Скорость интернета - что это такое и в чем измеряется, как увеличить скорость интернет соединения. Большая энциклопедия нефти и газа

Думаете, скорость вашего широкополосного подключения к интернету быстрая? Осторожно, после прочтения данной статьи ваше отношение к слову "быстро" относительно передачи данных может сильно измениться. Представьте объем вашего жесткого диска на компьютере и определитесь, какая скорость его заполнения является быстрой -1 Гбит/с или может быть 100 Гбит/с, тогда 1 терабайтный диск заполнится уже через 10 сек? Если бы книга рекордов Гиннеса констатировала рекорды по скорости передачи информации, то ей бы пришлось обработать все приведенные далее эксперименты.

В конце ХХ в., то есть еще относительно недавно, скорости в магистральных каналах связи не превышали десятков Гбит/с. В то же время пользователи интернета с помощью телефонных линий и модемов наслаждались скоростью в десятки килобит в секунду. Интернет был по карточкам и цены за услугу были немаленькие - тарифы приводились, как правило, в у.е. На загрузку одной картинки порой даже уходило несколько часов и как точно подметил один из пользователей интернета того времени: "Это был интернет, когда за одну ночь можно было только несколько женщин в интернете посмотреть". Такая скорость передачи данных медленная? Возможно. Однако стоит помнить, что все в мире относительно. Например, если бы сейчас был 1839 г., то неким подобием интернета для нас бы представляла самая протяженная в мире оптическая телеграфная линии связи Петербург-Варшава. Длина этой линии связи для ХIХ века кажется просто заоблачной - 1200 км, состоит она из 150 ретранслирующих транзитных вышек. Любой гражданин может воспользоваться этой линией и послать "оптическую" телеграмму. Скорость "колоссальная" - 45 символов на расстояние 1200 км можно передать всего за 22 минуты, никакая конная почтовая связь здесь и рядом не стояла!

Вернемся в ХХI век и посмотрим, что в сравнении с описанными выше временами мы сегодня имеем. Минимальные тарифы у крупных провайдеров проводного интернета исчисляются уже не единицами, а несколькими десятками Мбит/с; смотреть видео с разрешением менее 480pi мы не уже хотим, такое качество картинки нас уже не устраивает.

Посмотрим среднюю скорость интернета в разных странах мира. Представленные результаты составлены CDN-провайдером Akamai Technologies. Как видно, даже в республике Парагвай уже в 2015 году средняя скорость соединения по стране превышала 1.5 Мбит/с (кстати, Парагвай имеет близкий для нас русских по транслитерации домен - *.py).

На сегодняшний день средняя скорость интернет соединений в мире составляет 6.3 Мбит/с . Наибольшая средняя скорость наблюдается в Южной Корее 28.6 Мбит/с, на втором месте Норвегия -23.5 Мбит/с, на третьем Швеция - 22.5 Мбит/с. Ниже приведена диаграмма, показывающая среднюю скорость интернета по лидирующим в этом показателе странам на начало 2017 года.

Хронология мировых рекордов скоростей передачи данных

Поскольку сегодня неоспоримым рекордсменом по дальности и скорости передачи являются волоконно-оптические системы передачи, акцент будет делаться именно на них.

С каких скоростей все начиналось? После многочисленных исследований в период с 1975 по 1980 гг. появилась первая коммерческая волоконно-оптическая система, работающая с излучением на длине волны 0,8 мкм на полупроводниковом лазере на основе арсенида галлия.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с . При такой скорости, можно организовать одновременную передачу до 94 простейших цифровых телефонных каналов.

Максимальная скорость оптических систем передачи в экспериментальных исследовательских установках этого времени доходило до 45 Мбит/с , максимальное расстояние между регенераторами - 10 км .

В начале 1980-х передача светового сигнала проходила в многомодовых волокнах уже на длине волны 1,3 мкм с помощью InGaAsP-лазеров. Максимальная скорость передачи была ограничена значением 100 Мбит/с вследствие дисперсии.

При использовании одномодовых ОВ в 1981 году при лабораторных испытаниях добились рекордной для того времени скорости передачи 2 Гбит/с на расстоянии 44 км .

Коммерческое внедрение таких систем в 1987 году обеспечивало скорость до 1,7 Гбит/с с протяженностью трассы 50 км .

Как можно было заметить, оценивать рекорд системы связи стоит не только по скорости передачи, здесь также крайне важно на какое расстояние данная система способна обеспечить данную скорость. Поэтому для характеристики систем связи обычно пользуются произведением общей пропускной способности системы B [бит/с] на ее дальность L [км].


В 2001 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с), но дальность передачи была ограничена значением 117 км (B∙L = 1278 Тбит/с∙км).

В этом же году был проведен эксперимент по организации 300 каналов со скоростью 11,6 Гбит/с каждый (общая пропускная способность 3.48 Тбит/с ), длина линии составила свыше 7380 км (B∙L = 25 680 Тбит/с∙км).

В 2002 г. была построена межконтинентальная оптическая линия протяженностью 250 000 км с общей пропускной способностью 2.56 Тбит/с (64 WDM канала по 10 Гбит/с, трансатлантический кабель содержал 4 пары волокон).

Теперь с помощью единственного оптоволокна можно одновременно передавать 3 миллиона! телефонных сигналов или 90 000 сигналов телевидения.

В 2006 г. Nippon Telegraph и Telephone Corporation организовали скорость передачи 14 триллион бит в секунду (14 Тбит/с ) по одному оптическому волокну при длине линии 160 км (B∙L = 2240 Тбит/с∙км).

В этом эксперименте они публично продемонстрировали передачу за одну секунду 140 цифровых HD фильмов. Величина 14 Тбит/с появилась в результате объединения 140 каналов по 111 Гбит/с каждый. Использовалось мультиплексирование с разделением по длине волны, а также поляризационное уплотнение.

В 2009 г. Bell Labs достигли параметра B∙L = 100 пета бит в секунду умножить на километр, преодолев, таким образом, барьер в 100 000 Тбит/с∙км.

Для достижения таких рекордных результатов исследователи из лаборатории Bell Labs в Villarceaux, Франция, использовали 155 лазеров, каждый из которых работает на своей частоте и осуществляет передачу данных на скорости 100 Гигабит в секунду. Передача осуществлялась через сеть регенераторов, среднее расстояние между которыми составляло 90 км. Мультиплексирование 155 оптических канала по 100 Гбит/с позволило обеспечить общую пропускную способность 15,5 Тбит/с на расстоянии 7000 км . Чтобы осмыслить значение этой скорости, представьте, что идет передача данных из Екатеринбурга во Владивосток со скоростью 400 DVD-дисков в секунду.

В 2010 г. NTT Network Innovation Laboratories добились рекорда скорости передачи 69.1 терабит в секунду по одному 240-километровому оптическому волокну. Используя технологию волнового мультиплексирования (WDM), они мультиплексировали 432 потока (частотный интервал составил 25 ГГц) с канальной скоростью 171 Гбит/с каждый.

В эксперименте применялись когерентные приемники, усилители с низким уровнем собственных шумов и с ультра-широкополосным усилением в С и в расширенном L диапазонах. В сочетании с модуляцией QAM-16 и поляризационного мультиплексирования, получилось достичь значения спектральной эффективности 6.4 бит/с/Гц.

На графике ниже видна тенденция развития волоконно-оптических систем связи на протяжении 35 лет с начала их появления.

Из данного графика возникает вопрос: "а что дальше?" Каким образом можно еще в разы повысить скорость и дальность передачи?

В 2011 г. мировой рекорд пропускной способности установила компания NEC, передав более 100 терабит информации в секунду по одному оптическому волокну. Этого объема данных, переданного за 1 секунду, достаточно, чтобы просматривать HD фильмы непрерывно в течение трех месяцев. Или это эквивалентно передаче за секунду содержимого 250 двухсторонних Blu-ray дисков.

101,7 терабит были переданы за секунду на расстояние 165 километров с помощью мультиплексирования 370 оптических каналов, каждый из которых имел скорость 273 Гбит/с.

В этом же году National Institute of Information and Communications Technology (Токио, Япония) сообщил о достижении 100-терабного порога скорости передачи посредством применения многосердцевинных ОВ. Вместо того чтобы использовать волокно только с одной световедущей жилой, как это происходит современных коммерческих сетях, команда использовали волокно с семью сердцевинами. По каждой из них осуществлялась передача со скоростью 15.6 Тбит/с, таким образом, общая пропускная способность достигла 109 терабит в секунду.

Как заявили тогда исследователи, использование многосердцевинных волокон пока является достаточно сложным процессом. Они имеют большое затухание и критичны к взаимным помехам, поэтому сильно ограничены по дальности передачи. Первое применение таких 100 терабитных систем будет внутри гигантских центров обработки данных компаний Google, Facebook и Amazon.

В 2011 г. команда ученых из Германии из технологического института Karlsruhe Institute of Technology (KIT) без использования технологии xWDM передала данные по одному ОВ со скоростью 26 терабит в секунду на расстояние 50 км . Это эквивалентно передачи в одном канале одновременно 700 DVD-дисков в секунду или 400 миллионов телефонных сигналов.

Начали появляться новые услуги, такие как облачные вычисления, трехмерное телевидение высокой четкости и приложения виртуальной реальности, что опять требовало беспрецедентной высокой емкости оптического канала. Для решения этой проблемы исследователи из Германии продемонстрировали применение схемы оптического быстрого преобразования Фурье для кодирования и передачи потоков данных со скоростью 26.0 Тбит/с. Для организации такой высокой скорости передачи была использована не просто классическая технология xWDM, а оптическое мультиплексирование с ортогональным частотным разделением каналов (OFDM) и соответственно декодирование оптических OFDM потоков.

В 2012 г. японская корпорация NTT (Nippon Telegraph and Telephone Corporation) и три ее партнера: фирма Fujikura Ltd., университет Hokkaido University и университет Technical University of Denmark установили мировой рекорд пропускной способности, передав 1000 терабит (1 Пбит / с ) информации в секунду по одному оптическому волокну на расстояние 52.4 км . Передача одного петабита в секунду эквивалентна передаче 5000 двухчасовых HD фильмов за одну секунду.

С целью значительного улучшения пропускной способности оптических коммуникационных систем, было разработано и протестировано волокно с 12-тью сердцевинами, расположенных особым образом в виде соты. В данном волокне благодаря его особой конструкции взаимные помехи между соседними сердцевинами, которые обычно являются главной проблемой в обычных многосердцевинных ОВ, значительно подавлены. В результате применения поляризационного мультиплексирования, технологии xWDM, квадратурной амплитудной модуляции 32-QAM и цифрового когерентного приема, ученые успешно повысили эффективность передачи в расчете на одну сердцевину более чем в 4 раза, в сравнении с предыдущими рекордами для многосердцевинных ОВ.

Пропускная способность составила 84.5 терабит в секунду на одну сердцевину (скорость канала 380 Гбит/с х 222 каналов). Общая пропускная способность на одно волокно составила 1.01 петабит в секунду (12 х 84.5 терабит).

Также в 2012 г. немного позднее исследователи из лаборатории NEC в Принстоне, Нью-Джерси, США, и Нью-Йоркского научно-исследовательского центра Corning Inc., успешно продемонстрировали сверхвысокую скорость передачи данных со скоростью 1.05 петабит в секунду. Данные передавались с помощью одного многосердцевинного волокна, которое состояло из 12 одномодовых и 2 маломодовых сердцевин.

Данное волокно было разработано исследователями Corning. Объединив технологии спектрального и поляризационного разделения с пространственным мультиплексированием и оптической системы MIMO, а также используя многоуровневые форматы модуляции, исследователи в результате достигли общей пропускной способности 1.05 Пбит/с, поставив, таким образом, новый мировой рекорд самой высокой скорости передачи по одному оптическому волокну.

Летом 2014 года рабочая группа в Дании, используя новое волокно, предложенное японской компанией Telekom NTT, установила новый рекорд -организовав с помощью одного лазерного источникаскорость в 43 Тбит/с . Сигнал от одного лазерного источника передавался по волокну с семью сердцевинами.

Команда Датского технического университета совместно с NTT и Fujikura ранее уже достигала самой высокой в мире скорости передачи данных в 1 петабит в секунду. Однако тогда были использованы сотни лазеров. Сейчас же рекорд в 43 Тбит/с был достигнут с помощью одного лазерного передатчика, что делает систему передачи более энергоэффективной.

Как мы убедились, в связи есть свои интересные мировые рекорды. Для новичков в этой области стоит отметить, что многие представленные цифры до сих пор не встречаются повсеместно в коммерческой эксплуатации, поскольку были достигнуты в научных лабораториях в единичных экспериментальных установках. Однако и сотовый телефон когда-то был прототипом.

Чтобы не перегружать ваш носитель информации, пока остановим текущий поток данных.

Продолжение следует…

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

Ключевые слова:

· скорость передачи данных

· биты в секунду

Скорость передачи данных – важнейшая характеристика линии связи. Изучив этот параграф, вы научитесь решать задачи, связанные с передачей данных по сети.

Единицы измерения

Вспомним, в каких единицах измеряется скорость в уже знакомых нам ситуациях. Для автомобиля скорость – это расстояние, пройденное за единицу времени; скорость измеряется в километрах в час или метрах в секунду. В задачах перекачки жидкости скорость измеряется в литрах в минуту (или в секунду, в час).

Неудивительно, что в задачах передачи данных скоростью будем называть количество данных, переданное по сети за единицу времени (чаще всего – за секунду).

Количество данных можно измерить в любых единицах количества информации: битах, байтах, Кбайтах и др. Но на практике скорость передачи данных чаще всего измеряют в битах в секунду (бит/с).

В скоростных сетях скорость обмена данными может составлять миллионы и миллиарды битов в секунду, поэтому используются кратные единицы: 1 кбит/c (килобит в секунду), 1 Мбит/c (мегабит в секунду) и 1 Гбит/c (гигабит в секунду).

1 кбит/с = 1 000 бит/с 1 Мбит/с = 1 000 000 бит/с 1 Гбит/с = 1 000 000 000 бит/с

Обратите внимание, что здесь приставки «кило-», «мега-» и «гига-» обозначают (как и в международной системе единиц СИ) увеличение ровно в тысячу, миллион и миллиард раз. Напомним, что в традиционных единицах измерения количества информации «кило-» означает увеличение в 1024 раза, «мега-» – в 1024 2 и «гига-» – в 1024 3 .

Задачи

Пусть скорость передачи данных по некоторой сети равна v бит/с. Это значит, что за одну секунду передаётся v битов, а за t секунд – v× t битов.

Задача 1 . Скорость передачи данных по линии связи 80 бит/с. Сколько байтов будет передано за 5 минут?

Решение . Как вы знаете, количество информации рассчитывается по формуле I = v× t . В данном случае v = 80 бит/с и t = 5 мин. Но скорость задана в битах в секунду , а время – в минутах , поэтому для получения правильного ответа нужно минуты перевести в секунды:

t = 5 × 60 = 300 с

и только потом выполнить умножение. Сначала получаем количество информации в битах:

I = 80 бит/c × 300 с = 24000 битов

Затем переводим его в байты:

I = 24000: 8 байтов = 3000 байтов

Ответ: 3000 байт.

Задача 2 . Скорость передачи данных по линии связи 100 бит/с. Сколько секунд потребуется на передачу файла размером 125 байтов?

Решение . Нам известна скорость передачи данных (v = 100 бит/с) и количество информации (I = 125 байтов). Из формулы I = v× t получаем

t = I : v.

Но скорость задана в битах в секунду, а количество информации – в байтах . Поэтому для того, чтобы «состыковать» единицы измерения, нужно сначала перевести количество информации в биты (или скорость в байты в секунду!):

I = 125 × 8 битов = 1000 битов.

Теперь находим время передачи:

t = 1000 : 100 = 10 с.

Ответ: 10 секунд.

Задача 3 . Какова средняя скорость передачи данных (в битах в секунду), если файл размером 200 байтов был передан за 16 с?

Решение . Нам известно количество информации (I = 200 байтов) и время передачи данных (t = 16 с). Из формулы I = v× t получаем

v = I : t.

Но объём файла задан в байтах , а скорость передачи нужно получить в битах в секунду. Поэтому сначала переведём количество информации в биты:

I = 200 × 8 битов = 1600 битов.

Теперь находим среднюю скорость

v = 1600 : 16 = 100 бит/с.

Обратите внимание, что речь идёт именно о средней скорости передачи, потому что во время обмена данными она могла изменяться.

Ответ: 100 бит/с.

1. В каких единицах измеряется скорость передачи данных в компьютерных сетях?

2. Что означают приставки «кило-», «мега-» и «гига-» в единицах измерения скорости передачи данных? Как вы думаете, почему эти приставки не такие, как в единицах измерения количества информации?

3. Какая формула используется для решения задач на скорость передачи данных?

4. Как вы думаете, в чём заключается главная причина ошибок в решении таких задач?

1. Сколько байтов информации будет передано за 24 секунды по линии связи со скоростью 1500 бит в секунду?

2. Сколько байтов информации будет передано за 15 секунд по линии связи со скоростью 9600 бит/c?

3. Сколько байтов информации передается за 16 секунд по линии связи со скоростью 256000 бит в секунду?

4. Сколько секунд потребуется на передачу файла размером 5 Кбайт по линии связи со скоростью 1024 бит/с?

5. Сколько секунд потребуется на передачу файла размером 800 байт по линии связи со скоростью 200 бит/с?

6. Сколько секунд потребуется на передачу файла размером 256 Кбайт по линии связи со скоростью 64 байта в секунду?

7. Книжка, в которой 400 страниц текста (каждая страница содержит 30 строк по 60 символов в каждой), закодирована в 8-битной кодировке. Сколько секунд потребуется для передачи этой книжки по линии связи со скоростью 5 кбит/c?



8. Сколько бит в секунду передается по линии связи, если файл размером 400 байт был передан за 5 с?

9. Сколько бит в секунду передается по линии связи, если файл размером 2 Кбайта был передан за 8 с?

10. Сколько байтов в секунду передается по линии связи, если файл размером 100 Кбайт был передан за 16 с?

Самое важное в главе 1: · Информатика изучает широкий круг вопросов, связанных с автоматической обработкой данных. · Человек получает информацию об окружающем мире с помощью органов чувств. · Данные – это зафиксированная (закодированная) информация. Компьютеры работают только с данными. · Сигнал – это изменение свойств носителя информации. Сообщение – это последовательности сигналов. · Основные информационные процессы – это передача и обработка информации (данных). · Минимальная единица измерения количества информации – это бит. Так называется количество информации, которое можно закодировать с помощью одной двоичной цифры («0» или «1»). · С помощью i битов можно закодировать 2 i разных вариантов. · 1 байт содержит 8 битов. · В единицах измерения количества информации используются двоичные приставки: 1 Кбайт = 2 10 байтов = 1024 байтов 1 Мбайт = 2 20 байтов 1 Гбайт = 2 30 байтов · Информационный объем текста определяется длиной текста и мощностью алфавита. Чем больше символов содержит алфавит, тем больше будет информационный объём одного символа (и текста в целом). · Большинство рисунков кодируется в компьютерах в растровом формате, то есть, в виде набора точек разного цвета (пикселей). Пиксель – это наименьший элемент рисунка, для которого можно задать свой цвет. · Информационный объем рисунка определяется количеством пикселей и количеством используемых цветов. Чем больше цветов используется в рисунке, тем больше будет информационный объём одного пикселя (и рисунка в целом). · Скорость передачи данных обычно измеряется в битах в секунду (бит/с). · В единицах измерения скорости передачи данных используются десятичные приставки: 1 кбит/с = 1 000 бит/c 1 Мбит/с = 1 000 000 бит/c 1 Гбит/с = 1 000 000 000 бит/c

Конечно, вместо 0 и 1 можно использовать два любых знака.

Английское слово bit – это сокращение от выражения binary digit , «двоичная цифра».

Существует и другой тип языков, к которому относятся китайский, корейский, японский языки. В них используются иероглифы , каждый из которых обозначает отдельное слово или понятие.

Английское слово pixel – это сокращение от picture element , элемент рисунка.

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Объем текстового файла

Кодирование информации в ПК заключается в том, что каждому символу ставится в соответствие уникальный двоичный код. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.

КОИ-8: 1 символ - 1 байт = 8 бит

UNICODE : 1 символ - 2 байта = 16 бит

ЗАДАЧА 1. Считая, что каждый символ кодируется одним байтом, оцените информационный объем сообщения:

РЕШЕНИЕ: Считаем количество символов в сообщении с учетом пробелов и знаков препинания. Получаем N =35. Т.к. один символ кодируется 1 байтом, то всё сообщение будет занимать в памяти компьютера 35 байт.

ЗАДАЧА 2. Оценить информационный объем сообщения в Unicode : Без труда не вытащишь рыбку из пруда!

РЕШЕНИЕ: Количество символов в сообщении 35. Т.к. в Unicode один символ кодируется 2 байтами, то всё сообщение будет занимать в памяти компьютера 70 байт.

ЗАДАЧА 3. Определить информационный объем книги (в Мбайтах) подготовленной на компьютере, состоящей из 150 страниц (каждая страница содержит 40 строк, 60 символов в каждой строке).

РЕШЕНИЕ:

1) Подсчитаем количество символов в книге 40 * 60 * 150 = 360 000

2) Информационный объем книги составит 360 000 * 1 байт = 360 байт

3) Переведем в заданные единицы 360 000 байт / 1024 = 351,5625 Кбайт / 1024 = 0,34332275 Мбайт

Длина фразы составляет примерно 40 символов. Следователь но, ее объем можно приблизительно оценить в 40 х 2 = 80 байт. Такого варианта ответа нет, попробуем перевести результат в би ты: 80 байт х 8 = 640 бит. Наиболее близкое значение из пред ложенных — 592 бита. Заметим, что разница между 640 и 592 составляет всего 48/16 = 3 символа в заданной кодировке и его можно считать несущественным по сравнению с длиной строки.

З амечание: Подсчетом символов в строке можно убедиться, что их ровно 37 (включая точку и пробелы), поэтому оценка 592 бита = 74 байта, что соответствует ровно 37 символам в двухбайтовой кодировке, является точной.

Алфавит – это набор букв, символов препинания, цифр, пробел и т.п.

Полное число символов в алфавите называют мощностью алфавита

ЗАДАЧА 4. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов. Второй текст в алфавите мощностью 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?

РЕШЕНИЕ: Если первый текст составлен в алфавите мощностью (К) 16 символов, то количество информации, которое несет 1 символ (1) в этом тексте, можно определить из соотношения: N = 2", таким образом, из 16 = 2" получим 1 = 4 бита. Мощность второго алфавита - 256 символов, из 256 = 2" получим 1 = 8 бит. Т.к. оба текста содержат одинаковое количество символов, количество информации во втором тексте больше, чем в первом, в 2 раза.

Скорость передачи информации

Скорость передачи данных по каналам связи ограничена пропускной способностью канала. Пропускная способность канала связи изменяется как и скорость передачи данных в бит/сек (или кратностью этой величины Кбит/с, Мбит/с, байт/с, Кбайт/с, Мбайт/с).
Для вычислении объема информации V переданной по каналу связи с пропускной способностью а за время t используют формулу:

V = а * t

ЗАДАЧА 1. Через ADSL- соединение файл размером 1000 Кбайт передавался 32 с. Сколько секунд потребуется для передачи файла размером 625 Кбайт.

РЕШЕНИЕ: Найдем скорость ADSL соединения: 1000 Кбайт / 32 с. = 8000 Кбит / 32 с. = 250 Кбит/с.
Найдем время для передачи файла объемом 625 Кбайт: 625 Кбайт / 250 Кбит/с = 5000 Кбит / 250 Кбит/с. = 20 секунд.

При решении задач на определении скорости и времени передачи данных возникает трудность с большими числами (пример 3 Мб/с = 25 165 824 бит/с), поэтому проще работать со степенями двойки (пример 3 Мб/с = 3 * 2 10 * 2 10 * 2 3 = 3 * 2 23 бита/с).

n

0
1
2
3
4
5
6
7
8
9
10

2 n

1
2
4
8
16
32
64
128
256
512
1024

ЗАДАЧА 2 . Скорость передачи данных через ADSL─соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.


РЕШЕНИЕ: Время передачи файла: 1 мин = 60 с = 4 * 15 с = 2 2 * 15 с
Скорость передачи файла: 512000 бит/c = 512 * 1000 бит/с = 2 9 * 125 * 8 бит/с (1 байт =8 бит)

2 9 * 125 байт/с = 2 9 * 125 бит/с / 2 10 = 125 / 2 Кб/с

Чтобы найти время объем файла, нужно умножить время передачи на скорость передачи:

(2 2 * 15 с) * 125 / 2 Кб/с = 2 * 15 * 125 Кб = 3750 Кб