Устройство и принцип работы светодиодной лампы. Ремонт светодиодных ламп своими руками: причины поломок и как починить

Проекты реализации все чаще предусматривают включение LED-компонентов. Светодиодные приборы получили широкую популярность благодаря существенной экономии энергии и долговечности, хотя стоимость их все еще превышает ценники более привычных энергосберегающих и галогенных ламп. Зато у LED-техники есть немало и других преимуществ, обусловленных необычной конструкцией. Типовое устройство на 220, фото которой представлено ниже, избавлено от массивных источников излучения, что позволяет оптимизировать корпус по размерам и эксплуатационным характеристикам. В итоге достигаются и такие качества, как широкая функциональность, повышенная эргономика управления и удобство монтажа.

Диодный кристалл как основа лампы

Основу любого LED-устройства формирует один или несколько полупроводниковых элементов, которые преобразуют электричество в световое излучение. Это и есть диодные кристаллы, чаще всего выполняемые в виде миниатюрного чипа. На небольшой площадке платы размещается также оснастка для подключения питающих проводов. Впрочем, устройство на 220 В может предполагать использование разных кристаллов, отличающихся по конструкции и набору функциональных компонентов:

  • DIP. Наиболее распространенный на поверхности которого размещается линза и два проводника.
  • SMD. Универсальный в применении кристалл, отличающийся скромными размерами и эффективным теплоотводом.
  • «Пиранья». Диодный кристалл с четырьмя выходами для поводов. Такая конфигурация делает излучатель более эффективным и надежным в работе.
  • СОВ-кристалл. В данном случае предусматривается интеграция диода в плату, благодаря чему контакты лучше защищаются от перегрева и окисления. Вместе с этим повышается интенсивность свечения.

Принципиальное устройство LED-лампы на 220 В

Кроме диодных кристаллов в основу конструкции входит цоколь, рассеиватель, радиатор и корпус. Собственно плата с LED-элементами является функциональной сердцевиной, которую обслуживают перечисленные компоненты. Что касается цоколя, то он выполняет роль несущего звена, позволяющего интегрировать лампу в патрон подходящего размера. Рассеиватель делает излучение фотонов (преобразованное из тока) более насыщенным и направленным. В более современных версиях допускается возможность изменения физических параметров подачи света, что достигается как раз благодаря коррекции параметров рассеивателя. Существенное значение в устройстве светодиодной лампы на 220 В имеет и блок радиатора. Одним из главных плюсов LED-приборов является отсутствие нагрева корпуса, что делает источник пожаробезопасным. Это свойство обеспечивается именно радиатором, который выполняет задачу теплоотвода.

Особенности устройства маломощных ламп

Начальный уровень в сегменте представлен компактными устройствами с 2-4 кристаллами. Мощность каждого излучателя варьируется от 2 до 5 Вт. В отличие от полноформатных моделей такие лампы характеризуются наличием пластикового корпуса (в обычных конструкциях применяются стеклянные крышки), скромной длиной порядка 15 см в среднем и массой в 50-70 гр. При этом устройство маломощных светодиодных ламп на 220 В тоже предусматривает наличие радиаторных блоков. Это могут быть массивные металлические модули, задача которых сводится к предохранению пластикового корпуса от перегрева и плавления. В данном случае требования к теплоотводу гораздо жестче, поэтому размер радиатора зачастую больше, чем в мощных LED-лампах. Что касается качества излучения, то пользователи отмечают приглушенность света, больше тяготеющего к ярко-белому и холодному спектрам.

Формы ламп и цоколи

Особенно в выборе нестандартных конструкций важно заранее просчитывать возможность совмещения лампы со светильником в виде люстры, бра, торшера и т. д. К самым популярным форм-факторам можно отнести следующие:

  • LED-груша. Стандартное исполнение, которое напоминает классические лампы накаливания. Для таких моделей подбираются цоколи типа Е27.
  • Свечная форма. Как раз на этом корпусе базируется устройство маломощных светодиодных ламп на 220 вольт, включающее цоколи E14 и E27. Подобные конструкции часто используются в настенных светильниках и небольших люстрах.
  • Трубчатая форма. Это уже нестандартный вариант лампы, маркируемый обозначениями Т3, Т4, Т20 и др. Однако внешнее сходство с люминесцентными лампами никак не переходит на внутреннюю начинку и тем более на рабочие качества.
  • Шарообразные модели. Для таких устройств применяются цоколи G45, G60 и G80, которые можно интегрировать в разные виды светильников как открытой, так и закрытой формы.

Устройство управляющего драйвера

Данный компонент применяется не всегда, но именно 220-вольтные модели являются целевыми приборами. Для них обычно используют устройства с микросхемой HV9910, которые могут питаться от сети с напряжением от 8 до 450 В. Сама по себе микросхема выступает в качестве импульсного источника, выравнивающего ток. Если же планируется использовать переменный ток для энергообеспечения, то устройство драйвера светодиодной лампы на 220 В должно будет предусматривать и наличие выпрямителя - например, типа моста. В распространенных конфигурациях такого типа драйвер HV9910 работает также в комбинации с внешними транзисторами.

Особенности конструкций типа «Армстронг»

Коммерческое использование приборов освещения предъявляет высокие требования к несущим конструкциям, в которые интегрируются лампы. Связано это и с необходимостью повышения защитных качеств, и с технической оптимизацией процесса установки. На данный момент такие задачи решаются платформами типа «Армстронг», представляющими собой потолочную конструкцию, рассчитанную на несколько мощных источников излучения. В отличие от стандартных моделей, устройство светодиодной лампы на 220 В для конструкции «Армстронг» имеет следующие характеристики:

  • Закупоривание лампы в пластиковый монолитный корпус.
  • Использование технологически примитивных драйверов (в целях удешевления конструкции) или же их полное отсутствие.
  • Применение одного радиатора на несколько ламп.
  • Типовой дизайн несущей платформы, предполагающий обеспечение стандартными цоколями.

Система управления лампой

Современные LED-приборы оснащаются диммерами, посредством которых можно регулировать рабочие параметры лампы. В частности, пользователь может устанавливать параметры яркости. Некоторые версии предусматривают и элементы программирования. С помощью встроенного таймера устанавливается время, режимы свечения и рабочие сеансы с конкретными характеристиками свечения. Типовое устройство светодиодной лампы на 220 В с диммером включает и стабилизатор. Дело в том, что яркость регулируется посредством обрезки напряжения и для надежности выполнения этой процедуры требуется стабилизирующий компонент. Также для обеспечения безопасности в условиях максимальной мощности часто используют предохранительный блок, в спектр функций которого входит автоматическое отключение прибора или его перевод на сбалансированный режим работы.

Как самостоятельно сделать LED-лампу?

Простейшая техника изготовления данного прибора - на базе сгоревшей или ненужной люминесцентной лампы. Необходимо разобрать ее конструкцию, изъяв цоколь с отражателем. В этих частях располагаются наиболее важные элементы с точки зрения устройства разбирается вся электрическая схема, в процессе чего следует уже из отражателя извлечь предохранитель, а также диодный кристалл. Собственно, на готовой светотехнической оснастке и будет базироваться новая лампа, начинку которой можно скомпоновать посредством электролита. Но перед этим следует добавить в конфигурацию конденсаторный блок, способный выдерживать минимум 450 В, а лучше - 630 В. А если не хватит светодиодов, их можно взять из LED-ленты. Главное - выбирать компоненты соответствующей мощности. Сборка конструкции осуществляется посредством суперклея или компаунда с подходящими характеристиками.

Монтаж лампы

Подход к установке будет зависеть от конструкции светильника. Самыми сложными в плане монтажа считаются потолочные конструкции, в ниши которых интегрируется лампа. Это точечные высокомощные приборы, которые в дальнейшем работают без плафонов. То есть на поверхности натяжной или подвесной установки остается едва заметная часть оптического излучателя. Для удобства монтажа устройство светодиодной лампы на 220 вольт такого типа предусматривает фиксирующие кольца и зажимы. С помощью данной фурнитуры осуществляется крепеж корпуса в подпотолочную нишу. Но перед этим к точке размещения со стороны каркаса должна быть подведена электрическая линия с патроном, в который будет прикручен Далее в проделанное отверстие подвесного или натяжного полотна погружается и замыкается крепежная оснастка с лампой.

Техническое обслуживание минимизирует риски капитального с заменой диодов. Отодвинуть по времени этот момент можно в случае регулярной чистки прибора и обновления расходных элементов. Если же в процессе работы устройства наблюдается недостаточная яркость, это признак выхода из строя отдельного кристалла или целой группы. Характер неисправности как раз и определяется устройством светодиодной лампы на 220 В. Как ремонтировать приборы, в которых наблюдаются подобные неполадки? В первую очередь нужно провести диагностику и выявить конкретные участки неисправности. Безвозвратно испорченные диоды, как правило, имеют на поверхности черные точки. Их следует демонтировать, зачистить место и установить новые кристаллы. Проблема будет заключаться в том, что спектр излучения у диодов может отличаться даже при номинально сходных параметрах, поэтому возникают сложности с подбором оптимально соответствующего излучателя.

Заключение

Использование LED-ламп себя оправдывает и в промышленной сфере, и в быту. Если на заре появления данной технологии на первый план выходили ее преимущества в виде экономии энергии и высокого эксплуатационного ресурса, то сегодня все больше ценятся возможности управления. Впрочем, возникают и новые проблемы, также обусловленные многокомпонентным устройством светодиодной лампы на 220 В. Ремонт в случае серьезных поломок предполагает необходимость полного разбора изделия и последующего выполнения перепайки проводников. По крайней мере, это касается операций по замене диодов. Также в систему входят драйверы, контроллеры и предохранители. Данная электротехническая фурнитура тоже нередко выходит из строя. Но и эти недостатки можно минимизировать, используя не дешевые китайские LED-компоненты, а продукцию от компаний уровня Osram или Philips.

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.

Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.
Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.

От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.
Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных ламп – отдельная головная боль, поскольку смешивать их с обычным бытовым мусором нельзя.

Прозрачный колпак

В основном этот элемент играет роль защиты от пыли, влаги и шаловливых ручек. Однако есть у него и утилитарная функция. Большинство колпаков светодиодных ламп выглядят матовыми. Это решение могло бы показаться странным, ведь сила излучения светодиода ослабляется. Но его полезность для специалистов очевидна.

Колпак матовый потому, что на его внутреннюю стороны нанесен слой люминофора – вещества, начинающего светиться под воздействием квантов энергии. Казалось бы, тут, что называется, масло масляное. Но люминофор имеет спектр излучения в несколько раз более широкий, чем у светодиода. Он приближен к естественному солнечному. Если оставить светодиоды без такой «прокладки», то от их свечения глаза начинают уставать и болеть.

В чем выгода таких ламп

Теперь, когда вы уже многое знаете о том, как работает светодиодная лампа, стоит остановиться и на ее преимуществах. Главное и бесспорное – низкое энергопотребление. Десяток светодиодов дает излучение той же силы, что и традиционная лампа накаливания, но при этом полупроводниковые приборы потребляют в несколько раз меньше электричества. Есть и еще одно преимущество, но оно не столь очевидно. Лампы с таким принципом работы более долговечны. Правда, при условии, что питающее напряжение будет максимально стабильно.

Нельзя не упомянуть и о недостатках таких ламп. В первую очередь это касается спектра их излучения. Он значительно отличается от солнечного – того, что человеческий глаз привык воспринимать тысячелетиями. Поэтому для дома выбирайте те лампы, которые светят желтым или красноватым (теплым) и имеют матовые колпаки.

В отличие от прозрачных ламп накаливания, основное устройство светодиодной лампы скрыто под непрозрачным корпусом. Чтобы узнать, что скрывается внутри экономичного осветительного прибора, его потребуется разобрать, приложив небольшие усилия.

Эксперименты показали, что устройства светодиодных лампочек на 220 В от разных производителей имеют незначительные отличия. Поэтому весь ассортимент LED-ламп с цоколем Е14 и Е27 можно разделить на три группы: фирменные, низкокачественные китайские и филаментные.

Фирменные изделия

Конструкция LED-лампы на 220 В от производителей светодиодной продукции с мировым именем аналогична ниже представленному фото. Среди огромной массы лампочек на российском рынке внешне такой образец имеет одно явное отличие – объемный радиатор. Он может быть с ребристой или гладкой поверхностью; металлического цвета или покрыт белым полимером. Но в любом случае такая лампа имеет больший вес в сравнении с дешёвым, некачественным аналогом.

Верхняя часть изделия (рассеиватель) выполняется из стекла или матового пластика в форме полусферы. Как правило, он закреплен на радиатор при помощи специальных защелок или герметика. Под рассеивателем находится печатная плата с SMD-светодиодами, которая надёжно закреплена на радиаторе. Ниже размещается ещё одна плата с радиоэлементами драйвера. Надёжный драйвер – это блок с гальванической развязкой и функцией стабилизации выходного тока. Вся схема драйвера имеет высокую плотность монтажа и состоит из импульсного трансформатор, микросхем, нескольких полярных конденсаторов и множества планарных элементов.
Блок драйвера расположен внутри корпуса, который, в свою очередь, соединяет цоколь и радиатор. Электрический контакт между блоком драйвера и платой со светодиодами может быть обеспечен с помощью пайки или коннектора.

Низкокачественные китайские лампочки

Ниже представлена светодиодная лампа в разобранном виде от неизвестного китайского изготовителя.
В отличие от предыдущего образца, в данном устройстве отсутствует радиатор и драйвер. Вместо драйвера установлен простой блок питания на основе неполярного конденсатора, который не способен надежно стабилизировать выходной ток. Размещается блок питания в центре платы со светодиодами. С одной стороны – это диодный мост с резисторами.
С другой – два конденсатора.
В результате простоты такой конструкции стоимость изделия имеет гораздо меньшую стоимость.

Функцию охлаждения в таких лампочках выполняют небольшие отверстия в корпусе. Их эффективность крайне мала, что подтверждено перегоранием кристаллов светоизлучающих диодов. Плата крепится к пластиковому корпусу при помощи защелок. Электрически плата соединяется с цоколем двумя запаянными проводами. Простота такой конструкции не надежна и не способна обеспечить долгосрочную работоспособность устройства.

Filament лампы

Разнообразие лампочек на светодиодах с цоколем Е14 и Е27 не перестаёт расширяться. Очередным ноу-хау стали, так светодиодные лампы филамент (от англ. filament – нить), которые внешне очень схожи с лампами накаливания. Ученым удалось на практике реализовать светодиодный конструктив, визуально напоминающий нить накала и не требующий дополнительного теплоотвода. Использование филамент лампы (ФЛ) в быту, как правило, основывается на эстетических соображениях.
В устройстве светодиодной лампы filament основным элементом являются светодиодные нити, от количества которых зависит суммарная мощность изделия. Каждый отдельный филамент – это тонкий стеклянный стержень, поверхность которого равномерно покрыта электрически связанными SMD-светодиодами. Сверху по всей длине нанесён слой люминофора, что придаёт нити жёлтый оттенок. Отвод тепла в ФЛ происходит через тонкую стеклянную колбу, внутренний объём которой заполнен газовой смесью.

Зачастую нехватка места для драйвера вынуждает производителей устанавливать модуль питания низкого качества непосредственно в цоколе осветительного прибора. Результат такого подхода – чрезмерно высокий , негативно воздействующий на зрение. Чтобы избавиться от вредного мерцания и составить конкуренцию обычным LED лампам, фирмы-изготовители модернизировали конструкцию ФЛ. Между цоколем и колбой стали делать вставку в виде пластикового кольца, за которым скрывается высококачественный драйвер.

Каждый из рассмотренных образцов пользуется спросом на потребительском рынке, а значит, будет развиваться дальше. Возможно, вскоре в устройстве светодиодной лампы на 220В появятся новые функциональные блоки, о назначении которых мы обязательно расскажем в своих статьях.

Читайте так же

В статье рассказывается об устройстве светодиодных ламп. Рассматриваются несколько разных по сложности схем и даются рекомендации по самостоятельному изготовлению светодиодных источников света, подключаемых к сети 220 В.

Преимущества энергосберегающих ламп

Преимущества энергосберегающих ламп широко известны. В первую очередь это собственно низкое потребление энергии, а кроме того высокая надежность. В настоящее время наиболее широко распространены люминесцентные лампы. Такая лампа, дает такую же освещенность как стоваттная лампа накаливания. Нетрудно подсчитать, что экономия электроэнергии получается в пять раз.

В последнее время в производстве осваиваются светодиодные лампы. Показатели экономичности и долговечности у них намного выше, чем у люминесцентных ламп. В этом случае электроэнергии потребляется в десять раз меньше, чем лампами накаливания. Долговечность же светодиодных ламп может достигать 50-ти и более тысяч часов.

Источники света нового поколения, конечно, стоят дороже простых ламп накаливания, но потребляют значительно меньшую мощность и обладают повышенной долговечностью. Два последних показателя призваны скомпенсировать дороговизну ламп новых типов.

Практические схемы светодиодных ламп

В качестве первого примера можно рассмотреть устройство светодиодной лампы разработанной фирмой «СЭА Электроникс» с применением специализированных микросхем. Электрическая схема такой лампы показана на рисунке 1.

Рисунок 1. Схема светодиодной лампы фирмы «СЭА Электроникс»

Еще десять лет назад светодиоды можно было использовать только в качестве индикаторов: сила света составляла не более 1,5…2 микрокандел. Сейчас появились сверхяркие светодиоды, у которых сила излучения доходит до нескольких десятков кандел.

При использовании мощных светодиодов совместно с полупроводниковыми преобразователями появилась возможность создания источников света, выдерживающих конкуренцию с лампами накаливания. Подобный преобразователь и показан на рисунке 1. Схема достаточно проста и содержит небольшое количество деталей. Это достигнуто за счет применения специализированных микросхем.

Первая микросхема IC1 BP5041 - AC/DC преобразователь. Ее структурная схема представлена на рисунке 2.

Рисунок 2. Структурная схема BP5041.

Микросхема выполнена в корпусе типа SIP показанный на рисунке 3.

Рисунок 3.

Все устройство защищено предохранителем F1, номинал которого не должен превышать указанный на схеме. Конденсатор C3 предназначен для сглаживания пульсаций выходного напряжения преобразователя. Следует заметить, что выходное напряжение не имеет гальванической развязки от сети, что в данной схеме совсем не нужно, но требует особой внимательности и соблюдения правил техники безопасности при изготовлении и наладке.

Конденсаторы C3 и C2 должны быть на рабочее напряжение не менее 450 В. Конденсатор C2 должен быть пленочным или керамическим. Резистор R1 может иметь сопротивление в пределах 10…20 Ом, что достаточно для нормальной работы преобразователя.

Использование данного преобразователя позволяет отказаться от применения понижающего трансформатора, что значительно уменьшает габариты всего устройства в целом.

Отличительной особенностью микросхемы BP5041 является наличие встроенной катушки индуктивности как показано на рисунке 2, что позволяет уменьшить количество навесных деталей и в целом размеры монтажной платы.

В качестве диода D1 подойдет любой диод с обратным напряжением не менее 800 В и выпрямленным током не менее 500 мА. Таким условиям вполне удовлетворяет широко распространенный импортный диод 1N4007. на входе выпрямителя установлен варистор VAR1 типа FNR-10K391. Его назначение защита всего устройства от импульсных помех и статического электричества.

Вторая микросхема IC2 типа HV9910 представляет собой ШИМ стабилизатор тока для суперярких светодиодов. При помощи внешнего MOSFET транзистора ток может устанавливаться в пределах от нескольких миллиампер до 1А. Этот ток задается резистором R3 в цепи обратной связи. Микросхема выпускается в корпусах SO-8 (LG) и SO-16 (NG). Ее внешний вид показан на рисунке 4, а на рисунке 5 структурная схема.

Рисунок 4. Микросхема HV9910.

Рисунок 5. Структурная схема микросхемы HV9910.

С помощью резистора R2 частота внутреннего генератора может изменяться в диапазоне 20…120 КГц. При указанном на схеме сопротивлении резистора R2 она будет около 50 КГц.

Дроссель L1 предназначен для накопления энергии в то время, когда транзистор VT1 открыт. Когда транзистор закроется, то энергия, накопленная в дросселе, через высокоскоростной диод Шоттки D2 отдается светодиодам D3…D6.

Здесь самое время вспомнить о самоиндукции и правиле Ленца. Согласно этому правилу индукционный ток имеет всегда такое направление, что его магнитный поток компенсирует изменения внешнего магнитного потока, которое (изменение) вызвало этот ток. Поэтому направление ЭДС самоиндукции имеет направление противоположное направлению ЭДС источника питания. Именно поэтому светодиоды включены в обратную сторону по отношению к питающему напряжению (вывод 1 микросхемы IC2, обозначенный на схеме как VIN). Таким образом светодиоды излучают свет за счет ЭДС самоиндукции катушки L1.

В данной конструкции применены 4 сверхярких светодиода типа TWW9600, хотя вполне возможно применение других типов светодиодов производства других фирм.

Для управления яркостью светодиодов в микросхеме имеется вход PWM_D, ШИМ - модуляция от внешнего генератора. В этой схеме такая функция не используется.

При самостоятельном изготовлении такой светодиодной лампы следует воспользоваться корпусом с винтовым цоколем размера E27 от негодной энергосберегающей лампы, мощностью не менее 20 Вт. Внешний вид конструкции показан на рисунке 6.

Рисунок 6. Самодельная светодиодная лампа.

Хотя описанная схема достаточно проста, рекомендовать ее для самостоятельного изготовления можно не всегда: либо не удастся купить указанные на схеме детали, либо недостаточная квалификация сборщика. Некоторые просто могут испугаться: «А вдруг у меня не получится?». Для подобных ситуаций можно предложить еще несколько вариантов более простых как по схемотехнике, так и в вопросе приобретения деталей.

Более простая схема светодиодной лампы показана на рисунке 7.

Рисунок 7.

На этой схемы видно, что для питания светодиодов используется мостовой выпрямитель с емкостным балластом, который ограничивает выходной ток. Такие источники питания экономичны и просты, не боятся коротких замыканий, их выходной ток ограничивается емкостным сопротивлением конденсатора. Подобные выпрямители часто называют стабилизаторами тока.

Роль емкостного балласта на схеме выполняет конденсатор C1. При емкости 0,47 мкФ рабочее напряжение конденсатора должно быть не менее 630В. Емкость его рассчитана так, чтобы ток через светодиоды был около 20 мА, что является для светодиодов оптимальным значением.

Пульсации выпрямленного мостом напряжения сглаживаются электролитическим конденсатором C2. Для ограничения зарядного тока в момент включения служит резистор R1, который также выполняет функцию предохранителя в аварийных ситуациях. Резисторы R2 и R3 предназначены для разряда конденсаторов C1 и C2 после отключения устройства от сети.

Для уменьшения габаритов рабочее напряжение конденсатора C2 выбрано всего 100 В. В случае обрыва (перегорания) хотя бы одного из светодиодов конденсатор C2 зарядится до напряжения 310 В, что неизбежно приведет к его взрыву. Для защиты от подобной ситуации этот конденсатор зашунтирован стабилитронами VD2, VD3. Их напряжение стабилизации может быть определено следующим образом.

При номинальном токе через светодиод в 20 мА на нем создается падение напряжения в зависимости от типа в пределах 3,2…3,8 В. (Подобное свойство в некоторых случаях позволяет использовать светодиоды в качестве стабилитронов). Поэтому нетрудно подсчитать, что если в схеме используется 20 светодиодов, то падение напряжения на них составит 65…75 В. Именно на таком уровне будет ограничено напряжение на конденсаторе C2.

Стабилитроны следует выбрать так, чтобы суммарное напряжение стабилизации было несколько выше падения напряжения на светодиодах. В этом случае при нормальном режиме работы стабилитроны будут закрыты, и на работу схемы влиять не будут. Указанные на схеме стабилитроны 1N4754A имеют напряжение стабилизации 39 В, а включенные последовательно - 78 В.

При обрыве хотя бы одного из светодиодов стабилитроны откроются и напряжение на конденсаторе C2 будет стабилизировано на уровне 78 В, что явно ниже рабочего напряжения конденсатора С2, поэтому взрыва не произойдет.

Конструкция самодельной светодиодной лампы показана на рисунке 8. как видно из рисунка она собрана в корпусе от негодной энергосберегающей лампы с цоколем Е-27.

Рисунок 8.

Печатная плата, на которой размещаются все детали выполняется из фольгированного стеклотекстолита любым из доступных в домашних условиях способов. Для установки светодиодов на плате просверлены отверстия диаметром 0,8 мм, а для остальных деталей 1,0 мм. Чертеж печатной платы показан на рисунке 9.

Рисунок 9. Печатная плата и расположение деталей на ней.

Расположение деталей на плате показано на рисунке 9в. Все детали, кроме светодиодов устанавливаются со стороны платы, где нет печатных дорожек. На этой же стороне устанавливается перемычка, также показанная на рисунке.

После установки всех деталей со стороны фольги устанавливаются светодиоды. Монтаж светодиодов следует начинать от средины платы, постепенно передвигаясь к периферии. Светодиоды должны быть запаяны последовательно, то есть плюсовой вывод одного светодиода соединяется с отрицательным выводом другого.

Диаметр светодиода может быть любым в пределах 3…10 мм. При этом следует выводы светодиодов оставлять длиной не менее 5 мм от платы. В противном случае светодиоды можно просто перегреть при пайке. Длительность пайки, как рекомендуют во всех руководствах, не должна превышать 3-х секунд.

После того, как плата будет собрана и налажена, ее выводы надо подпаять к цоколю, а саму плату вставить в корпус. Кроме указанного корпуса возможно применение более миниатюрного корпуса, однако при этом придется уменьшить размеры печатной платы, не забывая, однако, о габаритах конденсаторов С1 и С2.

Появление светодиодных или LED-ламп способствовало началу нового этапа в индустрии освещения. Совсем недавно такие осветительные приборы представляли огромную редкость, а сейчас огромный ассортимент различных светодиодных светильников выставляют все крупные магазины. Светодиод, в отличие от обычной лампы накаливания, имеет свою схему запуска.

Она устанавливается в самой лампочке, между имитацией колбы и патроном. Поэтому это место делают непрозрачным. Добраться до платы с диодами не так и сложно, но некоторые усилия для разборки понадобятся. Хоть опыт и показывает, что большинство производителей используют для этого схожие модели пусковых устройств, небольшие различия все же остаются.

Друзья приветствую всех на сайте «Электрик в доме». Сегодня хочу предоставить вам обзор внутренностей светодиодных ламп, которые я заказывал на Алиэкспресс. Лампа состоит из 72 диодов. В ней используются SMD-cвeтoдиoды, известные также под названием Surface Mounting Device. Давайте приступим к разборке, думаю, вам также будет очень интересно.

Принцип работы светодиодной лампы

Выпускаемые светодиодные лампочки на 220В могут отличаться между собой внешним дизайном, но принцип внутреннего устройства сохраняется для всех моделей. Излучение света в лампах выполняется светодиодами, число и размеры кристаллов которых может варьироваться в зависимости от мощности и возможностей охлаждения. Их цветовой спектр задается веществом, входящим в структуру каждого кристаллика.

Чтобы добраться до пускового драйвера, необходимо аккуратно снять защитную «юбочку» лампы. Под ней откроется печатная плата либо монтажная сборка из соединенных между собой радиоэлементов. На входе драйвера расположен диодный мост, подключенный к электрическому цоколю лампы, контактирующему с патроном. Благодаря ему переменное питающее напряжение выпрямляется в постоянное, поступает на плату и через нее подается к светодиодам.

Чтобы лучше рассеять излучаемый поток и защитить кристаллы от прикосновений, а также избежать их контакта с посторонними предметами, снаружи устанавливается рассеивающее защитное стекло (прозрачная пластмассовая колба). Поэтому своим внешним видом они очень напоминают традиционные источники света.

Для вкручивания лампочки в патрон их цоколи выполняют стандартных размеров Е14, Е27, Е40 и т.д. Это позволяет использовать Led лампы в домашней сети не прибегая к каким либо изменениям в электропроводке.

Конструкция и назначение частей лампы

Каждая светодиодная лампа состоит из следующих частей:

#1 . Рассеивателя – специальной полусферы, увеличивающей угол и равномерно разбрасывающей направленный пучок светодиодного излучения. В большинстве случаев элемент производится из прозрачных и полупрозрачных пластиков либо матированного поликарбоната. За счет этого изделия не разбиваются при падении. Элемент отсутствует лишь в аналогах люминесцентных ламп, там его заменяет специальный отражатель. В приборах со светодиодами нагрев полусферы незначителен и в несколько раз меньше, чем в обычных нитевидных электролампах.

#2 . Светодиодных чипов – основных составляющих ламп нового поколения. Они устанавливаются как по одному, так и десятками. Их число зависит от конструктивных особенностей изделия, его размеров, мощности и наличия приспособлений для отвода тепла. У хороших производителей не практикуется экономить на качестве светодиодных матриц , так как именно они определяют все рабочие параметры излучателя и продолжительность его эксплуатации. Однако в мире такие компании можно пересчитать по пальцам. Диоды же в матрицах взаимосвязаны, и при отказе одного выходит из строя вся лампа.

#3 . Печатной платы . При их изготовлении используются анодированные алюминиевые сплавы, способные эффективно отвести тепло на радиатор, что создаст оптимальную температуру для бесперебойной работы чипов.

#4 . Радиатора , который отводит тепло от печатной платы с утопленными в ней светодиодами. Для отливки радиаторов тоже выбирается алюминий и его сплавы, а также специальные формы с большим количеством отдельных пластин, помогающих увеличить теплоотводящую площадь.

#5 . Конденсатора , убирающего пульсацию по напряжению , подаваемому на кристаллы светодиодов с драйверной платы.

#6 . Драйвера , сглаживающего, уменьшающего и стабилизирующего входное напряжение электрической сети. Без этой миниатюрной печатной платы не обходится ни одна светодиодная матрица. Различают выносной и встраиваемый драйвер. Большинство современных ламп оснащается встраиваемыми устройствами, которые монтируются непосредственно в их корпусе.

#7 . Полимерного основания , вплотную упирающегося в цокольную часть, защищая корпус от электрических пробоев, а меняющих лампочки - от случайного поражения электрическим током.

#8 . Цоколя , обеспечивающего подключение к патронам. Обычно при его изготовлении используют латунь, покрытую никелем. Это гарантирует хороший контакт и долговременную коррозионную защиту.

Также существенным отличием светодиодных приборов от их обычных прототипов стало расположение зоны максимального нагрева. У остальных типов излучателей распространение тепла происходит от внешней стороны поверхности. Светодиодные кристаллы нагревают свою печатную плату с внутренней стороны. Поэтому им требуется своевременное отведение тепла изнутри лампы, а это конструктивно решается путем установки охлаждающих радиаторов.

Устройство лампы типа «кукуруза»

Лампу, которую мы сегодня будем разбирать, почему то все называют «кукуруза». Хотя глядя на внешний вид сходство действительно есть. Заказывал я целый набор таких ламп освещения для софт бокса. Кто еще не видел - есть видео на Ютуб канале.

Внешнее обеспечивает открытый доступ к диодам и в случае выхода из строя их можно легко прозвонить мультиметром и определить неисправный диод.

Лампа состоит из десяти боковых пластин с шестью светодиодами на каждой пластине. Плюс на верхней крышке напаяно еще 12 диодов. В сумме получается 72 диода.

Давайте преступим к разборке этого чуда, чтобы поскорей увидеть внутренности. Перед тем необходимо внимательно осмотрев корпус, и понять какие части соединяются между собой.

На верхней крышке видно части видно стыкующиеся детали, крышка имеет пазы. Ее то мы и будем снимать. Для этого берем тонкую отвертку или ножик и аккуратно поддеваем крышку равномерно по всему периметру.

Как видно на фото внутри практически ничего нет. Драйвер крепится к стенке на двухсторонний скотч. Боковые пластины можно легко вытащит из пазов. Вокруг много соединительных проводов.

В глубине видны провода, по которым подается напряжение 220 Вольт от цоколя на вход драйвера. С драйвера выходит два провода (красный и белый). К ним подключаются светодиоды.

Решил я замерить напряжение на выходе драйвера. Мультиметр показывает напряжение 77 Вольт (постоянного тока). Схема подключения всех диодов выполнена параллельно-последовательная. Группа из трех параллельно подключенных диодов подключается последовательно с другой группой и т.д. Всего получается 24 «звена» по «три диода».

Вот такое простое устройство светодиодной лампы 220 Вольт типа «кукуруза ».

Не понравилось мне то, что в этой лампе нет радиатора. А как вы знаете друзья основная проблема светодиодов это нагрев и отвод тепла. В ней вообще нет металлических предметов за исключением плат, на которых напаяны сами диоды, они выполнены из алюминия. Корпус выполнен из керамики, возле цоколя есть четыре вентиляционных отверстия.

Не знаю хорошо это или плохо. Может вы мне подскажите друзья, пишите в комментариях.

Разбираем LED лампу «Экономка»

Следующая LED лампа, которую я хочу разобрать и показать вам ее устройство это «Экономка», мощностью 7 Вт. Служит она мне уже два года верой и правдой. Технические характеристики представлены на фото.

Как и у предыдущей лампы здесь размер цоколя Е27. Крепится сам цоколь к корпусу специальными углубленными канавками. Снять его без высверливаний или других повреждений нереально.

Корпус лампы изготовлен из алюминия и имеет конструктивную форму напоминающую корзинку. С боковых сторон есть ребра для циркуляции воздуха и дополнительного отвода тепла.

У этой лампы есть полусферический рассеиватель из матового пластика. В отличии от предыдущего варианта где все трусится и скрепит здесь все собрано очень хорошо, по сути - одна монолитная конструкция.

Как разобрать светодиодную лампу такого типа? Здесь внутренности кроются за рассеивателем. Берем отвертку с тонким жалом и поддеваем колбу.

По центру на трех болтах закреплена алюминиевая пластина с диодами SMD 5730. Диодов 14 шт . На мой взгляд, все светодиоды подключены последовательно. Точно сказать не могу, так как невидно соединительных дорожек на плате. Если один из них выйдет из строя лампа перестанет работать.

В месте соприкасание платы и металлического корпуса нанесена термопаста (белого цвета, по структуре напоминает обычный силиконовый герметик).

Открутив три винта и откинув плату можно увидеть главное – драйвер.

Драйвер компактно размещен в центральной трубке.

Замерим, какое напряжение выдает драйвер. Мульриметр показывает напряжение в пределах 44 Вольт.