Дальность действия wifi роутера. Wi fi модем yota увеличить радиус действия. Выясняем, как увеличить зону покрытия WiFi

Марк Абрамий

Июль 2005 г.

Самый простой способ организации небольшой домовой локальной сети, или обеспечения совместного использования интернет-канала несколькими жителями ближайших домов - Wi-Fi. Главное достоинство беспроводного соединения в том, что его без проблем могут организовать даже начинающие пользователи, причём без привлечения официальных инстанций, что нередко требуется при прокладке «воздушки» или даже для доступа к нежилым помещениям при протяжке кабеля. Однако, прежде чем тратить деньги на новое оборудование, необходимо убедиться, что его «дальнобойности» хватит для соединения в сеть всех желающих.

Задача

К сожалению, технология Wi-Fi в силу своей слабой дальнобойности пока не в состоянии соединить хоть сколько-то удалённые друг от друга компьютеры, если они не находятся в прямой видимости. Достаточно пары железобетонных стен на пути сигнала, чтобы полностью его экранировать, а потому в реальной ситуации объединить в сеть можно только пользователей, расположенных в рядом стоящих домах, если их окна, а точнее - антенны Wi-Fi-адаптеров, смотрят друг на друга. То есть связаться с живущим в соседнем подъезде приятелем гораздо сложнее, поскольку вас с ним будут разделять не два стеклопакета, а несколько капитальных стен. Аналогично не получится сконнектиться и с товарищем из стоящего напротив дома, если его окна не направлены в вашу сторону.

Есть ли выход из данной ситуации, или в любом случае надо договариваться с официальными инстанциями на протяжку «воздушки», или тянуть провода, устанавливая точки доступа (далее - ТД) на крышах домов, чтобы сигнал от них ничем не перекрывался?

К сожалению, самое напрашивающееся решение - увеличение мощности ТД - рядовому потребителю не подходит. Хотя выбор точек доступа на сегодня огромен и в интернете можно найти даже достаточно мощные модели - мощностью более 200 mW (продукты RangeLAN от Proxim, точки доступа и базовые станции Vivato, Senao). Однако вся проблема в том, что официально, без какой-либо регистрации и лицензирования в Минсвязи простой пользователь имеет право применять лишь беспроводное оборудование весьма ограниченной мощности - только до 100 mW или, согласно обозначению, чаще всего встречающемуся в спецификациях точек доступа - до 20 dBm. Но даже это всего лишь максимально возможная величина - в реальности, наиболее распространенные «бытовые» точки доступа известных у нас производителей имеют гораздо меньшую мощность (например, 17dBm, то есть в два раза меньше разрешенной), и чтобы найти среди них что-то хотя бы близкое к вожделенным 20 dBm, придется приложить немало усилий. «Запрещенные» 200 mW найти проще, чем «законные» 100 mW!

Второй способ, который приходит на ум - применение мощных узконаправленных антенн. В этом случае вся мощность, излучаемая точкой доступа, будет направляться в сторону удалённого ПК и появится шанс пробиться через серьёзные преграды.

Попробуем же выяснить, насколько это реально - далеко ли «бьёт» одна точка доступа с направленной антенной в условиях городской застройки? Получится ли в этом случае «пробить» железобетонные стены?

Тест

Чтобы оценить реальную «пробивную способность» Wi-Fi, мы взяли несколько типичных точек доступа с поддержкой разных типов расширенного 802.11g: TRENDnet TEW-411BRP+, D-Link DWL-2100AP, U.S.Robotics USR805450, а также направленные антенны D-Link ANT24-1201 (12 dBi) и TRENDnet TEW-OA14DK (14 dBi). Утверждается, например, что последняя может связать беспроводные устройства на расстоянии до 8 км в условиях прямой видимости. Поскольку в данном случае мы не тестируем сами точки доступа и даже не проверяем скорость полученного канала, а всего лишь пытаемся выяснить «дальнобойность» самой технологии, то всё, что нам нужно для этого оценочного экспресс-теста - включить все три ТД и походить вокруг дома с КПК, оснащённым модулем Wi-Fi и программой, отображающей уровень радиосигнала.

Итак, этап первый - использование штатных антенн. Располагаем ТД на пятом этаже стандартной панельной пятиэтажки и выясняем, что уже на третьем этаже приём практически отсутствует. То есть внутри дома вы надёжно сможете соединить лишь ПК, расположенные на соседних этажах и не более чем через две, максимум - три железобетонные стены от ТД.

Выходим на улицу. С той стороны дома, куда выходят окна нашей «тестовой» квартиры, то есть в пределах прямой видимости, сигнал достаточно прилично ловится на расстоянии примерно 200 метров, однако стабильность приёма уже не такая, как на 100 метрах. Если же на пути сигнала встаёт дом, то он полностью его экранирует. То есть связаться, например, с квартирой, расположенной на противоположной стороне стоящего в 50-70 метрах от вас дома, уже не получится. Не будет сигнала и во дворе вашего собственного дома, со стороны, противоположной окнам вашей квартиры - это всё те же 2-3 капитальные стены.

Посмотрим теперь, что нам даст подключение направленной антенны. В этом случае дом, стоящий перед вашим окном, с большим трудом, но «пробить насквозь» можно! Сигнал есть, а это значит, что появляется хотя бы принципиальная возможность соединить таким образом две квартиры, одна из которых смотрит окнами не на ТД, а в другую сторону. Но, к сожалению, говорить о терпимой стабильности соединения не приходится - точку, в которой возможен приём сигнала, приходится буквально вылавливать - шаг влево, шаг вправо, и сигнал теряется. Но даже если вы и «нащупаете» такую точку, идеально сориентировав обе антенны, то уровень потерянных пакетов всё равно будет слишком велик.

Выводы

Таким образом, организовать сеть с помощью одной бытовой точки доступа с направленной антенной в условиях непрямой видимости довольно сложно. В простейшем случае вы достаточно надежно соедините лишь несколько квартир, расположенных в непосредственной близости от ТД - над вами, под вами, а также ближайших соседей по этажу. При этом предварительный тест на местности обязателен - очень многое будет зависеть от расположения ТД и соединяющихся с ней адаптеров, а также от конкретного оборудования и самого дома. Возможно, в самом трудном случае поможет установка дополнительной антенны круговой направленности на ТД или применение направленных антенн на самых удалённых от нее адаптерах.

Друга же в соседнем доме удастся подключить, только если его окна смотрят прямо на точку доступа. Если же кто-то оказался на противоположной стороне от вас, то «пробиться» к нему, пожалуй, теоретически возможно, например, при наличии двух узконаправленных антенн с большим коэффициентом усиления, достаточно точно нацеленных друг на друга, но проверить это вы сможете только попытавшись сделать всё в реальности. Поэтому в такой ситуации лучше всё же прибегнуть к проводам, вынеся антенну на крышу или протянув «воздушку». Вот такая беспроводная технология…

Технологии и оборудование

Что же делать, если вариант с выносом антенн на крышу дома или прокладкой кабелей никоим образом не подходит? В этом случае можно попытаться использовать комплексное решение:

  • выбор ТД с мощностью, близкой к максимально разрешённой;
  • применение внешней антенны с усилением не менее 14 dBi, а лучше - ещё большим;
  • правильное расположение антенны.

При выборе ТД мы бы советовали обратить внимание ещё и на такой момент как максимально возможная скорость. Дело в том, что стандартных на сегодня 54 Мбит/c всё-таки маловато для организации приличной сети (о стандарте 802.11g читайте, например, на www.thg.ru/network/20030311/ ). Поэтому оптимальным вариантом, на наш взгляд, будет выбор ТД с поддержкой режима SuperG, обеспечивающего соединение на скорости до 108 Мбит/c (учтите - подключение клиентов 802.11b будет замедлять работу всей сети, поэтому поддержку 802.11b лучше вообще отключить). SuperG поддерживается оборудованием на базе чипов Atheros, они неплохо распространены, применяются разными брендами и пользователь получает какую-никакую свободу выбора при покупке адаптера. Есть, впрочем, на рынке и другие расширения 802.11g, вплоть до 125 Мбит/c (подробнее о расширенных режимах в статье www.thg.ru/network/20040127/ ), можно выбрать и их, но они, пожалуй, чуть больше завязаны на конкретного производителя, и вам придётся, например, закупать для каждого пользователя совершенно одинаковые адаптеры, даже если у кого-то уже есть Wi-Fi-адаптер, но другой фирмы. Плюс ко всему, в новом оборудовании на основе чипов Atheros появилась технология расширения радиуса действия eXtended Range (тест различных технологий увеличения дальности смотрите на www.thg.ru/network/200505191/ ), которая опять-таки играет нам на руку.

Не стоит забывать и о чувствительности ТД - от модели к модели она может различаться довольно заметно, так что, прежде чем сделать выбор, придется перекопать море документации. Но окончательное решение в любом случае следует принимать только по результатам тестирования на реальной местности, то есть при закупке оборудования необходимо договориться о money back, иначе деньги будут потрачены, а связи добиться так и не получится.

Выбор и расположение антенны - тоже непростая задача (учтите, не все ТД позволяют подключать внешнюю антенну). Самые простые секторные антенны имеют усиление не более 13-15 dBi, если же вы найдёте фирменную антенну с фазированной решёткой (ФАР), то можете получить и 25 dBi, то есть на 10 dBi больше, но и более узким лучом.

Существует несколько вариантов расположения антенны. Например, чтобы организовать сеть в многоэтажном доме, обычно рекомендуется установить антенну снаружи (например, в окне или на крыше здания напротив), и направить ее на фасад здания. В этом случае все помещения, которые выходят окнами в сторону антенны, гарантированно окажутся в зоне доступа. Те помещения, которые расположены на другой стороне здания и отделены от антенны двумя и более железобетонными стенами, в зону доступа могут и не попасть. То есть если вы соединяете два дома, то наибольшего покрытия вы сможете добиться, если используете две ТД, расположенные в каждом доме, с антеннами, направленными на противоположный дом. При соединении трёх домов антенны должны размещаться на крайних и «светить» на тот, что в центре. Если же вам надо соединить машины, расположенные на больших расстояниях друг от друга в переделах одного дома, а возможности установить ТД (вернее - их антенны) на рядом стоящие дома нет, то придётся разоряться на беспроводные повторители, раскиданные по всем подъездам и этажам, либо городить довольно непростую конструкцию из нескольких ТД, соединённых кабелем. Разумеется, эти решения хоть и самые «дальнобойные», но и самые дорогие и сложные в реализации (учтите, что ёмкость ТД ограничена, поэтому если вы захотите соединить 30 человек, то одной ТД уже никак не обойтись), поэтому в быту вряд ли подходят. К тому же, мы опять-таки получаем мёртвую зону в квартирах, расположенных позади антенн.

  1. www.thg.ru/network/20030311/
  2. www.thg.ru/network/20040127/
  3. www.atheros.com/pt/atheros_XR_whitepaper.pdf
  4. www.thg.ru/network/200505191/

Обратите внимание, что некоторый софт может быть представлен в виде демоверсий и иметь условно-бесплатное распространение.

Напоследок сделаем отступление. Один из наших покупателей, ознакомившись с нашим устройством был сильно удивлен его возможным применением и написал нам — вы сделали оборудование для воровства WiFi!

Конечно, злоумышленник может использовать «WiFi Agent» для противоправных целей. Но, с таким же успехом можно обвинить продавцов топоров в том, что новый «Раскольников» купит топор и нападет на старуху-процентщицу. А уж продавцы посуды — это вообще пособники преступников. Тут и ножи, и скалки, и страшное орудие — чугунная сковорода.

В свете последних принимаемых законов, необходимо отметить, что наше устройство не содержит в себе каких-либо криптографических шифровальных средств и не является WiFi роутером. USB WiFi адаптер с направленной антенной «WiFi Agent» не использует какие-либо средства для взлома чужих сетей и не делает процесс «воровства» ни на йоту проще, нежели штатный WiFi адаптер ноутбука.

Мы считаем, что вопрос использования каких-либо устройств в рамках закона это прямая обязанность потребителя. Поэтому, конечно же, совершая любое действие, всегда необходимо помнить о правовой стороне вопроса.

Мы рекомендуем использовать «WiFi Agent» в ситуациях, когда штатный WiFi адаптер вашего ноутбука или ПК принимает сигнал WiFi сети с низким уровнем, а также в случаях, когда вам необходимо пользоваться своей WiFi сетью, находясь на большом удалении от роутера.

Теги: Добавить метки

Компания «БИЗНЕС-ТЕЛЕКОМ» представляет топ-10 лучших Wi-Fi роутеров 2019 года. Все маршрутизаторы мы используем в своей работе, а значит, на собственном опыте испытали их плюсы и минусы.

Выбрать хороший WiFi роутер непросто. Основными критериями для формирования ТОП-10 стали стабильность работы устройств, обеспечиваемая скорость интернета и зона покрытия.

10. D-Link DIR-825/AC

На 10-ом месте нашего рейтинга расположился Wi-Fi роутер D-Link DIR-825/AC - рациональное решение для организации беспроводной высокоскоростной в небольшом офисе, кафе или торговой точке. Роутер обеспечивает стабильное подключение с любого компьютера или мобильного гаджета.

Маршрутизатор выполняет функцию базовой станции для организации доступа к интернет-сети с устройств, работающих по стандартам 802.11a, 802.11b, 802.11g, 802.11n и 802.11ac.

✔ Преимущества:

  • Скорость до 300 Мбит/с на частоте 2,4 ГГц, до 867 Мбит/с - на частоте 5 ГГц.
  • Скорость беспроводного соединения - до 1167 Мбит/с.
  • Многофункциональный USB-порт.
  • Поддерживает стандарты безопасности WEP и WPA/WPA2.
  • Отсеивает запросы на подключение по MAC-адресу.
  • Открывает доступ к технологиям WPS и WMM.

✘ Недостатки:

  • Несъемные антенны
  • Не подходит для крупных офисов и компаний, т.к. имеет небольшую площадь покрытия.
  • Сильно нагревается
  • Не особенно удобный веб-интерфейс.

Роутер данной модели популярен среди пользователей из-за обширного функционала. Данное устройство защитит вашу сеть от хакерских атак и закроет доступ пользователям локальной сети к нежелательным сайтам.

9. Asus RT-AC51U

Сильный роутер Wi-Fi, работающий по стандарту 802.11ac и предлагающий скорость передачи данных по беспроводной сети до 733 Мбит/с. Наличие USB-разъема делает возможным подключение принтеров, внешних накопителей и 3G/4G-модемов, которые значительно расширяют функциональность оборудования. Также с его помощью можно подзаряжать смартфоны, планшеты и другие гаджеты, если под рукой нет запасного блока питания. Разработчики создали интерфейс ASUSWRT, который максимально удобный и интуитивно понятный.

✔ Преимущества:

  • Скорость до 300 Мбит/с в режиме 2,4 ГГц и до 433 Мбит/с в режиме 5 ГГц.
  • Позволяет отслеживать расход интернет-трафика и ограничивать скорость работы интернет-канала для отдельных приложений.
  • Зона покрытия больше, чем у многих моделей. Asus RT-AC51U оснащен мощными антеннами, которые увеличивают зону действия беспроводной сети на 150% по сравнению с обычными устройствами.
  • Возможность настраивать для различных приложений приоритет использования пропускной способности интернет-канала.
  • Возможность подключения VPN-сервера.

✘ Недостатки:

  • Скорость передачи данных по беспроводной сети ниже, чем у других роутеров.
  • Небольшая площадь покрытия: толстые стены могут стать существенной преградой.

Создан на базе технологии, относящейся к 5 поколению беспроводных коммуникационных средств, поэтому пользователи получают доступ ко всем современным возможностям. Это одно из лучших решений для офисов с небольшим количеством сотрудников.

8. TP-Link Archer C60

Продолжает рейтинг маршрутизаторов Wi-Fi устройство TP-Link Archer C60, скорость которого достигает 450 Мбит/с на частоте 2,4 ГГц. Этого абсолютно достаточно для отправки электронных писем, загрузки различных веб-страниц и работы с аудио-файлами.

✔ Преимущества:

  • Канал 5 ГГц со скоростью до 867 Мбит/с обеспечивает комфортный просмотр потокового HD-видео.
  • Поддержка нового стандарта 802.11ac, работающего в 3 раза быстрее стандарта 802.11n.
  • 5 антенн (три для 2,4 ГГц и две для 5 ГГц) с поочередной установкой для оптимизации одновременной работы в двух диапазонах.
  • Сеть остается максимально стабильной и практически невосприимчивой к различным помехам.
  • Возможность создания отдельной гостевой сети для клиентов Вашей компании.

✘ Недостатки:

  • Не подходит для больших офисов и компаний из-за относительно невысокой скорости передачи данных.
  • Нельзя прикрепить на стену из-за расположения антенн.

7. Wi-Fi Zyxel Keenetic Ultra II

Седьмое место в списке лучших роутеров Wi-Fi занимает Zyxel Keenetic Ultra II. С этим роутером соединение осуществляется по выделенной линии Ethernet. Провайдером может использоваться любое подключение, в частности PPTP, PPPoE, IPv4/IPv6 и др.

Независимо от выбранного типа и характера нагрузки пользователи получают скорость до 1000 Мбит/с или до 1800 Мбит/с для IPoE/PPPoE. Наличие специальных портов позволяет организовывать беспроводную сеть с помощью 3G, 4G, DSL-модема, PON-терминала с Ethernet-портом или хот-спота Wi-Fi (частного, от провайдера).

✔ Преимущества:

  • Устройство оснащено ОС NDMS 2 и управляемым коммутатором, поэтому можно комбинировать любые подключения.
  • Двухдиапазонная точка доступа Wi-Fi с усилителями мощности сигнала и поворотными антеннами.
  • Удобный интерфейс позволяет настроить автоматическое переключение на резервный канал в случае сбоя основной сети.
  • 2-диапазонная сеть имеет защиту по стандарту WPA2 для всех используемых устройств (ноутбуков, ПК, планшетов, смартфонов и др.).
  • Возможность создавать гостевую сеть, отделенную от основной сети.
  • Возможность распределения нагрузки на канал в зависимости от приложений.

✘ Недостатки:

  • Недостаточно высокая пропускная скорость беспроводной сети, что делает модель неподходящей для больших офисов.
  • Модель может сильно нагреваться.

Keenetic Ultra II - роутер с большим покрытием Wi-Fi, который идеально подходит для офисов среднего размера.

6. Asus RT-AC87U

ASUS RT-AC87U - роутер с большим радиусом действия Wi-Fi и высокой скоростью передачи данных. В частотном диапазоне 5 ГГц она достигает 1734 Мбит/с, а при 2,4 ГГц - 600 Мбит/с. В общей сложности пропускная способность сети составляет 2334 Мбит/с, что намного быстрее, чем при использовании стандартных маршрутизаторов на 3 канала.

Маршрутизатор оснащен 4 антеннами, обеспечивающими повышенный коэффициент усиления сигнала.

✔ Преимущества:

  • Устройство может эффективно работать в режиме Multi-user MIMO 4x4.
  • Подключенные компьютеры и гаджеты получают максимальную скорость соединения.
  • Работает на мощном 2-ядерном процессоре и обеспечивает высокий уровень производительности.
  • Дополнительный процессор на 2 ядра задействуется для реализации режима 4x4 Wi-Fi, а общая пропускная способность увеличивается на 50%.
  • Два порта USB - стандартный 2.0 и высокоскоростной 3.0.
  • Зона покрытия - до 465 м2.
  • Отличное соотношение «цена-качество».

✘ Недостатки:

  • Довольно большие габариты
  • Модели могут сильно нагреваться, поэтому рекомендуется устанавливать их в помещении с хорошей вентиляцией.

Пользователь сможет оценить длительный гарантийный срок и возможность применения с обширным рядом устройств. Маршрутизатор отлично подходит для больших помещений и зданий площадью до 465 м2.

5. D-Link DIR-890L

На пятом месте расположился мощный роутер D-Link DIR-890L - яркий представитель 2-диапазонных гигабитных маршрутизаторов. Он обеспечивает качественное объединение компьютеров и прочих устройств в единую сеть, дающую доступ к широкополосному интернету. Особенностью данного роутера является поддержка технологии SmartConnect1, благодаря которой скорость беспроводного соединения возрастает до 3200 Мбит/с.

Данное оборудования станет отличным выбором для многопользовательского режима эксплуатации сразу в двух независимых беспроводных сетях, работающих в соответствии со стандартом 802.11ac. Параметры каждой сети будут составлять до 600 Мбит/с в 2,4 ГГц и до 1300 Мбит/с в 5 ГГц.

✔ Преимущества:

  • Скорость беспроводного соединения - до 3200 Мбит/с.
  • Разработчики позаботились и о расширении зоны покрытия сети, внедрив в устройство систему AC SmartBeam.
  • Маршрутизатор стабильно функционирует сразу в двух диапазонах: 2,4 и 5 ГГц.
  • Подключение к интернет-каналу требует минимального вмешательства пользователя.
  • Технология Smart Connect выбирает наименее загруженный частотный диапазон и подсоединяет новое устройство автоматически.

✘ Недостатки:

  • Высокая цена. По соотношению «цена-качество» есть более интересные модели.
  • Двухъядерный процессор работает с частотой всего 1 ГГц, тогда как у большинства современных роутеров основной процессор имеет частоту 1,4 ГГц.

DIR-890L - это безупречное качество беспроводной сети, стабильность Wi-Fi-связи и максимальный комфорт доступа к интернету через мобильные устройства.

4. Asus RT-AC88U

✔ Преимущества:

  • Скорость по Wi-Fi - до 3167 Мбит/с.
  • 4 антенны в конфигурации 4T4R (4 на передачу и 4 на прием) создают большую зону покрытия.
  • Технология формирования диаграммы направленности Asus AiRadar для расширения зоны покрытия Wi-Fi.
  • Двухъядерный процессор 1,4 ГГц для высокой скорости обмена данных с устройствами, подключенными по USB.
  • Порты USB 2.0 и 3.0.
  • Скорость передачи данных для проводной сети со скоростью до 2Гбит/с.

✘ Недостатки:

  • Охватывает площадь не более 180 метров квадратных.
  • Высокая цена.

Идеально подходит для офисов и компаний, нуждающихся в высокоскоростном интернете, выдерживающем большие нагрузки.

3. TP-Link Archer C5400

На третьем месте топа Wi-Fi роутеров инновационный маршрутизатор Archer C5400 с технологией Tri-Band. Последняя является настоящей находкой для организации трехканальных пользовательских сетей. Данная модель маршрутизатора может похвастаться увеличенной на 25% скоростью передачи данных благодаря поддержке NitroQAM.

Это не просто роутер, а настоящий сетевой центр с большой мощностью, без проблем позволяющий выполнять различные задачи: просматривать HD-видео, запускать онлайн-игры сразу с нескольких устройств и т.д.

✔ Преимущества:

  • Скорость до 1000Мбит/с в режиме 2,4 Ггц, 2167 Мбит/с - в режиме 5Ггц.
  • Высокая скорость обеспечивают максимально быстрый отклик даже самых ресурсозатратных приложений.
  • Archer C5400 работает с внедренной технологией MU-MIMO, благодаря которой одновременно функционируют сразу 4 потока данных.
  • 8 антенн с Beamforming безошибочно определяют местонахождение гаджетов и посылают им мощный Wi-Fi-сигнал.
  • Основной процессор 1,4 ГГц и 3 сопроцессора позволяют работать в режиме многозадачности.
  • Оснащен USB-портами 2.0 и 3.0.

✘ Недостатки:

  • По скорости и уровню производительности недостатков нет.
  • Одним из недостатков модели можно назвать довольно объемный корпус.

Это оптимальный вариант роутера для офисов, кафе, интернет-центров и т.д., обеспечивающий подключение большого количества компьютеров и других устройств без ущерба производительности.

2. Asus BRT-AC828

Одним из лучших WiFi маршрутизаторов для больших офисов, IT-компаний и телевизионных компаний по праву считается Asus BRT-AC828. Это мощный роутер с большим радиусом действия, способный выдерживать очень большие нагрузки.

✔ Преимущества:

  • 2 проводных порта Gigabit Ethernet с пропускной способностью до 2 Гбит/с.
  • Пропускная способность 4 проводных портов в локальной сети - до 4 Гбит/с.
  • Высокий уровень защиты сети, оборудованной системой фильтрации контента.
  • Способность работать с 250 клиентскими устройствами на высокой скорости одновременно.
  • 8 антенны в конфигурации 4х4.
  • Широкая зона покрытия WiFi.

✘ Недостатки:

  • Высокая цена

Модель Asus BRT-AC828 отлично подойдет, если у вас большая компания и много устройств, которые нужно подключить к сети WiFi.

1. Asus RT-AC 5300

Лучшим Wi-Fi роутером по версии «БИЗНЕС-ТЕЛЕКОМ» в 2017 году признан ASUS RT-AC 5300. Оборудованный технологией NitroQAM, роутер обеспечивает беспрецедентную скорость беспроводной передачи данных - до 5334 Мбит/с! Это один из самых мощных маршрутизаторов, которые сегодня можно найти на рынке.

✔ Преимущества:

  • Адаптивная функция QoS, позволяющая задавать приоритет использования сетевого соединения.
  • Способен обслуживать множество клиентских устройств без лагов. Например, его пропускная способность позволяет передать сразу несколько потоков видео в формате Full-HD.
  • 8 антенн обеспечивают большую зону покрытия.
  • Скорость передачи данных в режиме 2,4 ГГц - до 1000 Мбит/с, в режиме 5ГГц - до 2167 Мбит/с.
  • Технология распределения нагрузки сети между 3 каналами.
  • Двухъядерный процессор 1,4 ГГц выдерживает высокий уровень нагрузки на сеть.
  • USB-порты 2.0 и 3.0
  • Возможность объединения 2 проводных сетевых портов в один с высокой скоростью до 2 Гбит/с.

У Wi-Fi роутера Asus RT-AC5300 нет значительных недостатков. Он идеально подходит для обеспечения широкой и стабильной зоны WiFi в зданиях, больших офисах, крупных телевизионных и IT-компаниях. Мы отдаем ему первое место в в рейтинге лучших WiFi роутеров для бизнеса.

Итоги

Возможно, Вас заинтересуют услуги

Найти информацию о том, чему равна дальность действия WiFi роутера, в действительности не так-то просто. Обычно приводятся сведения о мощности передатчика, также можно узнать, как изменится интенсивность радиоволн при установке той или иной антенны. Проблема состоит в том, что использовать более совершенную антенну, или даже усилитель, можно только на стороне роутера, но не абонентского устройства. В таком устройстве, как смартфон, установлена внутренняя антенна Wi-Fi, и заменить ее нельзя. Поэтому, кстати, нет смысла наращивать мощность передатчика роутера – последний все равно «не услышит» сигнал, исходящий от маломощного излучателя смартфона. Попытаемся определить, чему равна дальность беспроводной связи для устройств разных классов.

Схема построения Wi-Fi-сети

Согласно действующему закону РФ, мощность передатчика в абонентском устройстве не может превосходить 100 милливатт. Также предусмотрено, что для точек доступа, в том числе встроенных в роутер, это значение не должно превышать 250 мВт. По шкале дБм (децибел на 1 микровольт) данные значения выражаются другими цифрами: 20 и 24 дБм. Официально в Россию никогда не завозилось и не завозится оборудование, у которого мощность передатчика не соответствует этим цифрам. Нас будет интересовать, как зависит скорость беспроводного соединения от дистанции между роутером и стандартным абонентским устройством, при условии, что выполнены требования закона. Еще мы исходим из условия, что абонентская антенна является штыревой однозвенной (как в большинстве смартфонов).

Методика расчета эффективного расстояния

Допустим, беспроводная связь работает, когда расстояние между точкой доступа и смартфоном равно N метров при отсутствии препятствий на пути сигнала. Таблица, из которой можно выяснить, во сколько раз снижается интенсивность при прохождении того или иного препятствия, есть на нескольких сайтах (например, ZyXEL). В то же время, известно, что снижение интенсивности в 2 раза (на 3 децибела) эквивалентно уменьшению эффективного расстояния N в корень из двух раз. Все просто – квадрат расстояния обратно пропорционален интенсивности.

Что означает число N

При прохождении сигналом стеклянного окна интенсивность снижается как раз на 3 дБ, а значит, эффективное расстояние уменьшается в корень из двух раз. Пользуясь этой методикой, можно рассчитать, на какой дистанции связь Wi-Fi все еще будет работать в той или иной ситуации:

  • Окно стеклянное – снижает интенсивность на 3 дБ (в 2 раза)
  • Окно с тонировкой – 6 дБ (в 4 раза)
  • Стена из дерева – 9 дБ (в 8 раз)
  • Межкомнатная стена панельная, бетонный пол – 15-20 дБ (в 32 раза и больше).

Коэффициент, на который Вы разделите значение дистанции, равен корню квадратному из коэффициента уменьшения интенсивности. Рассмотрим пример.

Бетонные стены вносят коррективы

Допустим, N равно 400 м. Теперь мы между роутером и смартфоном «помещаем» одну панельную стену и одну стену из дерева. Сложив децибелы (15+9 дБ), получим 24 децибела. По логарифмической шкале – 24, а по линейной это эквивалентно снижению интенсивности в 251 раз. Теперь, вычисляем, чему равен корень из 251 (это 15,84). Делим 400 метров на 16, получаем 25 м. Как видите, все просто и похоже на правду.

Эффективное расстояние без препятствий

Наверное, читателя интересует, а чему же равно значение N при полном отсутствии препятствий в зависимости от выбора диапазона Wi-Fi. Если мощность передатчика роутера равна 40 мВт, а его антенна «усиливает» сигнал в горизонтальной плоскости на 3 дБ (она многозвенная), то, согласно информации ZyXEL, значение N составляет 400 метров. Смотрите: в роутере установлен менее мощный передатчик, чем в смартфоне, но в нем используется многозвенная антенна. Итого, получаем: связь между двумя устройствами Wi-Fi с мощностью передатчика 100 мВт и обычной штыревой антенной уверенно поддерживается на расстоянии до 400 м. Здесь речь шла о диапазоне 2,4 ГГц.

Теперь у Вас есть методика, позволяющая рассчитать эффективную дистанцию беспроводной связи теоретическим методом.

Тут идет речь о диапазоне 2,4 ГГц, но для более высокочастотных волн сейчас просто нет сведений об уровне влияния тех или иных препятствий. Понятно, что для диапазона 5 ГГц значение N будет меньше, а степень влияния препятствий окажется больше. Если известно, что мощность передатчика смартфона заметно меньше, чем 100 мВт, надо сделать так: необходимо 100 разделить на действительную мощность в милливаттах, и вычислить корень квадратный из полученного числа. У Вас будет поправочный коэффициент, на который требуется поделить расстояние, значение которого получено по рассмотренной методике.

Результаты практических наблюдений

Оценим «пробивную способность» Wi-Fi на практике. Для этого возьмем набор точек доступа, поддерживающих связь в диапазоне 2,4 ГГц: это TEW-411BRP+ фирмы TRENDnet, DWL-2100AP от D-Link, и USR 805450 компании US Robotics. В качестве абонентского устройства будем использовать смартфон, мощность передатчика которого равна 100 мВт. На точки доступа установим штатные антенны, а сами они будут располагаться на пятом этаже панельного дома.

Предельная дистанция, уверенный прием

Уже на третьем этаже здания, где установлено наше оборудование, сеть Wi-Fi отсутствует. Волна преодолела 2 железобетонных перекрытия, то есть мы потеряли 30 дБ – и все, связи нет. В действительности, считайте, что при прохождении двух перекрытий теряется 35 децибел. Сюда надо прибавить и затухание, зависящее от длины дистанции, тогда мы получим примерно 36-38 дБ. Значит, именно такое затухание для 100 милливатт является критическим.

Область прямой видимости излучателя

Пробуем поймать сигнал на улице. На расстоянии 150-180 метров наличие сети можно заметить, но это верно, если находиться напротив окна комнаты, где установлено оборудование. А стабильной связь остается на расстоянии 100 метров. Как видим, теория соответствует практике с достаточным уровнем достоверности. Для надежности теоретически полученный результат (одно окно –> 200 метров) лучше делить на 2.

Чего делать не нужно

Всем понятно, что вряд ли стоит повышать мощность одного из передатчиков, когда второй, то есть «абонентский», остается без изменений. То же можно сказать и о применении антенн, позволяющих увеличить интенсивность волны, но сужающих диаграмму. Впрочем, применение секториальных и многозвенных антенн все равно будет эффективно, и вот почему. Роутеры и другие излучатели радиоволн могут быть не только у Вас в квартире, но и у соседей и т.д. А сужая сектор захвата, можно избавить Ваш роутер от посторонних радиочастотных шумов.

Настраивая беспроводную сеть в роутере, необходимо выбирать не максимальное, а оптимальное значение мощности. В интерфейсе многих устройств подобная регулировка есть. Начните с максимума, и шаг за шагом понижайте значение:

Настройка роутера ZyXEL Keenetic

Остановиться стоит, когда в самой дальней точке смартфон перестанет «видеть» сеть. Повысив мощность на одно деление, можете пользоваться сетью Wi-Fi в свое удовольствие.

Секториальная антенна – из обычной

В статье пойдет речь о том, как производится расчет дальности распространения радиосигнала Wi-Fi внутри помещения без применения какого-либо программного обеспечения в принципе. Подробно объясняется, что такое модели распространения радиосигнала, и о том, как ее использовать для расчета дальности распространения радиосигнала.

Введение

Порой бывает необходимо хотя бы приближенно оценить дальность работы беспроводного оборудования. Эта оценка может потребоваться и в домашних условиях, когда нужно понять, где проходит граница действия вашей точки доступа, так и в случае проектирования небольшой офисной сети, когда всемогущий системный администратор должен сообщить начальнику, какое количество устройств может потребоваться чтобы в офисе везде "был Wi-Fi".

Вроде как все просто, нужно посчитать насколько далеко полетит сигнал (электромагнитная волна) от антенны точки доступа. Но отличительная особенность расчета затухания электромагнитной волны в свободном пространстве от затухания в кабеле, заключается в том, что кабель, как правило, хорошо экранирован, а в свободном пространстве могут появляться сторонние объекты, либо оно само (пространство) время от времени может менять свои электрофизические свойства. К тому же вследствие интерференции и дифракции радиоволн, направление распространения электромагнитной волны и ее энергетический запас может многократно измениться как в меньшую, так и в большую сторону на пути прохождения волны от передатчика до приемника.

В том случае, если необходимо определить затухание сигнала внутри кабельной сборки, то зачастую достаточно знать погонное затухание кабеля и потери на его (кабеле) коннекторах. Таким образом, формула для расчета суммарного затухания в этом случае может выглядеть довольно просто:

где: P к - затухание на коннекторе (ах);
Р n - погонное затухание в кабеле;
L - длина кабеля.

Если же рассматривается свободное пространство, то предсказать какой уровень электромагнитного сигнала от точки доступа Wi-Fi будет в месте расположения абонента крайне проблематично. В современных реалиях перед проектированием Wi-Fi сети строят ее планируемую электромагнитную карту с помощью различных программных и аппаратных комплексов. К программным комплексам относятся такие как: TamoGraphSiteSurvey, AirMagnet Survey / Planner, Site Survey and Planning Toolот компании Ekahau и др. Например на рисунке ниже изображен внешний вид проекта в одной из перечисленных программ.

В основе этих программ лежит математическое ядро, построенное на базе так называемых моделей распространения радиосигнала (моделях потерь радиосигнала). В некоторых из них применяются и более сложные электродинамические модели.

Модели расчета потерь радиосигнала Wi-Fi

Модели расчета потерь радиосигнала позволяют оценить затухания электромагнитной волны, излучаемой Wi-Fi адаптером, с учетом количества и типа препятствий на пути прохождения сигнала. В данной статье рассматриваются модели распространения сигнала, используемые для расчета уровня сигнала внутри зданий. Моделей, о которых пойдет речь, и их модификаций существует большое множество. В статье рассматриваются наиболее простые, которыми можно воспользоваться даже в полевых условиях без глубоких математических знаний.

Перед началом рассмотрения различных моделей распространения радиосигнала отметим, что в идеальных условиях (отсутствуют препятствия на пути прохождения сигнала, и нет многократных переотражений сигнала) оценить мощность сигнала в любой точке свободного пространства (free space - FS) можно по так называемой формуле Фрииса:

где: - коэффициент усиления антенны передатчика;
- коэффициент усиления антенны приемника;
- длина волны, метров;
- расстояние между приемником и передатчиком, метров.

На рисунке 1 приведен график зависимости затухания L FS с увеличением расстояния для Wi-Fi сигнала на первом частотном канале (центральная частота 2437 МГц) в диапазоне 2.4 ГГц - синяя кривая, и в диапазоне 5 ГГЦ - красная кривая. При этом коэффициенты усиления приемной и передающей антенны были приняты равными единице.


Рисунок 1 - затухание сигнала Wi-Fi с увеличением расстояний

Как правило, большинство моделей распространения используют значение потерь в свободном пространстве в качестве базового, и добавляют к нему переменные, вносящие дополнительное затухание в зависимости от типа препятствий и их электрофизических свойств. К таким моделям относятся, например, One slope и Log-distance. Кроме того, существует стандартизированная Международным союзом электросвязи модель потерь - ITU-R 1238. Перечисленные модели потерь относятся к классу эмпирических статических моделей, то есть для их использования нужно общее описание типа задачи (типа помещения). Перечисленные модели потерь с расшифровкой входящих в них переменных приведены в формулах (3 - 5).

где: d - расстояние в метрах, на котором производится оценка затухания;
Lfs- потери на расстоянии d0 метров;
n- коэффициент, зависящий от количества и материала препятствий.

где: - нормальная случайная величина, измеряемая в dB, имеющая стандартное отклонение , dB.

где: d>1, м- расстояние, на котором производится оценка затухания;
f - частота центрального канала Wi-Fi, МГц;
N- коэффициент потери уровня сигнала с расстоянием;
Lf (n)- коэффициент потери мощности сигнала при прохождении через стену (пол);
- количество стен (полов) между приемной и передающей антеннами.

В дальнейшем более подробно рассмотрим модель ITU-R 1238, применим ее для определения дальности связи, и сравним результаты расчетов с результатами эксперимента. О том, какие значения в вышестоящих формулах принимают переменные N, n, подробно расписано непосредственно в самой рекомендации МСЭ-R Р. 1238-5 под названием "Данные о распространении радиоволн и методы прогнозирования для планирования систем радиосвязи внутри помещений и локальных зоновых радиосетей в частотном диапазоне 900 МГц - 100 ГГц" (объем - 19 страниц). Для эксперимента, который будет проведен ниже, значения переменных будут выбраны из указанной рекомендации. В разных ситуациях переменные могут принимать различные значения, и чтобы перечислить все возможные случаи пришлось бы разместить в статье минимум 10 страниц документа из 19-ти.

К сожалению, перечисленные модели не учитывают влияния на точку доступа (точнее на излучаемую ей электромагнитную волну) стороннего оборудования, функционирующего в том же частотном диапазоне. Поэтому все расчеты производятся исходя из того, что ваше устройство единственное во всем радиусе его (оборудования) действия. Как показывает практика расчетов, если в радиусе слышимости вашей точки доступа находится 20-30 беспроводных устройств, то радиус действия уменьшается на 15-20%. Но стоит иметь в виду, что эта цифра сугубо приблизительная и в разных ситуация может проявляться по-разному, ибо очень зависит от мощности сигнала, который приходит в ваше устройство, и от того на какой частоте работает окружающее оборудование.

Сравнение результатов эксперимента с моделью ITU-R 1238

Постановка задачи: установленная точка доступа Wi-Fi работает в диапазоне частот 5 ГГц. Приемное устройство (ноутбук) устанавливается в шести точках, схематическое расположение которых изображено на рисунке 2, и регистрирует излучаемую мощность. Выбор расположения точек замера произведен так, чтобы минимизировать влияние эффекта многолучевого распространения на уровень принимаемого сигнала. Предполагается, что максимумы диаграмм направленности приемной и передающей антенны направлены друг на друга.


Рисунок 2 - Комментарии к задаче

Перед тем как приступить к расчетам, следует отметить, что авторы модели ITU-R 1238 сделали ее очень гибкой, в частности за счет того, что входящий коэффициент N может меняться в широких приделах: от 20 до 40 дБ. Чтобы понять какому значению приравнивать N для конкретной ситуации, лучше обратиться непосредственно к первоисточнику рекомендации.

Для рассматриваемого диапазона коэффициент потери мощности сигнала при прохождении через стены для нашего типа задачи - L fn рассчитывается по формуле L fn =15=4(n-1).Таким образом, для точек 1-3 L f(n) =15. для точек 4-6 Lf(n)=19 (таблица 3 рекомендации МСЭ-R Р. 1238-5). Коэффициент N, используемый при расчете потерь на передачу внутри помещения примем равным 30 (таблица 2 рекомендации МСЭ-R Р. 1238-5). С учетом выбранной геометрии задачи, замирания учитываться не будут.

Результаты расчетов в 6-ти точках по формуле ITU-R сведены в таблицу 1, а расстояния до каждой точки измерения от Wi-Fi роутера изображены на рисунке 3.


Рисунок 3 - Расстояния от точки доступа до точки измерения

Таблица 1

Полученные результаты для более наглядного представления изображены на рисунке 4.


Рисунок 4 - Результаты расчетов и измерений

Наименьшее отличие экспериментальных и расчетных данных наблюдается в точках измерения 1 и 4. Связано это с тем, что сигнал проходит через препятствия (а данном случае, стены) по кратчайшему пути. И напротив, в точках 2,3 и 5,6 сигнал теряет бо льшую часть энергии проходя через препятствия по более длинному пути. Этот эффект не учитывается в используемой модели распространения сигнала, что и приводит к росту различия расчетных и экспериментальных данных.

Заключение

Таким образом, в данной работе был показан на практическом примере вариант применения стандартизированной модели расчета затухания сигнала Wi-Fi внутри здания. Эта и другие модели помогут довольно быстро, без применения специализированного ПО, оценить количество необходимого оборудования для Вашего офиса. Конечно, этот подход не заменит качественных проектных расчетов в специализированных программных продуктах, но позволит что называется "сориентироваться на местности", нужно лишь учитываться геометрию здания для получения более корректных результатов.