных верен информационный принцип: все информационное наполнение базы данных представлено одним и только одним способом, а именно - явным заданием значений атрибутов в кортежах отношений; в частности, нет никаких указателей (адресов), связывающих одно значение с другим;
  • наличие реляционной алгебры позволяет реализовать декларативное программирование и декларативное описаний ограничений целостности, в дополнение к навигационному (процедурному) программированию и процедурной проверке условий.

Принципы реляционной модели были сформулированы в 1969-1970 годах Э. Ф. Коддом (E. F. Codd). Идеи Кодда были впервые подробно изложены в статье «A Relational Model of Data for Large Shared Data Banks», ставшей классической.

Строгое изложение теории реляционных баз данных (реляционной модели данных) в современном понимании можно найти в книге К. Дж. Дейта. «C. J. Date. An Introduction to Database Systems» («Дейт, К. Дж. Введение в системы баз данных»).

Альтернативами реляционной модели являются иерархическая модель и сетевая модель. Некоторые системы, использующие эти старые архитектуры по-прежнему используется до сих пор. Кроме того, можно упомянуть об объектной модели данных, на которой строятся так называемые объектные СУБД, хотя однозначного и общепринятого определения такой модели нет.

Достоинства реляционной модели

  • Простота и доступность понимания конечным пользователем - единственной информационной конструкцией является таблица.
  • При проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате.
  • Полная независимость данных. При изменении структуры реляционной изменения, которые требуют произвести в прикладных программах, минимальны.
  • Для построения запросов и написания прикладных программ нет необходимости знания конкретной организации БД во внешней памяти.

Недостатки реляционной модели

  • Относительно низкая скорость доступа и большой объем внешней памяти.
  • Трудность понимания структуры данных из-за появления большого кол-ва таблиц в результате логического проектирования.
  • Далеко не всегда предметную область можно представить в виде совокупности таблиц.

В начало

Базы данных и СУБД

Информационные системы

Одним из важнейших условий обеспечения эффективного функционирования любой организации является наличие развитой информационной системы. Информационная система реализует автоматизированный сбор, обработку и манипулирование данными, содержит технические средства обработки данных, программное обеспечение и обслуживающий персонал.

Современной формой информационных систем являются банки данных, которые включают в свой состав вычислительную систему, одну или несколько баз данных (БД), систему управления базами данных (СУБД) и набор прикладных программ (ПП). Основными функциями банков данных являются:

Хранение данных и их защита;

Изменение (обновление, добавление и удаление) хранимых данных;

Поиск и отбор данных по запросам пользователей;

Обработка данных и вывод результатов.

База данных обеспечивает хранение информации и представляет собой поименованную совокупность данных, организованных по определенным правилам, включающим общие принципы описания, хранения и манипулирования данными.

Система управления базами данных представляет собой пакет прикладных программ и совокупность языковых средств, предназначенных для создания, сопровождения и использования баз данных.

Прикладные программы (приложения) в составе банков данных служат для обработки данных, вычислений и формирования выходных документов по заданной форме.

Приложение представляет собой программу или комплекс программ, использующих БД и обеспечивающих автоматизацию обработки информации из некоторой предметной области. Приложения могут создаваться как в среде СУБД, так и вне СУБД - с помощью системы программирования, к примеру, Delphi или C++ Builder , использующей средства доступа к БД.

Для работы с базой данных во многих случаях можно обойтись только средствам СУБД, скажем, создавая запросы и отчеты. Приложения разрабатывают главным образом в случаях, когда требуется обеспечить удобство работы с БД неквалифицированным пользователям или интерфейс СУБД не устраивает пользователя.

Важнейшим достоинством применения БД в информационных системах является обеспечение независимости данных от прикладных программ. Нет необходимости заниматься вопросами размещения данных в памяти, методами доступа к ним и т. д.

Такая независимость достигается поддерживаемым СУБД многоуровневым представлением данных в БД на логическом (пользовательском) и физическом уровнях.

В качестве основного критерия оптимальности функционирования базы данных, как правило, используются временные характеристики реализации запросов пользователей прикладными программами.

Средства для создания баз данных

Файловые системы

Развитие основных понятий представления данных

Любой вычислительный процесс представляет собой отображение некоторых входных данных в выходные.

Соотношение сложности представления обрабатываемых данных и алгоритма вычислений определяет два класса задач:

- вычислительные задачи – достаточно простое представление данных и сложный процесс вычислений;

- задачи обработки данных (невычислительные задачи) – простой алгоритм обработки данных и сложное представление обрабатываемых данных.

В соответствии с этим приходится уделять внимание как разработке алгоритма решения задачи, так и способам представления обрабатываемых данных.

Начиная с конца 60-х годов компьютеры начинают интенсивно использоваться для решения так называемых невычислительных задач, связанных с обработкой различного рода документов. При использовании файловых систем данные хранятся в файле, предназначенном только для решения этой задачи. В этом случае описание данных включено в прикладную программу. При изменении формата записей файла необходимо изменение прикладной программы. Таким образом, программная система, решающая поставленную задачу, определяет свои собственные данные и управляет ими.

Недостатки файловых систем

1. Структура записи файла известна только программе, в которой он создан. Изменение структуры требует изменения программ, использующих этот файл с данными. Таким образом, программы зависят от данных .

2. Проблемы с авторизацией доступа. Можно использовать средства ОС по разграничению доступа. Такое решение возможно, но неудобно. Нужны централизованные методы доступа к информации.

3. Проблемы с организацией многопользовательского доступа. Системы управления файлами обеспечивают многопользовательский режим, но имеют особенности, затрудняющие применение для БД. При чтении данных несколькими пользователя проблем не возникает. Внесение же изменений требует синхронизации действий пользователей. Обычно при открытии файла указывается режим (чтение/запись). Если к этому моменту файл открыт другим процессом в режиме изменения, то ОС либо сообщает, что файл невозможно открыть, либо действие блокируется до закрытия другого процесса. В любом случае либо одновременно несколько пользователей не могут модифицировать БД, либо процесс выполняется медленно.

В прикладной программе, использующей при решении задачи один или несколько отдельных файлов, за сохранность и достоверность данных отвечал программист, работающий с этой задачей. Использование базы данных предполагает работу с ней нескольких прикладных программ, решающих задачи разных пользователей.

Естественно, что за сохранность и достоверность интегрированных данных программист, решающий одну из прикладных задач, отвечать уже не может. Кроме того, расширение круга решаемых с использованием базы данных задач может приводить к появлению новых типов записей и отношений между ними. Такое изменение структуры базы данных не должно вести к изменению множества ранее разработанных и успешно функционирующих прикладных программных систем, работающих с базой данных. С другой стороны, возможное изменение любой из прикладных программ, в свою очередь, не должно приводить к изменению структуры данных. Все вышесказанное обусловливает необходимость отделения данных от прикладных программ.

Системы управления базами данных

Роль интерфейса между прикладными программами и базой данных, обеспечивающего их независимость, играет программный комплекс – система управления базами данных (СУБД).

СУБД – программный комплекс поддержки интегрированной совокупности данных, предназначенный для создания, ведения и использования базы данных многими пользователями (прикладными программами).

Основные функции системы управления базами данных.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация).

3. Обеспечение независимости прикладных программ и (логической и физической независимости).

4. Защита логической целостности базы данных.

5. Защита физической целостности.

6. Управление полномочиями пользователей на доступ к базе данных.

7. Синхронизация работы нескольких пользователей.

8. Управление ресурсами среды хранения.

9. Поддержка деятельности системного персонала.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки . В большинстве современных СУБД база данных представляется в виде совокупности таблиц.

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация). Такие возможности в СУБД представляются либо на основе использования специального языка программирования, входящего в состав СУБД, либо с помощью графического интерфейса.

3. Обеспечение независимости прикладных программ и данных (логической и физической независимости). Важнейшим свойством СУБД является возможность поддерживать два независимых взгляда на базу данных – «взгляд пользователя», воплощаемый в логическом представлении данных, и его отражения в прикладных программах; и «взгляд системы» – физическое представление данных в памяти ЭВМ. Обеспечение логической независимости данных предоставляет возможность изменения (в определенных пределах) логического представления базы данных без необходимости изменения физических структур хранения данных. Таким образом, изменение логического представления данных в прикладных программах не приводит к изменению структур хранения данных. Обеспечение физической независимости данных предоставляет возможность изменять (в определенных пределах) способы организации базы данных в памяти ЭВМ не вызывая необходимости изменения «логического» представления данных. Таким образом, изменение способов организации базы данных не приводит к изменению прикладных программ.

4. Защита логической целостности базы данных.

Основной целью реализации этой функции является повышение достоверности данных в базе данных. Достоверность данных может быть нарушена при их вводе в БД или при неправомерных действиях процедур обработки данных, получающих и заносящих в БД неправильные данные. Для повышения достоверности данных в системе объявляются так называемые ограничения целостности, которые в определенных случаях «отлавливают» неверные данные. Так, во всех современных СУБД проверяется соответствие вводимых данных их типу, описанному при создании структуры. Система не позволит ввести символ в поле числового типа, не позволит ввести недопустимую дату и т.п. В развитых системах ограничения целостности описывает программист, исходя из содержательного смысла задачи, и их проверка осуществляется при каждом обновлении данных. Более подробно

5. Защита физической целостности . При работе ЭВМ возможны сбои в работе (например, из-за отключения электропитания), повреждение машинных носителей данных. При этом могут быть нарушены связи между данными, что приводит к невозможности дальнейшей работы. Развитые СУБД имеют средства восстановления базы данных. Важнейшим используемым понятием является понятие «транзакции». Транзакция – это единица действий, производимых с базой данных. В состав транзакции может входить несколько операторов изменения базы данных, но либо выполняются все эти операторы, либо не выполняется ни один. СУБД, кроме ведения собственно базы данных, ведет также журнал транзакций.

Необходимость использования транзакций в базах данных проиллюстрируем на упрощенном примере. Предположим, что база данных используется в некотором банке и один из клиентов желает перевести деньги на счет другого клиента банка. В базе данных хранится информация о количестве денег у каждого из клиентов. Нам нужно сделать два изменения в базе данных – уменьшить сумму денег на счете одного из клиентов и, соответственно, увеличить сумму денег на другом счете. Конечно, реальный перевод денег в банке представляет собой гораздо более сложный процесс, затрагивающий много таблиц, а возможно, и много баз данных. Однако суть остается та же – нужно либо совершить все действия (увеличить счет одного клиента и уменьшить счет другого), либо не выполнить ни одно из этих действий. Нельзя уменьшить сумму денег на одном счете, но не увеличить сумму денег на другом.

Предположим также, что после выполнения первого из действий (уменьшения суммы денег на счете первого клиента) произошел сбой. Например, могла прерваться связь клиентского компьютера с базой данных или на клиентском компьютере мог произойти системный сбой, что привело к перезагрузке операционной системы. Что в этом случае стало с базой данных? Команда на уменьшение денег на счете первого клиента была выполнена, а вторая команда – на увеличение денег на другом счете – нет, что привело бы к противоречивому, неактуальному состоянию базы данных.

Использование механизма транзакций позволяет находить решение в этом и подобных случаях. Перед выполнением первого действия выдается команда начала транзакции. В транзакцию включается операция снятия денег на одном счете и увеличения суммы на другом счете. Оператор завершения транзакций обычно называется COMMIT. Поскольку после выполнения первого действия транзакция не была завершена, изменения не будут внесены в базу данных. Изменения вносятся (фиксируются) только после завершения транзакции. До выдачи данного оператора сохранения данных в базе не произойдет. В нашем примере, поскольку оператор фиксации транзакции не был выдан, база данных «откатится» в первоначальное состояние – иными словами, суммы на счетах клиентов останутся те же, что и были до начала транзакции. Администратор базы данных может отслеживать состояние транзакций и в необходимых случаях вручную «откатывать» транзакции.

Кроме того, в очевидных случаях СУБД самостоятельно принимает решение об «откате» транзакции.

Транзакции не обязательно могут быть короткими. Бывают транзакции, которые длятся несколько часов или даже несколько дней. Увеличение количества действий в рамках одной транзакции требует увеличения занимаемых системных ресурсов. Поэтому желательно делать транзакции по возможности короткими. В журнал транзакций заносятся все транзакции – и зафиксированные, и завершившиеся «откатом». Ведение журнала транзакций совместно с созданием резервных копий базы данных позволяет достичь высокой надежности базы данных.

Предположим, что база данных была испорчена в результате аппаратного сбоя компьютера, на котором был установлен сервер СУБД. В этом случае нужно использовать последнюю сделанную резервную копию базы данных и журнал транзакций. Причем применить к базе данных нужно только те транзакции, которые были зафиксированы после создания резервной копии. Большинство современных СУБД позволяют администратору воссоздать базу данных исходя из резервной копии и журнала транзакций. В таких системах в определенный момент БД копируется на резервные носители. Все обращения к БД записываются программно в журнал изменений. Если база данных разрушена, запускается процедура восстановления, в процессе которой в резервную копию из журнала изменений вносятся все произведенные изменения.

6. Управление полномочиями пользователей на доступ к базе данных .

Разные пользователи могут иметь разные полномочия по работе с данными (некоторые данные должны быть недоступны; определенным пользователям не разрешается обновлять данные и т.п.). В СУБД предусматриваются механизмы разграничения полномочий доступа, основанные либо на принципах паролей, либо на описании полномочий.

7. Синхронизация работы нескольких пользователей .

Достаточно часто может иметь место ситуация, когда несколько пользователей одновременно выполняют операцию обновления одних и тех же данных. Такие коллизии могут привести к нарушению логической целостности данных, поэтому система должна предусматривать меры, не допускающие обновление данных другим пользователям, пока работающий с этими данными пользователь полностью не закончит с ними работать. Основным используемым здесь понятием является «блокировка». Блокировки необходимы для того, чтобы запретить различным пользователям возможность одновременно работать с базой данных, поскольку это может привести к ошибкам.

Для реализации этого запрета СУБД устанавливает блокировку на объекты, которые использует транзакция. Существуют разные типы блокировок – табличные, страничные, строчные и другие, которые отличаются друг от друга количеством заблокированных записей.

Чаще других используется строчная блокировка – при обращении транзакции к одной строке блокируется только эта строка, остальные строки остаются доступными для изменения.

Таким образом, процесс внесения изменений в базу данных состоит из следующей последовательности действий: выдается оператор начала транзакции, выдается оператор изменения данных, СУБД анализирует оператор и пытается установить блокировки, необходимые для его выполнения, в случае успешной блокировки оператор выполняется, затем процесс повторяется для следующего оператора транзакции. После успешного выполнения всех операторов внутри транзакции выполняется оператор фиксации транзакции. СУБД фиксирует изменения, сделанные транзакцией, и снимает блокировки. В случае неуспеха выполнения какого-либо из операторов транзакция «откатывается», данные получают прежние значения, блокировки снимаются.

8. Управление ресурсами среды хранения .

БД располагается во внешней памяти ЭВМ. При работе в БД заносятся новые данные (занимается память) и удаляются данные (освобождается память). СУБД выделяет ресурсы памяти для новых данных, перераспределяет освободившуюся память, организует ведение очереди запросов к внешней памяти и т.п.

9. Поддержка деятельности системного персонала .

При эксплуатации базы данных может возникать необходимость изменения параметров СУБД, выбора новых методов доступа, изменения (в определенных пределах) структуры хранимых данных, а также выполнения ряда других общесистемных действий. СУБД предоставляет возможность выполнения этих и других действий для поддержки деятельности БД обслуживающему БД системному персоналу, называемому администратором БД.

Классификация СУБД

СУБД, как правило, разделяют по используемой модели данных (как и базы данных) на следующие типы: иерархические, сетевые, реляционные и объектно-ориентированные.

По характеру использования СУБД делят на персональные (СУБДП) и многопользовательские (СУБДМ).

К персональным СУБД относятся Visual FoxPro , Paradox , Clipper , dBase , Access и др. К многопользовательским СУБД относятся, например, СУБД Oracle и Informix . Многопользовательские СУБД включают в себя сервер БД и клиентскую часть, работают в неоднородной вычислительной среде - допускаются разные типы ЭВМ и различные операционные системы. Поэтому на базе СУБДМ можно создать информационную систему, функционирующую по технологии клиент-сервер. Универсальность многопользовательских СУБД отражается соответственно на высокой цене и компьютерных ресурсах, требуемых для их поддержки.

СУБДП представляет собой совокупность языковых и программных средств, предназначенных для создания, ведения и использования БД.

Персональные СУБД обеспечивают возможность создания персональных БД и недорогих приложений, работающих с ними, и при необходимости создания приложений, работающих с сервером БД.

Управляющим компонентом многих СУБД является ядро, выполняющее следующие функции:

- управление данными во внешней памяти;

- управление буферами оперативной памяти (рабочими областями, в которые осуществляется подкачка данных из базы для повышения скорости работы);

- управление транзакциями.

Транзакция - это последовательность операций над БД, рассматриваемая СУБД как единое целое. Под транзакцией понимается воздействие на БД, переводящее ее из одного целостного состояния в другое. Воздействие выражается в изменении данных в таблицах базы.

Если одно из изменений, вносимых в БД в рамках транзакции, завершается неуспешно, должен быть произведен откат к состоянию базы данных, имевшему место до начала транзакции. Следовательно, все изменения, внесенные в БД в рамках транзакции либо одновременно подтверждаются, либо не подтверждается ни одно из них.

При выполнении транзакция может быть либо успешно завершена, и СУБД зафиксирует произведенные изменения во внешней памяти. При сбое в аппаратной части ПК, ни одно из изменений не отразится в БД. Понятие транзакции необходимо для поддержания логической целостности БД.

Обеспечение целостности БД - необходимое условие успешного функционирования БД. Целостность БД - свойство БД, означающее, что база данных содержит полную и непротиворечивую информацию, необходимую и достаточную для корректного функционирования приложений. Для обеспечения целостности БД накладывают ограничения целостности в виде некоторых условий, которым должны удовлетворять хранимые в базе данные. Примером таких условий может служить ограничение диапазонов возможных значений атрибутов объектов, сведения о которых хранятся в БД, или отсутствие повторяющихся записей в таблицах реляционных БД.

Обеспечение безопасности достигается в СУБД шифрованием прикладных программ, данных, защиты паролем, поддержкой уровней доступа к базе данных, к отдельной таблице.

Расширение возможностей пользователя СУБДП достигается за счет подключения систем построения графиков и диаграмм, а также подключения модулей, написанных на языках программирования.

Поддержка функционирования в сети обеспечивается:

средствами управления доступом пользователей к совместно используемым данным, т. е. средствами блокировки файлов (таблиц), записей, полей, которые в разной степени реализованы в разных СУБДП;

средствами механизма транзакций, обеспечивающими целостность БД при функционировании в сети.

Поддержка взаимодействия с Windows-приложениями позволяет СУБДП внедрять в отчет сведения, хранящиеся в файлах, созданных с помощью других приложений, например, в документе Word или в рабочей книге Excel , включая графику и звук. Для этого в СУБДП поддерживаются механизмы, разработанные для среды Windows , такие как: DDE { Dynamic Data Exchange - динамический обмен данными) и OLE { Object Linking and Embedding - связывание и внедрение объектов).

Уровни представления данных

Современные подходы к созданию БД предполагают их трёхуровневую организацию. Этот способ организации БД был предложен American National Standards Institute (ANSI ) и используется повсеместно.

На самом верхнем (внешнем) уровне может быть множество моделей. Этот уровень определяет точку зрения на БД отдельных пользователей (приложений). Каждое приложение видит и обрабатывает только те данные, которые необходимы именно ему.

На концептуальном уровне БД представлена в наиболее общем виде, который объединяет все внешние представления предметной области. На концептуальном уровне имеем обобщённую модель предметной области, для которой создавалась БД. Концептуальное представление только одно. При разработке концептуальной модели усилия направлены на структуризацию данных и выявление взаимосвязей, без рассмотрения особенностей реализации и эффективности разработки.

Внутренний (физический) уровень – это собственно данные, расположенные на внешних носителях информации. Внутренняя модель определяет размещение данных, методы доступа, технику индексирования.

Трёхуровневая организация БД позволяет обеспечить логическую и физическую независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения, без корректировки других приложений, работающих с этой же БД.

Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, использующих эту БД.

Классификация моделей данных

Модель данных – это набор правил, по которым организуются данные.

Это очень простое определение можно уточнить. Модель данных – это некоторая абстракция, которая, будучи приложена к конкретным данным, позволяет пользователям и разработчикам трактовать их как информацию, то есть сведения, содержащие не только данные, но и взаимосвязи между ними.

Принято выделять три группы моделей данных: инфологические, даталогические и физические.

Рис.1 Модели данных

Инфологическая (семантическая) модель – это обобщённое, не привязанное к какой-либо ЭВМ и СУБД описание предметной области. Это описание, выполненное с использованием естественного языка, математических формул, таблиц, графиков и других средств объединяет частные представления о содержимом базы данных, полученные в результате опроса пользователей, и представления разработчиков о данных, которые могут потребоваться в будущих приложениях.

Такая человеко-ориентированная модель полностью независима от физических параметров среды хранения данных. Поэтому инфологическая модель не должна изменяться до тех пор, пока она адекватно отражает предметную область, то есть до тех пор, пока не произошли изменения в предметной области.

Даталогические модели являются компьютерно-ориентированными, они поддерживаются конкретными СУБД. С их помощью СУБД даёт возможность пользователям осуществлять доступ к хранимым данным не заботясь об их физическом расположении. Так как доступ к данным осуществляется с помощью конкретной СУБД, то даталогические модели описываются на языке описания данных используемой СУБД.

Нужные данные отыскиваются СУБД на внешних запоминающих устройствах по физической модели данных . Физическая модель оперирует категориями, относящимися к организации внешней памяти и структурам хранения данных, которые используются в данной операционной среде.

Даталогические модели

К этой группе относятся такие широко известные модели как иерархическая, сетевая, реляционная и объектно-ориентированная.

Классификация моделей, их описание появились после разработки реляционной модели. До этого разрабатывали БД, используя имеющиеся технологии. И значительно позднее проанализировали существующие базы данных и выполнили их теоретическое описание.

Теоретико-графовые модели отражают совокупность объектов реального мира в виде графа. В зависимости от типа графа различают иерархическую и сетевую модели. Иерархическая и сетевая модели данных стали применяться в СУБД в начале 60-х годов 20 века. В настоящее время они используются реже, чем реляционная модель данных.

Для работы со сложными наборами данных математики разработали иерархическую модель данных. Эта модель появилась раньше других даталогических моделей. Именно эта модель данных использована в первой официально признанной промышленной СУБД фирмы IBM.

Иерархическая модель предполагает хранение данных в виде, похожем на организацию каталогов в MS DOS: все каталоги начинаются с корневого и ветвятся подобно дереву. К каждому файлу есть только один путь, то есть файлу соответствует одно имя каталога.

В реальном мире некоторые объекты по своей сути составляют иерархические структуры: одни объекты являются родительскими, другие – дочерними. Иерархия проста и естественна для отображения взаимосвязей между объектами. Достаточно вспомнить многочисленные классификации, используемые в разных областях знаний, например, приведённую выше классификацию моделей данных. В качестве другого примера можно привести структуру данных предприятия.

В иерархической БД все записи ветвятся от одной корневой. Запись имеет всегда только одного родителя и сама тоже может быть родителем для другой записи.

Главное достоинство иерархической модели – скорость. Поскольку все отношения между таблицами предопределены и являются статическими, поисковые и другие операции над набором данных выполняются очень быстро.

Наиболее существенный недостаток – негибкость. Поскольку отношения хранятся внутри каждой записи, данные имеют смысл только в определённом контексте. Другой недостаток – трудность переноса данных с компьютера на компьютер. Третий недостаток заключается в том, что глобальные изменения данных практически невозможны. При изменении требуется, чтобы каждая запись, включая родительские и дочерние, была модифицирована индивидуально.

Работа с этой моделью данных предполагает значительный объём знаний. Большинство БД, использующих иерархическую модель, требует специально подготовленного персонала для обеспечения правильного функционирования.

Сетевая модель предложена для обеспечения гибкости в управлении данными. На разработку этой модели большое влияние оказал американский ученый Ч.Бахман.

Основные принципы сетевой модели данных были сформулированы в середине 60-х годов. Эталонный вариант сетевой модели данных описан в отчетах рабочей группы по языкам баз данных CODASYL (COnference on DAta SYstem Languages) в середине 70-х годов.

Сетевая модель отличается от иерархической тем, что позволяет определять для записи более чем одно групповое отношение. Эта модели состоит из множества записей, которые могут быть владельцами или членами групповых отношений. Сетевая модель позволяет производить поиск в различных структурах и поддерживает для записей отношение «одна ко многим».

Как и в иерархической БД, информация о связях хранится в записях и должна быть предопределена. Поэтому сетевая модель данных имеет те же ограничения, что и иерархическая.

Реляционная модель данных

Основные понятия и определения реляционной модели

Реляционная модель

В 1970 году Е.Ф. Кодд (E . F . Codd ) представил реляционную модель БД. Концепция этой модели основана на том, что организация данных в базе должна быть гибкой, динамичной, легко используемой. Пользователь должен работать только с логическим представлением данных, а уж система управления БД позаботится о физической структуре данных. Кодд сформулировал основные положения реляционных баз данных.

Реляционная модель использует таблицы и базируется на двух утверждениях:

· база данных должна состоять из таблиц и только из таблиц. Только содержимое таблиц определяет операции БД;

· описание данных и манипуляции над ними должны быть независимыми от способа хранения данных на нижнем уровне. Другими словами, системы управления реляционными базами данных (СУРБД) должны обеспечивать свою собственную систему управления, основанную только на логическом представлении данных.

В своём документе Кодд описал язык для оперирования с реляционными структурами. Со временем этот язык превратился в то, что сейчас называют структурированным языком запросов SQL (Structured Query Language ).

Кодд вывел набор базовых правил, которым должна соответствовать СУБД реляционной модели. Всего их 12. Реально существующие базы данных не удовлетворяют полностью всем правилам Кодда. Каждый разработчик реализует реляционную модель по-своему. В результате свойства реляционных БД сильно варьируются.

В правилах Кодда можно выделить 4 категории:

1) базовые возможности – описание данных и язык программирования;

2) доступ к данным – правила доступа, хранения и поиска,

3) гибкость – правила изменения (модификации) данных;

4) целостность – правила для обеспечения качества и защищённости данных.

При использовании реляционной модели СУБД пользователь работает с логической структурой данных. Для перехода на низший (физический) уровень Кодд предложил концепцию словаря данных.

Словарь данных – это центральная таблица и хранилище информации о базе данных, содержит сведения о расположении данных, имена полей, типы данных, карты отношений. Словарь данных работает с операционной системой и осуществляет связь таблиц (логических данных) с файлами (физическими данными).

Будучи математиком по образованию Э.Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двумерных таблиц особого вида, известного в математике как отношение – relation (англ.) Наименьшая единица данных реляционной модели – это отдельное атомарное (неразложимое) для данной модели значение данных. Так, в одной предметной области фамилия, имя и отчество могут рассматриваться как единое значение, а в другой – как три различных значения.

Доменом называется множество атомарных значений одного и того же типа. Смысл доменов состоит в следующем. Если значения двух атрибутов берутся из одного и того же домена, то, вероятно, имеют смысл сравнения, использующие эти два атрибута Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла.

Отношение на доменах D1, D2, ..., Dn (не обязательно, чтобы все они были различны) состоит из заголовка и тела.

Заголовок состоит из такого фиксированного множества атрибутов A1, A2, ..., An, что существует взаимно однозначное соответствие между этими атрибутами Ai и определяющими их доменами Di (i=1,2,...,n).

Тело состоит из меняющегося во времени множества кортежей , где каждый кортеж состоит в свою очередь из множества пар атрибут-значение (Ai:Vi), (i=1,2,...,n), по одной такой паре для каждого атрибута Ai в заголовке. Для любой заданной пары атрибут-значение (Ai:Vi) Vi является значением из единственного домена Di, который связан с атрибутом Ai.

Степень отношения – это число его атрибутов. Отношение степени один называют унарным, степени два – бинарным, степени три – тернарным, ..., а степени n – n-арным. Степень отношения

Кардинальное число или мощность отношения – это число его кортежей. Кардинальное число отношения изменяется во времени в отличие от его степени.

Поскольку отношение – это множество, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно-заданный момент времени. Пусть R – отношение с атрибутами A1, A2, ..., An. Говорят, что множество атрибутов K=(Ai, Aj, ..., Ak) отношения R является возможным ключом R тогда и только тогда, когда удовлетворяются два независимых от времени условия:

  1. Уникальность: в произвольный заданный момент времени никакие два различных кортежа R не имеют одного и того же значения для Ai, Aj, ..., Ak.
  2. Минимальность: ни один из атрибутов Ai, Aj, ..., Ak не может быть исключен из K без нарушения уникальности.

Каждое отношение обладает хотя бы одним возможным ключом, поскольку по меньшей мере комбинация всех его атрибутов удовлетворяет условию уникальности. Один из возможных ключей (выбранный произвольным образом) принимается за его первичный ключ. Остальные возможные ключи, если они есть, называются альтернативными ключами.

Вышеупомянутые и некоторые другие математические понятия явились теоретической базой для создания реляционных СУБД, разработки соответствующих языковых средств и программных систем, обеспечивающих их высокую производительность, и создания основ теории проектирования баз данных. Однако для массового пользователя реляционных СУБД можно с успехом использовать неформальные эквиваленты этих понятий:

Отношение – Таблица (иногда Файл),
Кортеж – Строка (иногда Запись),
Атрибут – Столбец, Поле.

При этом принимается, что «запись» означает «экземпляр записи», а «поле» означает «имя и тип поля».

1. Каждая таблица состоит из однотипных строк и имеет уникальное имя.

2. Строки имеют фиксированное число полей (столбцов) и значений (множественные поля и повторяющиеся группы недопустимы). Иначе говоря, в каждой позиции таблицы на пересечении строки и столбца всегда имеется в точности одно значение или ничего.

3. Строки таблицы обязательно отличаются друг от друга хотя бы единственным значением, что позволяет однозначно идентифицировать любую строку такой таблицы.

4. Столбцам таблицы однозначно присваиваются имена, и в каждом из них размещаются однородные значения данных (даты, фамилии, целые числа или денежные суммы).

5. Полное информационное содержание базы данных представляется в виде явных значений данных и такой метод представления является единственным. В частности, не существует каких-либо специальных "связей" или указателей, соединяющих одну таблицу с другой.

6. При выполнении операций с таблицей ее строки и столбцы можно обрабатывать в любом порядке безотносительно к их информационному содержанию. Этому способствует наличие имен таблиц и их столбцов, а также возможность выделения любой их строки или любого набора строк с указанными признаками

Ключи

Реляционная теория требует, чтобы данные унифицировались уникально по трём критериям:

· таблицей, где хранится этот элемент данных;

· названием поля в этой таблице;

· значением первичного ключа для записи.

Первичный ключ – это поле или группа полей, которые гарантируют уникальность записи.

При разработке таблицы в качестве первичного ключа следует выбирать столько полей, сколько требуется для того, чтобы каждая запись таблицы была уникальной. Одни таблицы содержат одно поле, уникально идентифицирующее каждую запись. Другие таблицы могут потребовать составного ключа (composite key ), то есть первичного ключа, состоящего из комбинации полей. Даже если таблица имеет составной первичный ключ, он может быть только один.

Построение первичного ключа является обязательным. Данные часто имеют естественный ключ (natural key ). Например, номер социального страхования идентифицирует любого налогоплательщика США; банки выдают номера счетов своим клиентам; больницы присваивают пациентам номера в картотеке. Всё это – номер социального страхования, счёт в банке, номер в картотеке – лучшие кандидаты на роль первичного ключа, поскольку они уникально идентифицируют налогоплательщиков, клиентов и пациентов соответственно.

При выборе ключа надо проявлять осторожность, так как некоторые данные только кажутся уникальными. Например, фамилия и имя, наименование фирмы и дата заказа.

Если данные не содержат естественного первичного ключа, то он должен быть создан. Существуют две школы, которые предлагают разные способы создания искусственного ключа (artifical key ).

Первая школа утверждает, что ключ должен быть максимально приближен к данным. Например, записи в таблицах Paradox по умолчанию автоматически сортируют и отображаются в порядке, определённом первичным ключом. Если построить ключ по четырём буквам от фамилии плюс две буквы имени, плюс последовательно присвоенное число, то сортировка будет показывать записи в алфавитном порядке. Но у такого ключа есть и неудобства, например, при изменении фамилии придётся обновлять ссылки.

Вторая школа считает, что ключ не должен иметь ничего общего с данными, так называемый суррогатный ключ (surrogate key ).

Первичный ключ следует формировать настолько коротким, насколько это возможно. Длинный ключ приводит к большему числу ошибок при вводе данных. Поскольку реляционная БД использует первичные ключи для организации связей между таблицами, то появление ошибочных связей ухудшает защищённость данных. Если естественный первичный ключ получается слишком длинным, то рекомендуется перейти к использованию суррогатного ключа. Этот подход часто применяется на практике и известен как генерация уникальных идентификаторов.

Ключевым элементом данных называется такой элемент, по которому можно определить значения других элементов данных. Однозначно идентифицировать объект могут два и более элементов данных. Выбирать ключевые элементы данных следует тщательно, поскольку правильный выбор способствует созданию достоверной концептуальной модели данных.

Первичный ключ - это атрибут или группа атрибутов, которые единственным образом идентифицируют каждую строку таблицы.

Альтернативный (вторичный) ключ - это атрибут или группа атрибутов, не совпадающих с первичным ключом и уникально идентифицирующих экземпляр объекта.

Индексы

Индексы являются составной частью структуры базы данных и предназначены для ускорения поиска информации в таблице.

Индекс – структура, связанная с таблицей или представлением и предназначенная для ускорения поиска информации в них. Индекс определяется для одного или нескольких столбцов, называемых индексированными столбцами. Он содержит отсортированные значения индексированного столбца или столбцов со ссылками на соответствующую строку исходной таблицы или представления. Повышение производительности достигается за счет сортировки данных . Использование индексов может существенно повысить производительность поиска, однако для хранения индексов необходимо дополнительное пространство в базе данных .

В качестве примера поиска в таблице представим себе телефонный справочник, где все абоненты расположены по алфавиту. Очевидно, что в таком справочнике очень легко найти номер телефона, если известна фамилия абонента. С другой стороны, найти фамилию абонента по номеру его телефона чрезвычайно сложно, т.к. справочник не упорядочен по номерам телефона, придется искать нужный телефон методом простого перебора. Таким образом, упорядоченность информации значительно облегчает поиск. Этот принцип положен в основу системы индексов.

На рисунке показан телефонный справочник с записями, не упорядоченными по номеру телефона, и индекс, сформированный для этого справочника. Из рисунка видно, что индекс представляет собой массив целых чисел, куда помещены номера записей справочника в порядке возрастания номера телефона. Благодаря этому, записи становятся упорядоченными по номеру телефона, и вместо поиска методом полного перебора можно применить метод половинного деления или метод двоичного дерева.


Рис. 3. Пример индекса по полю «номер телефона».

Связи

Связь – это функциональная зависимость между сущностями. Если между некоторыми сущностями существует связь, то факты из одной сущности ссылаются или некоторым образом связаны с фактами из другой сущности. Поддержание непротиворечивости функциональных зависимостей между сущностями называется ссылочной целостностью. Поскольку связи находятся «внутри» реляционной модели, реализация ссылочной целостности может выполняться как приложением, так и самой СУБД (с помощью механизмов декларативной ссылочной целостности и триггеров).

При описании отношений подразумевается связь между записями разных таблиц. Например, если упоминается связь типа одна-ко-многим, то имеется в виду, что одна запись некоторой таблицы связана со многими записями другой таблицы. Ни в коем случае не имеется в виду связь одной таблицы со многими таблицами.

Простейшая связь между записями таблиц – это одна-к-одной. Связь такого типа осуществляется, когда связываемые таблицы имеют одинаковый первичный ключ. Чаще всего этот тип связи используется при наличии таблицы с большим числом полей, некоторые из которых являются второстепенными (не столь значимыми). Например, запись о человеке в отделе кадров может состоять из фамилии, имени, отчества, паспортных данных, автобиографии и т.п. Автобиография может быть отнесена к второстепенным сведениям и вынесена в дополнительную таблицу с типом связи одна-к-одной.

Наиболее распространён тип связи одна-ко-многим . Например, клиент и заказы: один клиент может сделать много заказов. Поля, по которым осуществляются связи, не являются свободными, то есть не могут иметь произвольные значения. Например, в заказе должен быть упомянут клиент, который есть в таблице «Клиенты». С точки зрения таблицы «Клиенты» поле «ФИО клиента» может быть произвольным, так как не зависит от полей других таблиц.

Если связаны все ключевые поля одной таблицы и часть ключевых полей другой таблицы, то тип связи может быть только одна-ко-многим.

Тип связи много-ко-многим возникает, если связаны поля, частично входящие в первичный ключ одной и другой таблицы. Например, поле «Наименование продукта» в таблице «Заказы» и поле «Наименование продукта» в таблице «Отчисления». Продукт может быть заказан несколькими клиентами, а отчисления по продукту идут разным специалистам за каждую продажу продукта (если таблица «Отчисления» имеет два поля в первичном ключе – название продукта и специалист или название продута и менеджер).

Выше рассмотрены способы связывания таблиц при помощи полей, входящих в первичный ключ. Однако существует другой способ связывания таблиц, в связи с одной стороны могут участвовать поля, не входящие в первичный ключ, а с другой стороны – поля входящие в первичный ключ. Это делается при помощи вторичных или внешних ключей (foreign key ). Вторичный ключ строится по полям, не входящим в первичный ключ.

Таким образом, при определении отношения, одна таблица осуществляет связь используя поля, входящие в первичный ключ, а другая – может использовать все поля первичного ключа, их часть, или поля, не входящие в первичный ключ.

В отличие от отношений, основанных только на первичном ключе, отношения, построенные на использовании вторичного ключа, называются потенциальными. Разработчик БД сам решает, использовать такое связывание или нет.

Отношение много-к-одной по сути является перевёрнутым отношением одна-ко-многим. Значения в полях связи должна определять таблица, в которой используемые поля являются уникальными, то есть только одна запись может определять множество других.

Ссылочная целостность – это обеспечение соответствия значения внешнего ключа экземпляра дочерней сущности значениям первичного ключа в родительской сущности. Ссылочная целостность может контролироваться при всех операциях, изменяющих данные.

Хранимая процедура - это программа, объединяющая запросы, процедурную логику (операторы присваивания, ветвления и т.д.) и хранящиеся в базе данные. Этот механизм позволяет содержать вместе с данными достаточно сложные программы, выполняющие большой объём работ по обработке данных без передачи данных по сети и без взаимодействия с клиентом. В этом случае база данных может представлять собой функционально самостоятельный уровень приложения, который взаимодействует с другими уровнями для получения запросов и обновления данных.

Правила позволяют вызывать выполнение заданных действий при изменении или добавлении данных в БД и тем самым контролировать истинность помещаемых в неё данных. Обычно действие - это вызов определённой процедуры или функции. Правила могут ассоциироваться с полем или записью и, соответственно, срабатывать при изменении данных в конкретном поле или записи таблицы. Нельзя использовать правила при удалении данных. В отличие от ограничений, которые являются лишь средством контроля относительно простых условий корректности ввода данных, правила позволяют проверять и поддерживать сколь угодно сложные соотношения между элементами данных в БД.

Триггер – это предварительно определённое действие или последовательность действий, автоматически осуществляемых при выполнении операций обновления, добавления или удаления данных. Триггер является мощным инструментом контроля за изменением данных в БД, помогает программисту автоматизировать операции, которые должны выполняться в этом случае. Триггер выполняется после проверки правил обновления данных. Ни пользователь, ни приложение не могут активизировать триггер, он запускается автоматически, когда пользователь или приложение выполняют с БД определённые действия. Триггер включает в себя следующие компоненты:

* ограничения, для реализации которых созда1тся триггер;

* событие, которое будет характеризовать возникновение ситуации, требующей проверки ограничений. События чаще всего связаны с изменением состояния БД (например, добавление записи в таблицу), но могут учитываться и дополнительные условия (например, добавление записи только с отрицательным значением);

Использование триггеров при проектировании БД даёт следующие преимущества:

* триггеры всегда выполняются при совершении соответствующих действий. Разработчик продумывает использование триггеров при проектировании БД и может больше не вспоминать о них при разработке приложения для доступа к данным;

* при необходимости триггеры можно изменять централизованно непосредственно в БД. Пользовательские программы, работающие с этой БД не потребуют модернизации;

* система обработки данных, использующая триггеры, обладает лучшей переносимостью в архитектуру клиент-сервер за счёт меньшего объёма требуемых модификаций.

Нормализация отношений - это процесс построения оптимальной структуры таблиц и связей в реляционной БД. В процессе нормализации элементы данных группируются в таблицы, представляющие объекты и их взаимосвязи. Теория нормализации основана на том, что определённый набор таблиц обладает лучшими свойствами при включении, модификации и удалении данных, чем все остальные наборы таблиц, с помощью которых могут быть представлены те же данные.

Основные функции СУБД Прикладное программное обеспечение ППО, пользователи Система управления базами данных Операционная система База данных Обеспечение доступа ППО к базе данных Управление базой данных «железо»

СУБД Программные составляющие СУБД включают в себя ядро и сервисные средства (утилиты). ØЯдро СУБД – это набор программных модулей, необходимый и достаточный для создания и поддержания БД, то есть универсальная часть, решающая стандартные задачи по информационному обслуживанию пользователей. ØСервисные программы предоставляют пользователям ряд дополнительных возможностей и услуг, зависящих от описываемой предметной области и потребностей конкретного пользователя. Системой управления базами данных называют программную систему, предназначенную для создания на ЭВМ общей базы данных для множества приложений, поддержания её в актуальном состоянии и обеспечения эффективного доступа пользователей к содержащимся в ней данным в рамках предоставленных им полномочий.

Классификация СУБД По степени универсальности СУБД делят на два класса: 1. СУБД общего назначения (СУБД ОН) 2. специализированные СУБД (Сп. СУБД). Специализированные СУБД создаются в тех случаях, когда ни одна из существующих СУБД общего назначения не может удовлетворительно решить задачи, стоящие перед разработчиками. Причин может быть несколько: не достигается требуемого быстродействия обработки данных; необходима работа СУБД в условиях жёстких аппаратных ограничений; требуется поддержка специфических функций обработки данных. Сп. СУБД предназначены для решения конкретной задачи, а приемлемые параметры этого решения достигаются следующим образом: 1. за счёт знания особенностей конкретной предметной области, 2. путём сокращения функциональной полноты системы.

Классификация СУБД По методам организации хранения и обработки данных СУБД делят на Ø Централизованные Ø Распределённые. Первые работают с БД, которая физически хранится в одном месте (на одном компьютере). Это не означает, что пользователь может работать с БД только за этим же компьютером: доступ может быть удалённым (в режиме клиент–сервер). Большинство централизованных СУБД перекладывает задачу организации удалённого доступа к данным на сетевое обеспечение, выполняя только свои стандартные функции, которые усложняются за счёт одновременности доступа многих пользователей к данным. По модели данных различают иерархические, сетевые, реляционные, объектно-реляционные и объектно-ориентированные СУБД.

Требования к реляционным СУБД (по Кодду) 1. 2. 3. Явное представление данных (The Information Rule). Информация должна быть представлена в виде данных, хранящихся в ячейках. Данные, хранящиеся в ячейках, должны быть атомарны. Порядок строк в реляционной таблице не должен влиять на смысл данных. Гарантированный доступ к данным (Guaranteed Access Rule). К каждому элементу данных должен быть гарантирован доступ с помощью комбинации имени таблицы, первичного ключа строки и имени столбца. Полная обработка неизвестных значений (Systematic Treatment of Null Values). Неизвестные значения (NULL), отличные от любого известного значения, должны поддерживаться для всех типов данных при выполнении любых операций.

Требования к реляционным СУБД (по Кодду) 4. 5. Доступ к словарю данных в терминах реляционной модели (Dynamic On-Line Catalog Based on the Relational Model). Словарь данных должен сохраняться в форме реляционных таблиц, и СУБД должна поддерживать доступ к нему при помощи стандартных языковых средств. Полнота подмножества языка (Comprehensive Data Sublanguage Rule). Система управления реляционными базами данных должна поддерживать единственный язык запросов, который позволяет выполнять все операции работы к данным: операции определения данных, операции манипулирования данными, управление доступом к данным, управление транзакциями.

Требования к реляционным СУБД (по Кодду) 6. 7. Поддержка обновляемых представлений (View Updating Rule). Обновляемое представление должно поддерживать все операции манипулирования данными, которые поддерживают реляционные таблицы: операции выборки, вставки, модификации и удаления данных. Наличие высокоуровневых операций управления данными (High-Level Insert, Update, and Delete). Операции вставки, модификации и удаления данных должны поддерживаться не только по отношению к одной строке реляционной таблицы, но по отношению к любому множеству строк.

Требования к реляционным СУБД (по Кодду) 8. Физическая независимость данных (Physical Data Independence). Приложения не должны зависеть от используемых способов хранения данных на носителях, от аппаратного обеспечения компьютеров, на которых находится реляционная база данных. 9. Логическая независимость данных (Logical Data Independence). Представление данных в приложении не должно зависеть от структуры реляционных таблиц.

Требования к реляционным СУБД (по Кодду) 10. Независимость контроля целостности (Integrity Independence). Вся информация, необходимая для поддержания целостности, должна находиться в словаре данных. СУБД должна выполнять проверку заданных ограничений целостности и автоматически поддерживать целостность данных. 11. Независимость от распределенности (Distribution Independence). База данных может быть распределенной, может находиться на нескольких компьютерах, и это не должно оказывать влияние на приложения. 12. Согласование языковых уровней (Non-Subversion Rule). Не должно быть иного средства доступа к данным, отличного от стандартного языка работы с данными. Если используется низкоуровневый язык доступа к данным, он не должен игнорировать правила безопасности и целостности, которые поддерживаются языком более высокого уровня.

Требования к составу и функциям СУБД 1. Хранение, извлечение и обновление данных. 2. Каталог (ССД), доступный конечным пользователям. Обычно в системном каталоге хранятся следующие сведения: имена, типы и размеры элементов данных; имена связей; накладываемые на данные ограничения поддержки целостности; имена пользователей, которым предоставлено право доступа к данным; внешняя, концептуальная и внутренняя схемы и отображения между ними; статистические данные, например частота транзакций и счетчики обращений к объектам базы данных.

Преимущества наличия ССД ØИнформация о данных может быть централизованно собрана и сохранена, что позволит контролировать доступ к этим данным. ØМожно определить смысл данных, что поможет другим пользователям понять их предназначение. ØУпрощается общение, так как имеются точные определения смысла данных. ØВ системном каталоге также могут быть указаны один или несколько пользователей, которые являются владельцами данных или обладают правом доступа к ним. ØБлагодаря централизованному хранению избыточность и противоречивость описания отдельных элементов данных могут быть легко обнаружены. ØВнесенные в базу данных изменения могут быть запротоколированы. ØПоследствия любых изменений могут быть определены еще до их внесения, поскольку в системном каталоге зафиксированы все существующие элементы данных, установленные между ними связи, а также все их пользователи. ØМеры обеспечения безопасности могут быть дополнительно усилены. ØПоявляются новые возможности организации поддержки целостности данных. ØМожет выполняться аудит хранимой информации.

Системный словарь данных Oracle Хранит всю информацию о структуре, информационных объектах и отношениях в конкретной базе данных. Словарь данных представляет собой набор таблиц и вспомогательных объектов (индексов, кластеров, синонимов, представлений, последовательностей), информация о которых также хранится в таблицах словаря. Логически словарь данных разделяется на: üбазовые таблицы; üпредставления базовых таблиц; üдинамические таблицы и их представления. Всего словарь данных включает более 100 базовых таблиц, которые расположены в табличном пространстве SYSTEM и нигде более. Их имена включают символ "$" (поэтому его не рекомендуется использовать в названиях небазовых объектов), например: AUD$ – таблица audit-информации; FILE$ – таблица файлов; USER$ – таблица пользователей; IND$ – таблица индексов; OBJ$ – таблица объектов; SEG$ – таблица сегментов; SYN$ – таблица синонимов; TAB$ – таблица таблиц; TS$ – таблица табличных областей; VIEW$ – таблица представлений.

Работа с системным словарём Для получения информации из словаря данных пользователям предоставлены представления базовых таблиц. Они разбиты на три группы: DBA – представления, предназначенные пользователям, являющимися АБД, то есть которым присвоена роль DBA. По этим представлениям предоставляется наиболее полная информация из словаря данных; USER – представления, по которым каждый пользователь получает информацию о тех объектах, которыми владеет; ALL – представления, дающие каждому пользователю всю информацию об объектах, к которым ему разрешен доступ. Например: DBA/ALL/USER_INDEXES – все/доступные/пользовательские индексы; DBA/ALL/USER_IND_COLUMNS – все/доступные/пользовательские колонки индексов; DBA/ALL/USER_OBJECTS – все/доступные/пользовательские объекты; DBA/ALL/USER_SYNONYMS – все/доступные/пользовательские синонимы; DBA/ALL/USER_TABLES – все/доступные/пользовательские таблицы; DBA/ALL/USER_TAB_COLUMNS – все/доступные/пользовательские колонки таблиц; DBA/ALL/USER_TAB_PRIVS – все/доступные/пользовательские привилегии на таблицы; DBA/ALL/USER_VIEWS – все/доступные/пользовательские представления.

Работа с системным словарём Некоторые представления (по смыслу их применения) присутствуют только в одной или двух группах. Наиболее характерно это для DBA-представлений, например: DBA_DATA_FILES – данные о физических файлах базы и журналов; DBA/USER_FREE_SPACE – свободная память в табличных пространствах (вся и доступная конкретному пользователю); DBA_PROFILES – перечень вариантов "стоимости" системных ресурсов; DBA_ROLES – перечень определенных в базе данных ролей. Примеры извлечения данных из ССД: select table_name from user_tables; select * from all_views; select view_name from dba_views;

Работа с системным словарём Важное значение имеет синоним DICT к представлению DICTIONARY. По нему выбираются имена таблиц, представлений, синонимов словаря данных с описаниями, если таковые есть в базе данных. Приведем небольшой фрагмент: select * from dict; ALL_CATALOG Все таблицы, представления, синонимы, последовательности, доступные пользователю ALL_DB_LINKS Связи базы данных, доступные пользователю DBA_OBJECTS Все объекты в базе данных DBA_ROLES Все роли, которые существуют в БД USER_EXTENTS Экстенты, принадлежащие пользователю USER_VIEWS Определения представлений, принадлежащих пользователю DUAL Специальная таблица, содержащая один столбец DUMMY и одну строку DICT Синоним для DICTIONARY TABS Синоним для USER_TABLES

Работа с системным словарём АБД открыт доступ к этим таблицам, но работать на этом уровне, за исключением случаев КРАЙНЕЙ необходимости, НИКОГДА НЕ рекомендуется: вся информация словаря данных доступна через представления базовых таблиц; данные в базовых таблицах представлены без дублирования по правилам внутри системной упорядоченности, без расшифровки; количество, названия, размеры столбцов таблиц сделаны без учета достаточной наглядности; случайная, намеренная или еще по какой-либо причине КОРРЕКТИРОВКА содержимого базовых таблиц (даже в очевидных случаях, например, хранение данных о давно удаленных табличных пространствах), как правило, приводит к ПОВРЕЖДЕНИЮ словаря данных, то есть к ПОТЕРЕ всей базы данных. Редчайшее исключение представляет AUD$ (таблица аудиторской информации), из которой следует периодически удалять ненужные записи, поскольку при включенном audit-режиме эта таблица быстро наполняется и может переполнить табличное пространство SYSTEM.

Требования к составу и функциям СУБД 3. 4. 5. 6. 7. 8. 9. Поддержка транзакций. Служба управления параллельной работой. Службы восстановления. Службы контроля доступа к данным. Службы поддержки целостности данных. Службы поддержки независимости от данных. Вспомогательные службы.

Вспомогательные службы Обычно предназначены для оказания помощи АБД в эффективном администрировании базы данных. Некоторые примеры подобных утилит. Утилиты импортирования, предназначенные для загрузки базы данных из плоских файлов, а также утилиты экспортирования, которые служат для выгрузки базы данных в плоские файлы. Средства мониторинга, предназначенные для отслеживания характеристик функционирования и использования базы данных. Программы статистического анализа, позволяющие оценить производительность или степень использования базы данных. Инструменты реорганизации индексов, предназначенные для перестройки индексов в случае их переполнения. Инструменты сборки мусора и перераспределения памяти для физического устранения удаленных записей с запоминающих устройств, объединения освобожденного пространства и перераспределения памяти по мере необходимости.

Основные программные компоненты СУБД Процессор запросов. Преобразует запросы в последовательность низкоуровневых команд для диспетчера базы данных. Диспетчер базы данных. Принимает запросы и проверяет внешние и концептуальные схемы для определения тех концептуальных записей, которые необходимы для удовлетворения требований запроса. Затем вызывает диспетчер файлов для выполнения поступившего запроса. Диспетчер файлов. Манипулирует предназначенными для хранения данных файлами и отвечает за распределение доступного дискового пространства. Он создает и поддерживает список структур и индексов, определенных во внутренней схеме. Если используются хешированные файлы, то в его обязанности входит и вызов функций хеширования для генерации адресов записей.

Основные программные компоненты СУБД Препроцессор языка DML. Этот модуль преобразует внедренные в прикладные программы DML-операторы в вызовы стандартных функций базового языка. Для генерации соответствующего кода препроцессор языка DML должен взаимодействовать с процессором запросов. Компилятор языка DDL. Преобразует DDL-команды в набор таблиц, содержащих метаданные. Затем эти таблицы сохраняются в системном каталоге, а управляющая информация - в заголовках файлов с данными. Диспетчер словаря. Управляет доступом к системному каталогу и обеспечивает работу с ним. Системный каталог доступен большинству компонентов СУБД.

Основные программные компоненты СУБД Модуль контроля прав доступа. Этот модуль проверяет наличие у данного пользователя полномочий для выполнения затребованной операции. Процессор команд. После проверки полномочий пользователя для выполнения затребованной операции управление передается процессору команд. Средства контроля целостности. В случае операций, которые изменяют содержимое базы данных, средства контроля целостности выполняют проверку того, удовлетворяет ли затребованная операция всем установленным ограничениям поддержки целостности данных (например, требованиям, установленным для ключей). Оптимизатор запросов. Этот модуль определяет оптимальную стратегию выполнения запроса.

Основные программные компоненты СУБД Диспетчер транзакций. Осуществляет требуемую обработку операций, поступающих в процессе выполнения транзакций. Планировщик. Отвечает за бесконфликтное выполнение параллельных операций с базой данных. Он управляет относительным порядком выполнения операций, затребованных в отдельных транзакциях. Диспетчер восстановления. Гарантирует восстановление базы данных до непротиворечивого состояния при возникновении сбоев. В частности, он отвечает за фиксацию и отмену результатов выполнения транзакций. Диспетчер буферов. Отвечает за перенос данных между оперативной памятью и вторичным запоминающим устройством - например, жестким диском или магнитной лентой. Диспетчер восстановления и диспетчер буферов иногда (в совокупности) называют диспетчером данных, а сам диспетчер буферов - диспетчером кэша.

Основные объекты Oracle База данных (DATABASE) – объект, который находится на самом верхнем уровне физической организации базы данных Oracle находится объект, который так и называется: база данных (database). База данных состоит из словаря-справочника данных, собственно данных и различных вспомогательных объектов: файла параметров инициализации, управляющего файла, файла сегментов отката и двух файлов журнала транзакций. (Этот перечень может быть расширен, например, за счет копий управляющего файла). База данных может быть создана автоматически при инсталляции СУБД Oracle или вручную с помощью команды CREATE DATABASE. Табличная область (TABLESPACE) – область памяти, предназначенная для хранения всех объектов БД. Табличная область имеет имя и занимает один или более файлов операционной системы. Создается командой CREATE TABLESPACE. Иногда табличную область называют табличным пространством.

Основные объекты Oracle Пользователь (USER) – объект, обладающий возможностью создавать и использовать другие объекты Oracle, а также запрашивать выполнение функций сервера. К числу таких функций относятся организация сессии, изменение состояния сервера и базы данных, создание других объектов БД, запросы на выполнение операторов SQL и проч. В СУБД Oracle имя пользователя совпадает с именем схемы. Создается командой CREATE USER. Каждый объект БД принадлежит тому пользователю, который его создал, и находится в его схеме. Полное имя любого объекта БД (кроме базы данных, табличных областей и пользователей) состоит из имени схемы, в которой он создан, и собственно имени объекта, например: scott. emp Здесь scott – имя пользователя (схемы), emp – имя объекта (таблицы "Сотрудники"), а точка – это т. н. квалифицированная ссылка, разделяющая уровни определения.

Основные объекты Oracle Кластер (CLUSTER) – объект, задающий способ совместного хранения данных нескольких таблиц, содержащих информацию, обычно обрабатываемую совместно. Кластеризация таблиц позволяет уменьшить время выполнения выборки. Создается командой CREATE CLUSTER. Включает таблицы с данными. Таблица (TABLE) является базовой структурой реляционной модели. Как известно, вся информация в базе данных хранится в таблицах. Таблицы состоят из множества поименованных столбцов или атрибутов. Множество значений столбца определено с помощью ограничений целостности, то есть поддерживается ограниченная концепция домена (множества допустимых значений). Таблица может быть пустой или состоять из одной или более строк значений атрибутов. Строки значений атрибутов таблицы называют также записями или кортежами. Создается командой CREATE TABLE, может быть создана в кластере.

Основные объекты Oracle Индекс (INDEX) – это объект базы данных, создаваемый для повышения производительности выборки данных. Индекс создается для столбца (столбцов) таблицы и обеспечивает более быстрый доступ к данным этой таблицы за счет упорядочения данных столбца (столбцов) по значению. Создается командой CREATE INDEX. Кластеры, таблицы и индексы называются объектами, занимающими память, т. к. в них хранятся фактографические данные. Им при создании выделяется определенный объем памяти (один или несколько экстентов), который может быть увеличен при добавлении в них данных. Экстент (extent) – это непрерывная область памяти в табличном пространстве. Все экстенты, относящиеся к одному объекту, образуют сегмент (segment). Кластер Таблица Индекс

Основные объекты Oracle Представление (VIEW) – это поименованная, динамически поддерживаемая сервером выборка данных из одной или нескольких таблиц. В основе представления лежит оператор SELECT, который называется базовым запросом представления. Базовый запрос определяет видимые пользователем данные. Представление позволяет ограничить данные, которые пользователь может модифицировать. Данные в представлении не хранятся: сервер формирует представление каждый раз при обращении к нему (это называется материализация представления). Используя представления, администратор безопасности может ограничить доступную пользователям часть базы данных только теми данными, которые реально необходимы им для выполнения работы. Создается командой CREATE VIEW. Последовательность (SEQUENCE) – это объект, обеспечивающий генерацию уникальных номеров в условиях многопользовательского асинхронного доступа. Обычно элементы последовательности используются для вставки уникальных идентификационных номеров для элементов таблиц базы данных. Создается командой CREATE SEQUENCE.

Основные объекты Oracle Синоним (SYNONYM) – это альтернативное имя или псевдоним объекта Oracle, который позволяет пользователям базы данных иметь доступ к данному объекту. Синоним может быть частным и общим. Общий (public) синоним позволяет всем пользователям базы данных обращаться к соответствующему объекту по альтернативному имени. При этом имя схемы для обращения к объекту не надо указывать, даже если Вы подключились не как владелец объекта, а из другой схемы. Создается командой CREATE SYNONYM. Роль (ROLE) – именованная совокупность привилегий, которые могут быть предоставлены пользователям или другим ролям. Используется для эффективного управления разграничением доступа к данным. Oracle поддерживает несколько стандартных или предопределенных ролей (DBA, CONNECT, RESOURCE и др.). Создается командой CREATE ROLE.

Основные объекты Oracle Специфичными для распределенных систем являются такие объекты Oracle как снимок и связь базы данных. Снимок (SNAPSHOT) – локальная копия таблицы удаленной базы данных, которая используется либо для тиражирования (копирования) всей или части таблицы, либо для тиражирования результата запроса данных из нескольких таблиц. Снимки могут быть модифицируемыми или предназначенными только для чтения. Снимки только для чтения возможно периодически обновлять, отражая изменения основной таблицы. Изменения, сделанные в модифицируемом снимке, распространяются на основную таблицу и другие копии. Создается командой CREATE SNAPSHOT. Связь базы данных (DATABASE LINK) – это объект базы данных, который позволяет обратиться к объектам удаленной базы данных. Имя связи базы данных можно рассматривать как ссылку на параметры механизма доступа к удаленной базе данных (имя узла, протокол и т. п.). Использование одного имени упрощает работу с объектами удаленной базы данных. Создается командой CREATE DATABASE LINK.

Основные объекты Oracle Для программирования алгоритмов обработки данных, поддержки сложных правил целостности данных Oracle использует процедурные объекты: Процедура (PROCEDURE) – это подпрограмма на языке PL/SQL, предназначенная для решения конкретной задачи обработки данных. Создается командой CREATE PROCEDURE. Функция (FUNCTION) – это подпрограмма на языке PL/SQL, предназначенная для решения конкретной задачи и возвращающая конкретное значение. Создается командой CREATE FUNCTION. Пакет (PACKAGE) – это поименованный, структурированный набор переменных, процедур и функций, связанных единым функциональным замыслом. Пакет состоит из спецификации и тела пакета. Спецификация содержит описания внешних переменных, констант, типов и подпрограмм, а тело пакета – реализацию подпрограмм и описание внутренних переменных, констант и типов, которые доступны только внутри пакета. Спецификация пакета создается командой CREATE PACKAGE, а тело пакета – CREATE PACKAGE BODY. Триггер (TRIGGER) – это хранимая процедура, которая автоматически запускается тогда, когда происходит связанное с триггером событие. Обычно события связаны с выполнением операторов INSERT, UPDATE или DELETE в некоторой таблице. Создается командой CREATE TRIGGER.

Физическая структура базы данных Oracle Параметры среды: $ORACLE_HOME – имя домашней директории Oracle. $ORACLE_SID – имя базы данных Oracle. База данных Oracle включает: Управляющие файлы (ctrl 1$ORACLE_SID. ctl, ctrl 2$ORACLE_SID. ctl, . .) Файл параметров запуска экземпляра init$ORACLE_SID. ora Файл параметров конфигурации базы config$ORACLE_SID. ora Журнальные файлы регистрации изменений (log 1$ORACLE_SID. dbf, log 2$ORACLE_SID. dbf, . .) Системное табличное пространство (SYSTEM, system$ORACLE_SID. dbf) Временное табличное пространство (TEMP, temp$ORACLE_SID. dbf) Табличное пространство для данных пользователей (USER, user$ORACLE_SID. dbf)

Структуры оперативной памяти Oracle SGA – это память, используемая всеми процессами экземпляра. Существует всего одна SGA для экземпляра. Изменения, сделанные в элементах SGA для одного процесса, немедленно становятся доступными для всех процессов, функционирующих в составе этого экземпляра. Создаваемая при запуске экземпляра Oracle, SGA имеет фиксированный размер. Она существует до тех пор, пока экземпляр не будет завершен вручную, или случится перезагрузка операционной системы, или произойдет аварийное завершение (крах) собственно Oracle. Основными внутренними структурами SGA являются: кеш буферов данных (Database Buffer Cache), то есть набор свободных, считанных и модифицированных блоков данных, в которых размещается информация из базы; буфер журнала транзакций (Redo Log Buffer); разделяемый (общий) буферный пул (Shared Buffer Pool).

Структуры оперативной памяти Oracle. SGA Кеш буферов данных содержит два списка: список наименее используемых в данный момент блоков (LRU – least_recently_used), куда входят считанные с диска, но еще не модифицированные блоки, а также свободные буферы данных; список модифицированных (dirty – "грязный"), но еще не записанных на диск блоков. Обратите внимание: обмен "диск-память" всегда производится блоками вне зависимости от их заполненности записями данных и от количества измененных при обработке записей; при обращении к данным Oracle сначала проверяет, имеются ли требуемые данные в кеше буферов, и, только если их нет, обращается к диску; считанные с диска блоки данных попадают в начало списка LRU. Если они затем модифицируются, то Oracle их переводит в список "грязных" блоков для последующей записи на диск; при недостатке в кеше свободных буферов для выполнения очередного запроса Oracle удаляет блоки с "хвоста" списка LRU, как наименее активно используемые, и на их место считывает с диска требуемые блоки данных.

Структуры оперативной памяти Oracle. SGA Буфер журнала регистрации изменений представляет собой циклически используемую память. В этот буфер поступают все изменения, происходящие в базе с пользовательскими, системными, служебными данными. Поскольку журнал регистрации изменений предназначен для восстановления состояния базы данных после аварийных ситуаций, записи журнала несут в себе "старое" и "новое" значения изменившихся элементов, в частности целиком записи данных после операций вставки их в базу или удаления из БД. Если обработка данных производится так интенсивно, что буфер журнала переполняется, то есть если процесс LGWR (процесс записи в журнал) не успевает переносить данные из буфера на диск, Oracle начинает сдерживать пользовательские процессы. Разделяемый (общий) буферный пул включает в себя: 1. кеш словаря (Dictionary Cache): хранит в себе наиболее часто (в текущей работе) используемые сведения из системного словаря данных, а именно: названия таблиц и представлений, имена столбцов и типы данных, привилегии и роли пользователей, права доступа к объектам базы данных и др. 2. разделяемую (общую) область SQL и PL/SQL (Shared SQL and PL/SQL), которая известна также как "библиотечный кеш" (library cache): включает в себя набор курсоров, то есть структур памяти, в которых хранятся результаты синтаксический разбора и планы выполнения SQL-предложений и блоков PL/SQL.

Структуры оперативной памяти Oracle. PGA представляет собой область оперативной памяти, выделяемую для обеспечения функционирования отдельного процесса. Имеет место одна и только одна целиком выделяемая процессу и независимая от других процессов PGA для каждого процесса экземпляра. Размер PGA может динамически увеличиваться в процессе функционирования. PGA часто называют глобальной областью процесса (Process Global Area). Когда процесс Oracle нормально завершается, вся память PGA возвращается операционной системе. PGA процесса Oracle-сервера включает в себя: область стека, содержащую переменные и служебную информацию о сеансе; частную SQL-область, которую иногда называют "Глобальной областью пользователя" (UGA – User Global Area), в которой производится синтаксический разбор SQL-предложений и блоков PL/SQL. Эта область физически располагается в SGA (вариант архитектуры MTS) или в PGA (архитектура с выделенными серверами). Важно то, что рекурсивные сессии не получают свои собственные UGA, а разделяют UGA породившей их сессии; необязательная область сортировки (размером sort_area_size), которая как временная память требуется для хранения промежуточных результатов сортировки данных. Если выделенной памяти недостаточно для проведения сортировки, процесс использует временный сегмент соответствующего табличного пространства.

Процессы экземпляра Oracle Набор работающих с базой данных фоновых процессов и порожденная при запуске экземпляра SGA (Системная Глобальная Область) составляют экземпляр Oracle. Все процессы экземпляра функционируют на едином программном ядре ($ORACLE_HOME/bin/oracle) СУБД. Обычно процессы экземпляра определяют как фоновые (обслуживающие, вспомогательные, дополнительные) и серверные (содержательная обработка запросов). Минимально необходимым для функционирования Oracle является набор из следующих четырех фоновых процессов: ora_pmon_ – процесс мониторинга внутреннего состояния системы ora_dbwr_ – процесс записи данных в базу данных Oracle ora_lgwr_ – процесс записи в журнал регистрации изменений ora_smon_ – процесс системного мониторинга.

Процессы экземпляра Oracle 1. pmon – фоновый процесс-монитор. Он следит: за состоянием процессов в системе (в частности, он отслеживает обращение к серверу со стороны пользователей (connect) и запускает сервер-процессы); обнаруживает аварийные ситуации и "мертвые" блокировки сервер-процессов; освобождает ресурсы, то есть снимает блокировки; завершает транзакции, удаляет процессы из списка активных; восстанавливает состояние (rollback – откат) базы данных после ненормальных ситуаций завершения пользовательских процессов. 2. dbwr – фоновый процесс записи блоков данных в базу из списка модифицированных блоков в SGA. dbwr "пробуждается" к работе, если: длина списка модифицированных блоков превысила пороговое значение; в списке свободных буферов не хватает памяти для чтения новых блоков; истек очередной 3 -х секундный интервал времени; фоновый процесс записи в журнал lgwr сигнализирует о начале формирования очередной контрольной точки.

Процессы экземпляра Oracle 3. lgwr – фоновый процесс записи в журнал регистрации изменений в базе данных. Регистрация транзакций осуществляется следующим образом: по мере выполнения транзакции создаются небольшие записи, называемые элементами повтора (redo entries), в которых содержится информация, достаточная для воссоздания изменений, вносимых транзакцией. элементы повтора транзакции временно сохраняются в буфере журнала повтора. когда запрашивается завершение транзакции, процесс lgwr считывает необходимые элементы повтора из буфера журнала транзакций и записывает их в журнал транзакций базы данных. Транзакция считается завершенной, когда процесс lgwr запишет элемент повтора транзакции в журнал транзакций и сделает запись о ее завершении в журнале транзакций. Данные из SGA-буфера переносятся на диск в следующих случаях: выполнена операция COMMIT фиксации изменений очередной транзакции; истек очередной 3 -х секундный интервал времени; буфер журнала в SGA заполнен на одну треть своей емкости; процесс dbwr записал на диск очередную порцию модифицированных буферов.

Процессы экземпляра Oracle 4. smon – обязательный процесс системного мониторинга выполняет: автоматическое восстановление (roll forward – накат вперед) базы данных, если ее предыдущий запуск завершился ненормально или аварийно; освобождение временных сегментов от ненужных данных; объединение смежных свободных экстентов табличных пространств в непрерывные участки. 5. arch – необязательный фоновый процесс архивирования файлов оперативных журналов регистрации изменений в базе данных. Место копирования (диск, лента, . . .) определяется параметром log_archive_dest в файле init. ora. Если процесс arch не успел заархивировать очередной журнальный файл (например, переполнена файловая система и не хватает места, чтобы разместить файл-архив), а требуется на него переключение, Oracle приостанавливает функционирование, выполняя только транзакции, не связанные с ведением журнала.

Процессы экземпляра Oracle 6. ckpt – необязательный вспомогательный процесс записи контрольной точки в оперативный журнал фиксации изменений. Обычно контрольные точки записывает lgwr. Процесс ckpt (checkpoint_process = true в файле init. ora) лишь освобождает lgwr от этой функции. 7. reco – (полу) обязательный процесс, ответственный за связи с удаленными базами данных. Процесс reco можно не запускать (в init. ora параметр disributed_transaction = 0), но тогда экземпляр не сможет использовать ни одной "связи между базами данных". 8. snp. X – от одного до десяти процессов автоматического обновления снапшотов локальной базы. Количество задается в init. ora параметром snapshot_refresh_processes, а параметр snapshot_refresh_interval определяет регулярность их включения. Процессы snp. X можно отнести к серверным, поскольку они, связываясь с другими (в частности с той же самой) базами данных, работают с пользовательской информацией в базе данных.

Процессы экземпляра Oracle 9. db. XX – дополнительные процессы записи в базу данных. Если узким местом производительности базы является ввод/вывод, а база физически размещается на нескольких дисках, рекомендуется запустить несколько дополнительных процессов записи (в среднем, по одному на каждый отдельный диск). Количество дополнительных db. XX определяется параметром db_writers. 10. d. XXX – процессы диспетчеры в варианте архитектуры MTS с разделяемыми серверами. Количество функционирующих в данный момент диспетчеров зависит от напряженности работы Oracle, но не превышает заданного параметром mts_max_dispatchers числа. Каждый диспетчер обслуживает только конкретный сетевой или внутренний протокол. Например: mts_dispatchers="tcp, 1" mts_dispatchers="ipc, 1"

Процессы экземпляра Oracle 11. s. XXX – процессы серверы в варианте архитектуры MTS с разделяемыми серверами. Количество функционирующих в данный момент серверов зависит от напряженности работы Oracle, но не превышает заданного параметром mts_max_servers числа. Стартуя, Oracle запускает несколько (mts_servers) сервер-процессов, а затем то мере возрастания или снижения нагрузки запускает или завершает дополнительные процессы. 12. oracle – выделенный процесс сервера, индивидуально обслуживающий какой-то пользовательский (в частном случае и процесс snp) процесс, вполне возможно функционирующий на другой машине. 13. loc. X – от одного до десяти процессов блокировок, обеспечивающих взаимное управление ресурсами в среде параллельного сервера.

Архитектуры серверов Oracle Однопользовательский вариант (пример среды – MS DOS) характеризуется тем, что: происходит объединение пользовательского процесса, процесса сервера и фоновых процессов в рамки одной задачи операционной системы; возможен запуск только одной базы данных и одного экземпляра Oracle; в распределенной базе данных не может функционировать в качестве сервера. Многопользовательский вариант (пример среды – UNIX) характеризуется тем, что: происходит разделение пользовательских, серверных и фоновых процессов на отдельные задачи операционной системы; есть возможность запуска нескольких баз данных и экземпляров Oracle; возможно функционирование в качестве сервера в распределенной БД.

Архитектуры серверов Oracle Однозадачный вариант (пример среды – Net. Ware) характеризуется тем, что: пользовательский процесс и процесс сервера образуют единую задачу операционной системы, называемую задачей пользователя; в каждый момент времени на сервере может выполняться только одна задача пользователя; возможен доступ многих пользователей через Net 8 (SQL*Net) к базе данных. Двухзадачный вариант (пример среды – UNIX) характеризуется тем, что: пользовательский процесс и процесс обслуживающего сервера представляют собой полностью самостоятельные процессы операционной системы вплоть до того, что могут функционировать на разных машинах и платформах (архитектура "клиент-сервер"); в каждый момент времени на сервере может функционировать несколько (много) пользовательских и серверных процессов; возможен доступ многих пользователей через Net 8 (SQL*Net) к локальным базам данных и локальных пользователей к удаленным базам данных.

Архитектуры серверов Oracle Однонитевая архитектура, или вариант с выделенными (Dedicated) серверами: жесткое закрепление за каждым пользовательским процессом процесса сервера, который выполняет его и только его запросы к базе данных. Параллельный сервер (среда – кластерные системы, например, RM-1000): на каждом процессоре кластера функционирует свой экземпляр Oracle, включающий отдельную область SGA и набор системных процессов; каждый экземпляр ведет свои собственные журналы регистрации изменений; база данных и управляющие файлы являются общими для всех экземпляров; к каждому экземпляру возможно подключение многих пользователей; каждый экземпляр адресуем отдельно, и может самостоятельно работать как часть распределенной системы.

Архитектуры серверов Oracle Многонитевая архитектура (MTS – Multi-Tread Server), вариант с разделяемыми серверами характеризуется: наличием процессов-диспетчеров, принимающих запросы от пользовательских процессов и возвращающих им результаты выполненных сервер-процессами запросов; наличием в SGA: одной входной очереди для всех сервер-процессов, в которую диспетчеры помещают заявки на обслуживание от пользователей; нескольких выходных очередей, закрепленных по одной за каждым процессом диспетчером, куда серверы помещают и откуда диспетчеры передают пользователям результаты выполнения запросов к базе данных; переносом в SGA экземпляра Oracle частных SQL-областей, ранее размещавшихся в PGA процессов серверов; динамическим изменением в зависимости от текущей нагрузки системы количества функционирующих диспетчеров и сервер-процессов; ни диспетчеры, ни серверы не закрепляются за какими-либо процессами пользователей: запросы обслуживаются по мере поступления; возможностью одновременного функционирования выделенных и разделяемых серверов.

Структура реляционной БД.

Типы БД.

Основные возможности СУБД.

Понятие базы данных, СУБД.

План

ТЕРМИНЫ : база данных, система управления базами данных (СУБД),

реляционная БД, запись БД, поле БД, ключевое поле БД, таблица БД, запрос БД, форма БД, отчёт БД, макрос БД, модуль БД.

Одной из основных сфер использования компьютера в современном информационном обществе является хранение и обработка больших объёмов информации.

База данных (БД )- это систематизированное хранилище информации определённой предметной области, к которому могут иметь доступ различные пользователи для решения своих задач.

Далее на примере одной из самых распространенных систем управления базами данных - Microsoft Access входит в состав популярного пакета Microsoft Office - мы познакомимся с основными типами данных, способами создания баз данных и с приемами работы с базами данных.

База данных - организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ и постоянного применения. Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной базы данных хранятся на множестве компьютеров, объединенных между собой сетью, то такая БД называется распределенной базой данных.

Система управления базой данных (СУБД ) – это программное обеспечение, позволяющее создавать БД, обновлять хранимую в ней информацию и обеспечивающее удобный доступ к ней с целью просмотра и поиска.

В настоящее время наибольше распространение получили СУБД Microsoft Access, FoxPro , dBase . СУБД делятся по способу организации баз данных на сетевые, иерархические и реляционные СУБД.

Основные возможности СУБД:

ü Обновление, пополнение и расширение БД.

ü Высокая надёжность хранения информации.

ü Вывод полной и достоверной информации на запросы.

ü Средства защиты информации в БД.

БД бывают фактографическими и документальными .

В фактографических БД содержатся краткие сведения об описываемых объектах, представленные в строго определённом формате. В БД библиотеки хранятся библиографические сведения о каждой книге: год издания, автор, название и пр. В БД отдела кадров учреждения хранятся анкетные данные сотрудников: ф., и, о, год и место рождения и пр. БД законодательных актов в области уголовного права, к примеру, будет включать в себя тексты законов; БД современной музыки – тесты и ноты песен, справочную информацию о композиторах, поэтах, исполнителях, звуковые записи и видеоклипы. Следовательно, документальная БД содержит обширную информацию самого разного типа: текстовую, звуковую, мультимедийную.

Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной БД хранятся на множестве компьютеров, объединённых между собой сетью, то такая БД называется распределённой базой данных .

Известны три основных типа организации данных в БД и связей между ними:

· иерархический (в виде дерева),

· сетевой,

· реляционной .

В иерархической БД существует упорядоченность элементов в записи, один элемент считается главным, остальные – подчинёнными. Поиск какого-либо элемента данных в такой системе может оказаться трудоёмким из-за необходимости последовательно проходить несколько иерархических уровней.

Пример : иерархическую БД образует каталог файлов, хранимый на диске.

Такой же БД является родовое генеалогическое древо.

Сетевая БД отличается большей гибкостью, в ней существует возможность устанавливать дополнительно к вертикальным связям горизонтальные связи.

Реляционными БД (от англ. relation – «отношение») называются БД, содержащие информацию в виде прямоугольных таблиц. Согласно этому подходу, такая таблица называется отношением. Каждая строка таблицы содержит информацию об одном отдельном объекте описываемой в БД предметной области, а каждый столбец – определённые характеристики (свойства, атрибуты) этих объектов. Реляционная база данных, по сути, представляет собой двумерную таблицу . В реляционной БД используются четыре основных типов полей:

· Числовой,

· Символьный (слова, тексты, коды и т.д.),

· Дата (календарные даты в форме «день/месяц/год»),

· Логический (принимает два значения: «да» - «нет» или «истина» - «ложь»).

Окно базы данных содержит следующие элементы:

ü Кнопки : «СОЗДАТЬ» , «ОТКРЫТЬ» , «КОНСТРУКТОР» и т. д. Кнопки открывают объект в определенном окне или режиме.

ü Кнопки объектов . (Корешки выбора объектов, ярлычки.) «Таблица» , «Форма» и т. д. Кнопки объектов выводят список объектов, которые могут быть открыты или закрыты.

ü Список объектов. Выводит список объектов, выбираемых пользователем. В нашем варианте список пока пуст.

Основные объекты баз данных:

· Таблица – это объект, предназначенный для хранения данных в виде записей (строк) и полей (столбцов). Обычно каждая таблица используется для хранения сведений по одному конкретному вопросу.

· Форма – это объект Microsoft Access, предназначенный, в основном, для ввода данных. В форме можно разместить элементы управления, применяемые для ввода, изображения и изменения данных в полях таблицы.

· Запрос – объект, позволяющий получить нужные данные из одной или нескольких таблиц.

· Отчет – объект базы данных Microsoft Access, предназначенный для печати данных.

· Макросы – автоматизируют стандартные действия.

· Модули – автоматизируют сложные операции, которые нельзя описать макросами.