Принцип работы водяного охлаждения компьютера. Бесшумный компьютер с двухконтурной системой водяного охлаждения

19. 06.2017

Блог Дмитрия Вассиярова.

Система жидкостного охлаждения компьютера — она же водянка

Здравствуйте.

Вы наверняка сами не раз чувствовали, что в процессе работы ваш комп выделяет тепло. Чтобы он не перегрелся, часто используется встроенный кулер. Но с ростом производительности железа его стало не достаточно. Для качественного обдува его мощность тоже должна быть увеличена, из-за чего повышается шумность работы компа, тем более если вы ещё и занимаетесь разгоном.

Чтобы избавиться от этих и других недостатков, разработана система жидкостного охлаждения компьютера. Хотите узнать о ней больше? Читаем статью.

Если вы подумали что это что — то типо того, то вы ошибаетесь:))

Итак, что это такое?

В данной теме вы можете встретить аббревиатуру СВО, которая расшифровывается как система водяного охлаждения. Также используется еще одна - СЖО, где второе слово заменено на «жидкостного». Как вы догадались, от воздушного охлаждения, к которому вы привыкли, отличает ее то, что тепло от железа передается не воздуху, а воде.

Плюсы и минусы

Новаторское решение эффективнее своего воздушного предшественника по таким причинам:

  • Повышенная теплоемкость жидкости.
  • Стабильность при разгоне.
  • Тепло отводится от центра проца. В свою очередь, микромотор воздушных систем расположен над самой горячей зоной радиатора, напротив , из-за чего создается мертвая точка, откуда горячий воздух не выводится. А его (тепло) по логике лучше всего отдалять — дабы повысить качество охлаждения.

Подающая воду помпа создает гораздо меньше шума, чем вентилятор.

  • Полностью выводит тепло из системного блока, в то время как воздушная система просто разгоняет его внутри корпуса.

У вас мощный компьютер с современными комплектующими? Тогда стоит рассмотреть установку водяной схемы, потому что она лучше способна уберечь устройства от перегрева, и как следствие, быстрого выхода из строя и не будет надоедать вам шумом. Такая система и сама прослужит долго. Приятным бонусом является привлекательный дизайн.

Но выделяют и недостатки водяных систем:

  • Высокая цена. Учитывая стоимость комплектующих, которые она будет защищать, на это можно закрыть глаза.
  • Более сложная сборка.
  • Возможность разгерметизации. Но при правильной установке этот «минус» исключается.

Принцип работы

Теплообменником СЖО является «waterblock» или второе название «водоблок» . Он берет на себя горячий воздух, выделяемый процессором, видеокартой и пр., и передает его воде. При помощи особого насоса она поступает в еще один теплообменник - радиатор, забирающий тепло из воды и выводит его в воздух за границы системника.

Комплектация СВО

Выше уже упомянуты основные элементы водяной системы. Так как многие энтузиасты решают сами заниматься ее сборкой, разберем подробнее, из чего состоит СВО. В комплектацию современных моделей может входить множество разных элементов. Мы рассмотрим только основные из них.

Водоблок

Зачем он нужен, вы теперь знаете. Как он выглядит? Прибор имеет обычно медное основание, крышку из пластика или металла и крепления, чтобы присоединять его к охлаждаемому устройству.

Кстати, для процессоров, северного моста на чипе и видеокарт существуют разные типы водоблоков. Те, что предусмотрены для последних в перечислении девайсов, разделяются на подвиды: закрывающие только графический чип («gpu only») либо все нагревающие элементы.

Сейчас основание ватерблоков делается из тонкой меди, в отличие от первоначальных вариантов, чтобы тепло быстрее передавалось воде. Дно может быть выполнено и из алюминия: это дешевле, но менее эффективно.

Также нынешние приборы имеют микроканальную или микроигольчатую структуру для усовершенствования поверхности теплоотдачи. Но в случаях, к примеру, с системным чипом, где не идет счет эффективности охлаждения на градусы, может использоваться плоское дно или архитектура с простыми каналами.

В зависимости от схемы устройства, ватерблоки разделяются на 3 вида:

  • «Змейка». Используется один или несколько непрерывных каналов. Они могут быть выполнены с расходящейся спиралью, когда штуцер находится посередине прибора, или в виде зигзага, если 2 штуцера расположены по краям.

  • Пересекающиеся каналы. Они создаются путем сверления в основании с торцов, а отверстия закрываются при помощи заглушек.

  • Без канальные. К основанию припаивается емкость со штуцерами. Через расположенный на входе теплоноситель поступает вода и выводится через боковой.

Радиатор

Его также называют водно-воздушным теплообменником из-за выполняемых им функций. Он бывает 2 типов: с вентилятором или без. Первые - активные - встречаются чаще, потому что эффективнее пассивных собратьев, хотя вторые отличаются бесшумностью.

Размер более распространенных радиаторов может быть разным, но в большинстве случаев кратен габаритам вентилятора на 120 мм или 140 мм. Получается, что теплообменник на 3 120-миллиметровых вентилятора будет иметь длину 360 мм и ширину 120 мм. Такой вариант называют трёхсекционным .

Эта штука гоняет жидкость по всей системе (иными словами насос). Работает он от электричества: некоторые модели при напряжении 12 V, другие - 220 V. Бывает внешняя помпа (пропускает воду через себя) и погружная (выталкивает ее). Второй вариант компактнее первого.

Учитывайте, что указанная производителем мощность насоса является максимальной и достигать ее не рекомендуется.

Некоторые умельцы используют аквариумную помпу, однако в случае с дорогими комплектующими компьютера не стоит проводить такие эксперименты. Современные ватерблоки обладают высоким гидросопротивлением из-за усиленной производительности, поэтому лучше устанавливать к ним специализированный насос.

Шланги и крепления

Несложно догадаться, что трубки нужны для циркуляции жидкости в системе. Чаще всего они изготавливаются из ПВХ, иногда встречаются силиконовые. Их длина абсолютно не влияет на эффективность СВО. Что касается диаметра, лучше не брать шланги тоньше 8 мм.

Не обойтись и без фитингов, которые нужны для подсоединения трубок к комплектующим системы. Каждый из них имеет отверстие с резьбой, куда и вкручиваются крепления.

Самые популярные - компрессионные (с гайкой) и в виде елочки (штуцеры). Также они бывают прямые и угловые. Различаются и по типу резьбы: зачастую используются G1/4′′, редко - G1/8′′ и G3/8′′.

Вода

Для заправки лучше брать дистиллированную воду. Это самый хороший и доступный вариант. Иногда применяется деионизированная вода или с разными примесями, но особой необходимости в этом нет.

Необязательные составляющие

Подробно не буду останавливаться на каждом комплектующем элементе, а только приведу список того, что может входить в состав СВО, но без чего можно и обойтись:

  • Термодатчики;
  • Краны для слива воды;
  • Контроллеры насосов и вентиляторов;
  • Измерители температуры, давления, потока и пр.;
  • Фильтры;
  • Расширительный бачок;
  • Фильтр, подсоединенный в контур;
  • Бэкплейт - пластина для снятия нагрузки с материнки или видеокарты;
  • Дополнительные ватерблоки.

Виды водяных систем

По способу расположения СЖО бывают внешними и внутренними. Первые выполняются в виде отдельного корпуса, который при помощи трубок подсоединяется к ватерблоку, находящемуся внутри системного блока. В стоящем рядом «ящике» располагаются остальные элементы системы.

Этот вариант хорош тем, что не приходится ничего менять внутри системника при установке СВО. Однако если вы соберетесь переносить комп, то столкнетесь с неудобствами. Среди внешних систем популярны модели «Большая вода» торговой марки Thermaltake или EK.

Внутренние системы, очевидно, располагаются внутри системного блока. Но не всегда получается впихнуть внутрь все компоненты, поэтому часто выносится наружу радиатор.

Удачи в выборе и терпения в установке.

До свидания, увидимся ещё, надеюсь;).

Зачастую после покупки компьютера пользователь сталкивается с таким неприятным явлением, как сильный шум, идущий от охлаждающих вентиляторов. Могут наблюдаться сбои в работе операционной системы из-за нагрева до высоких температур (90°C и более) процессора или видеокарты. Это весьма существенные недостатки, устранить которые возможно с помощью дополнительно устанавливаемого на ПК водяного охлаждения. Как изготовить систему своими руками?

Жидкостное охлаждение, его положительные свойства и недостатки

Принцип действия системы жидкостного охлаждения компьютера (СЖОК) основан на использовании соответствующего теплоносителя. Жидкость за счёт постоянной циркуляции поступает к тем узлам, температурный режим которых необходимо контролировать и регулировать. Дальше теплоноситель по шлангам поступает в радиатор, где и охлаждается, отдавая тепло воздуху, который затем отводится за пределы системного блока с помощью вентиляции.

Жидкость, имея более высокую теплопроводность по сравнению с воздухом, быстро стабилизирует температуру таких аппаратных ресурсов, как процессор и графический чип, приводя их к норме. В результате можно добиться существенного повышения производительности ПК за счёт его системного разгона. При этом надёжность работы компонентов компьютера не будет нарушена.

При использовании СЖОК можно обходиться вообще без вентиляторов или применять маломощные бесшумные модели. Работа компьютера становится тихой, в результате чего пользователь чувствует себя комфортно.

К недостаткам СЖОК следует отнести её дороговизну. Да, готовая система жидкостного охлаждения является удовольствием не из дешёвых. Но ведь при желании её можно сделать и установить самостоятельно. Это займёт время, но будет стоить недорого.

Классификация охлаждающих водяных систем

Жидкостные охлаждающие системы могут быть:

  1. По типу размещения:
    • внешние;
    • внутренние.

      Отличие между внешними и внутренними СЖОК в том, где расположена система: снаружи или внутри системного блока.

  2. По схеме соединения:
    • параллельные - при таком подключении разводка идёт от основного радиатора-теплообменника к каждому водоблоку, обеспечивающему охлаждение процессора, видеокарты или другого узла / элемента компьютера;
    • последовательные - каждый водоблок соединяется друг с другом;
    • комбинированные - такая схема включает одновременно параллельные и последовательные подключения.
  3. По способу обеспечения циркуляции жидкости:
    • помповые - система использует принцип принудительного нагнетания охлаждающей жидкости к водоблокам. В качестве нагнетателя используются помпы. Они могут иметь собственный герметичный корпус либо погружаться в охлаждающую жидкость, находящуюся в отдельном резервуаре;
    • безпомповые - жидкость циркулирует за счёт испарения, при котором создаётся давление, движущее теплоноситель в заданном направлении. Охлаждаемый элемент, нагреваясь, превращает подводимую к нему жидкость в пар, который затем снова становится жидкостью в радиаторе. По характеристикам такие системы значительно уступают помповым СЖОК.

Виды СЖОК - галерея

При использовании последовательного подключения сложно непрерывно обеспечивать хладагентом все подключаемые узлы араллельная схема подключения СЖОК - простое подключение с возможностью легко просчитывать характеристики охлаждаемых узлов Системный блок с внутренней СЖОК занимает много места внутри корпуса компьютера и требует высокой квалификации при монтаже
При использовании внешней СЖОК внутреннее пространство системного блока остаётся свободным

Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Делаем жидкостную систему охлаждения ПК своими руками - видео

Изготовление, сборка и монтаж

Рассмотрим изготовление внешней помповой системы жидкостного охлаждения центрального процессора ПК.

  1. Начнём с водоблока. Самую простую модель этого узла можно приобрести в интернет-магазине. Идёт он сразу с фитингами и зажимами.
  2. Водоблок можно изготовить и самостоятельно. В этом случае понадобится медная болванка диаметром от 70 мм и длиной 5–7 см, а также возможность заказать токарные и фрезерные работы в технической мастерской. В результате получится самодельный водоблок, который по окончании всех манипуляций нужно будет покрыть автомобильным лаком для исключения окисления.
  3. Для крепления водоблока можно использовать отверстия на материнской плате в месте изначальной установки радиатора воздушного охлаждения с вентилятором. В отверстия вставляются металлические стойки, на которые крепятся вырезанные из фторопласта планки, прижимающие водоблок к процессору.
  4. Радиатор лучше всего приобрести готовый.

    Некоторые умельцы используют радиаторы от старых автомобилей.

  5. В зависимости от размеров, на радиатор с помощью резиновых прокладок и кабельных стяжек или же посредством саморезов крепятся один или два стандартных компьютерных вентилятора.
  6. В качестве шланга можно использовать обычный жидкостный уровень, сделанный из силиконовой трубки, обрезав его с обеих сторон.
  7. Без фитингов не обходится ни одна СЖОК, ведь именно через них шланги подключаются ко всем узлам системы.
  8. В качестве нагнетателя рекомендуется использовать небольшую аквариумную помпу, которую можно приобрести в зоомагазине. Крепится она в подготовленном резервуаре для охлаждающей жидкости с помощью присосок.
  9. В роли резервуара для жидкости, выполняющего функции расширительного бачка, можно использовать любой пищевой контейнер из пластмассы, имеющий крышку. Главное, чтобы туда помещалась помпа.
  10. Для возможности долива жидкости в крышку контейнера врезается горловина любой пластиковой бутылки с закруткой.
  11. Электропитание всех узлов СЖОК выводится на отдельный штекер для возможности подключения от компьютера.
  12. На заключительном этапе все узлы СЖОК закрепляются на подобранном по размеру листе оргстекла, подключаются и фиксируются зажимами все шланги, штекер электропитания соединяется с компьютером, система заполняется дистиллированной водой или тосолом. После запуска ПК охлаждающая жидкость сразу начинает подаваться к центральному процессору.

Водоблок на компьютер своими руками - видео

Водяное охлаждение превосходит по характеристикам изначально устанавливаемую на современных компьютерах воздушную систему. За счёт жидкостного теплоносителя, используемого вместо вентиляторов, сокращается шумовой фон. Компьютер работает намного тише. Сделать СЖОК можно своими руками, обеспечив при этом надёжную защиту основных элементов и узлов компьютера (процессор, видеокарта и др.) от перегрева.

5 апреля 2017

Приветствую, дорогой читатель!

Если ты только недавно узнал о или слышал о них ранее и хотел бы установить себе, но не знал, с чего начать, тогда эта статья именно для тебя. В ней мы расскажем о самых базовых понятиях, основных компонентах СВО, а также нюансах, которые будут сопутствовать выбору тех или иных комплектующих.

Итак, полный набор компонентом кастомной системы водяного охлаждения состоит из:

Рассмотрим их подробнее.

РАДИАТОРЫ

Существует очень много различных типов радиаторов , отличающихся по размеру, структуре, материалу изготовления, но в целом они все очень похожи - и выполняют одну и ту же функцию - рассеивание тепла .

Изготавливаются радиаторы из двух материалов - алюминия и меди . Медные дороже алюминиевых, и они, безусловно, лучше . Но и алюминиевые от них не сильно отстают в качестве рассеивания тепла, поэтому не всегда большие финансовые затраты оправданы. Если твой бюджет ограничен и ты не гонишься за каждым градусом охлаждения или у тебя два и больше радиатора толщиной 45мм, рассчитаных на 3 кулера, то вполне можешь выбирать алюминиевый варианты . При этом учти, что самые именитые компании, в основном, производят только медные варианты. Если все же решишься брать медный , то один из вариантов - изделия от компании Alphacool , которая располагает наверное самым широким ассортиментом медных радиаторов среди всех производителей, специализирующихся на компонентах СВО.

С материалами разобрались, теперь время поговорить об основных технических параметров любого радиатора - размере и FPI .

Чем больше габариты радиатора , тем больше ребер присутствует в его конструкции. А это значит, что увеличивается площадь для рассеивания тепла и продуктивность работы радиатора возрастает. В большинстве случаев более габаритные радиаторы требуют менее мощных вентиляторов, но чтобы делать окончательные выводы, нужно учитывать FPI .

Параметр FPI характеризует количество ребер радиатора на один дюйм (плотность), что также влияет на общую площадь рассеивания тепла. Через радиаторы с высоким FPI труднее прогонять воздух, а это значит, что они требуют более мощных вентиляторов. Но если радиатор достаточно большой и в нем есть большое количество плотно расположенных ребер, то данный нюанс не столь важен, так как в данном случае большую часть времени работы СВО вентиляторы могут вообще не понадобиться. За примером далеко ходить не нужно - мой рабочий компьютер в начале рабочего дня вообще не запускает вентиляторы примерно 2 часа, так как этому способствует температура жидкости , которая циркулирует по контуру системы.

ВОДОБЛОКИ

Данный элемент СВО выпускается для каждого компонента ПК , так или иначе подверженного нагреванию во время работы. Самыми распространенными являются водоблоки для и . Основное различие всех водоблоков между собой заключается в основных технических параметрах: типе канальной системы , способе подачи жидкости , а также материале основания .

Если ты не планируешь бороться за каждую долю градуса, то вполне можешь покупать недорогие , но проверенные, китайские водоблоки - СВО с ними будет охлаждать гораздо продуктивнее любого воздушного кулера. К примеру, можно обратить внимание на модели от компании Bykski , обзоры и тесты которых ты можешь найти у нас на сайте. Если же тебе нужна максимальная производительность и красивый внешний вид, тогда предпочтительнее выбрать что-то похожее на новую модель водоблока от Alphacool , которого также есть на нашем сайте.

ПОМПА

Данный компонент системы водяного охлаждения является, по сути, ее сердцем. То есть, жизненно важным для работы элементом.

Основные характеристики помпы при выборе - это производительность , измеряемая в литрах за час , ну и шум. Зачастую, чем производительнее помпа, тем громче она работает. В конструкции некоторых помп присутствует PWM-разъем , позволяющий управлять скоростью работы мотора , тем самым регулируя производительность и, соответственно, шум.

При минимальной конфигурации СВО (один водоблок на процессоре) и небольшом бюджете тебе с головой хватит любой помпы с заявленной производительностью около 200 л/час . Ведь даже , в которых помпа работает на 100 л/час, вполне справляются со своей задачей. Если же ты гонишься за производительность и при этом хочешь максимально тихой работы, тогда самый приемлемый выбор - помпа D5 , но нужно учесть ее относительно высокую стоимость. Производителем заявляется, что ее средний показатель работы - около 450 л/час , по факту, в контуре средней конфигурации (водоблок на процессоре и ещё один на видеокарте) она выдает уверенных 200 л/час. Популярность двигателя D5 подкреплена тем фактом, что каждый именитый производитель выпускает свой вариант данной помпы, комплектются ее своим топом (крышкой), который привносит в дизайн индивидуальность, но при этом двигатель один и тот же - и работает он тихо, надежно и производительно.

РЕЗЕРВУАРЫ

Резервуар тоже является обязательным элементом СВО . Если посмотреть на вышеупомянутые необслуживаемые СВО, то у них нет резервуара, но в их случае система является герметичной и полностью заполнена жидкостью , то есть там нет воздуха. В кастомных же СВО резервуар служит для предотвращения возникновения воздуха в контуре, отслеживания уровня охлаждающей жидкости и удобного залива этой самой жидкости в контур.

Производятся резервуары, в основном, из акрила или стекла . Стеклянные дороже, но они более качественные. К примеру, акриловый резервуар может треснуть, если при его монтаже применить силу больше той, что следует, и сильно закрутить его конструктивные элементы.

Если ты не планируешь делать моддинг проект, то тебе хватит даже самого маленького акрилового резервуара , так как основные функции он сможет обеспечить. Единственное отличие маленького от большого заключается в том, что в маленький чаще нужно заливать охлаждающую жидкость.

ФИТИНГИ

Та маленькая , но очень важная часть, без которой бы не смогла полноценно функционировать ни одна система водяного охлаждения . Фитингов существует очень много и отличаются они по дизайну, типу совместимых шлангов, материалу и т.д. Самыми распространёнными являются фитинги для трубок 10/13 , то есть с внутренним диаметром 10 мм и внешним 13 мм. Есть фитинги с гайкой (компрессионные), а есть классические фитинги-елочки (штуцеры), на которые шланг просто надевается и зажимается скобой. В целом, по фитингам, особых нюансов нет. Просто выбирай нужный по дизайну, типу шланга, ну и материалу.

Разновидностью фитингов являются адаптеры , которые позволяют сделать контур СВО более красивым и избавить его от "вермишели" из трубок. Ведь трубки имеют большой радиус изгиба и если нужен небольшой переход между неудобно расположенными друг к другу компонентами СВО, то адаптеры - это хорошее решение.

ШЛАНГИ

Также очень важная часть системы жидкостного охлаждения. Позволяет соединить все компоненты СВО воедино . Различаются шланги исполнением , материалом , диаметром , расцветкой . Как было указано выше, наибольшее распространение обрели шланги с диаметром 10/13 .

Что касается материала, то шланги изготавливаются, в основном, из ПВХ или силикона . ПВХ-варианты дешевле, но у них радиус изгиба больше и они со временем мутнеют . Соответственно, при использовании силиконовых шлангов у тебя есть больше возможностей сделать эстетически красивый контур , что важно в различных моддинг проектах.

ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

Она является теплоносителем в контуре СВО . То есть она переносит тепло от горячих элементов (водоблоков) к элементам, которые тепло рассеивают (радиаторам). В контуре лучше всего использовать специальную профильную жидкость , но может подойти даже дистиллированная вода, которая лучше переносит тепло за счет отсутствия химических добавок, хотя она и нуждается в более частой замене .

Теперь ты знаешь основную информацию , которая позволит тебе определиться с комплектацией твоей первой системы водяного охлаждения . А если хочешь узнать еще больше, тогда можешь ознакомиться с тестами и обзорами на нашем сайте и YouTube-канале , а также мы постоянно открыты для твоих вопросов.

С видео версией данного руководства ты можешь ознакомиться ниже.

Системы водяного охлаждения для различных компонентов ПК в последнее время на слуху. Почему водяное охлаждение для компьютера выглядит настолько привлекательным? По какой причине оно лучше обычного воздушного? Обо всем этом вы узнаете в продолжении статьи.

Что бы у вас не стояло - "водянка" или простой кулер, физически, вы просто перемещаете тепло из одного места в другое. Помимо этого без кулера и радиатора, конечно, не обойтись. Они используются в обеих видах охлаждения. В принципе, любая система охлаждения компьютера работает по одним и тем же принципам, принципам термодинамики.

По сути, в основном водяное охлаждение для компьютера используется разве что для придания сборке эстетичности. Не поймите неправильно, водяное охлаждение способно справляться с огромным тепловыделением, сохраняя при этом низкие температуры.

Если вы смотрите в сторону цены/качества - то лучше всего взять хороший башенный кулер для процессора и видеокарту с двумя-тремя вентиляторами. Этого будет вполне достаточно, чтобы никогда не достигать температурного предела. Да и на сегодняшний день, при том же разгоне вы скорее упретесь в "железные" ограничения, нежели в температурный лимит.

Водяное охлаждение для компьютера практически не издает заметного шума. Кулеров может быть много, но уровень шума зависит как раз от скорости вращения оных. Например, если вы поставите 5 120 мм вертушек на частоте 1200 оборотов, и сравните с двумя такими же, но с 3000 оборотами, именно второй вариант будет шумнее.

Эстетика

Как сказано выше, водяное охлаждение применяется больше для вида, чтобы выделиться среди других. С помощью водяного охлаждения сделать это можно по-разному. Заметьте, никто не сказал что системы с воздушным охлаждением не могут выглядеть эстетично. Системы водяного охлаждения популярны среди моддеров. Благодаря им мы увидели в продаже такие штуки, как прозрачные боковые крышки, светодиодные ленты, кабеля в разноцветных оплетках.

У вас есть 4 варианта оснастить "водянкой" ваш компьютер. Как вариант, можно купить готовый кулер. Так вы не будете морочить себе голову с установкой и получите то же водяное охлаждение, еще и на гарантии.

Второй вариант - использовать мягкие трубки, цветные или прозрачные. Это наиболее удобный способ для сборки ввиду гибкости трубок и простоты в использовании.

Третий, и пожалуй наиболее популярный метод - пользоваться готовыми негнущимися акриловыми трубками. Прямые линии, сгибы трубок под углом придадут вашей сборке необычности.

Есть еще медные трубки. Практически полностью идентичны акриловым, разве что их проще согнуть. Ну и дешевизна тоже берет свое. Медь красиво сочетается с никелированными панелями. Что бы вы не выбрали, выйдет получаете очень тихая система, способная справляться с огромным тепловыделением.

Компоненты водяного охлаждения

Если вы думали что сборка своего ПК была сложной, у меня для вас плохие новости. Для сборки системы водяного охлаждения вам понадобятся: корпус, трубки, радиатор(ы), процессорный блок, блок для видеокарты, панель на плату видеокарты, резервуар(ы), помп(ы), компрессионные фитинги, угловые фитинги, запорные клапаны, охлаждающая жидкость и вентиляторы. С тех пор как вы решили сделать водяное охлаждение самому - будьте готовы раскошелиться. Красота требует жертв.

Процессорный блок

Пожалуй, самый важный компонент системы водяного охлаждения для компьютера. Убедитесь в том, чтобы блок был совместим с вашим процессором. Хотя, иногда этим можо пренебречь, т.к по размеру чипы от Intel и AMD практически не отличаются. Популярный вариант - Corsair H110.

Блок для видеокарты

Тут тоже нужно убедится о совместимости вашей карты с блоком охлаждения. Есть производители, например EKWB, которая выпускает блоки охлаждения, разработанные специально для карт серий Windforce от Gigabyte, Strix от ASUS, Lightning от MSI.

Блок для оперативки

Охлаждать ли оперативную память или нет - ваш выбор. Обычно дорогие планки идут уже с красивыми радиаторами, и лично я не вижу смысла в водяном охлаждении оперативной памяти. И никто вас не накажет, если все что вы собираетесь охлаждать подобным образом - лишь процессор и карта.

Фитинги

Система водяного охлаждения для компьютера требует закрепления трубок фитингами. Это наиболее важная часть системы. В зависимости от того, какую трубки вы выбираете, вам понадобятся либо компрессионные фитинги, либо акриловые фитинги. Если не хотите заморачиваться, можно просто взять стандартные.

Однако, если вы сторонник эстетики и прямолинейности, можно докупить те же угловые фитинги, как правило на 45 или 90 градусов. Кроме того, стопорный клапан может пригодиться для обслуживания.

Помпы и резервуары

Технически, вам не нужно покупать резервуар, чтобы успешно работать с водяным охлаждением. Тем не менее, они выглядят довольно впечатляюще, и так намного легче заполнять систему с водяным охлаждением по сравнению с другими методами.

Однако вам всегда понадобится насос, чтобы гарантировать, что жидкость в вашей системе переливается, отводит тепло от ваших основных компонентов и выходит к радиаторам.

Радиаторы и постоянное давление

Система водяного охлаждения для компьютера требует хорошей организации внешнего охлаждения помимо самих водяных трубок и насосов.

На этом этапе нам нужно узнать, как отводить накопившееся тепло. Единственный вариант - использование радиаторов. Можно сделать это как вам нравится, используя отдельные узлы для ваших видеокарт и процессоров или комбинируя их в одну систему.

Радиаторы же по прежнему необходимы, дабы избавиться от всего этого тепла, а так же соответствующие вентиляторы, чтобы это все выдувать. После того, как вы решите, сколько радиаторов позволяет разместить ваш корпус и сколько вы собираетесь использовать, вам нужно ближе познакомиться с понятием FPI и толщиной радиаторов, которые вы будете использовать.

FPI означает ребро на дюйм. По сути, чем выше FPI, тем выше постоянное давление, которое вам понадобится для эффективного перемещения холодного воздуха через этот радиатор.

Например, если у вас есть радиатор с 38 FPI , вам вероятно, понадобятся вентиляторы с оптимизацией давления. Однако, если у вас более глубокие радиаторы с меньшим FPI, равным 16, вы не увидите никакой сопоставимой разницы между вентиляторами постоянного давления или вентиляторами, использующими потоки воздуха. В этих случаях лучше оснащать радиаторы классическими кулерами.

Сборка и проектирование вашей системы

На этом этапе стоит уделить внимание выбору железа для вашей сборки. Для начала присмотрим лучший корпус. На рынке существует множество корпусов готовых для установки водяного охлаждения, начиная с маленьких MiniITX, заканчивая огромными E-ATX.

Как только вы нашли подходящий вам корпус, надо посмотреть, какие радиаторы возможно установить. Затем стоит продумать размещение трубок и сколько узлов охлаждения вы планируете поставить - 1 или 2. Как только вы все продумали, нужно узнать сколько нужно купить фиттингов и каким образом вы планируете запустить систему. Обычно на каждое охлаждаемое устройство нужно два фиттинга.

Для нас вопрос выбора корпуса был не сложен. Мы взяли Fractal Define S, специально разработанный для использования водяного охладения. Поставим два радиатора наверх и три спереди. Охлаждать будем две карточки от Nvidia и Intel Core i7-5820K.

В роли материнки будет ASUS X99 Sabertooth - на топовом чипсете Х99 и потрясающим дизайном. Плата покрыта черными и серыми защитными элементами. А чтобы добавить контраста - будем использовать белую жидкость.

Выбор нужного корпуса может оказаться непростой задачей, особенно для мода с водяным охлаждением. Как писалось выше, нужно смотреть в сторону готовых решений, предусматривающих возможность водяного охлаждения. Parvum, Phanteks, Corsair, Caselabs и Fractal как раз специализируются на выпуске корпусов для подобных модов, и позволяют превратить сборку ПК в искусство. Так же следует позаботиться о количестве радиаторов, о месте размещения резервуара, и как будут размещены трубки.

Фитинги и узлы

Начнем процесс сборки. Как и со сборкой обычного ПК, стоит собирать все сначала вне корпуса, чтобы увидеть как оно все работает, и уже только потом пихать все в корпус. Мы протестировали по отдельность каждую видеокарту, память и процессор со стоковым охлаждением, перед тем, как установить водяное охлаждение.

Далее идет сам процесс сборки, освобождение внутренностей корпуса от ненужных составляющих, например слотов для установки жестких дисков и т.д. Затем устанавливаем материнскую плату, оперативную память и видеокарты. Все плотно прикручиваем, чтобы ничего не выпало и не повредилось. Затем прикрутили радиаторы. Настало время установки резервуара и фитингов.

Укладка кабелей

В сборках подобного рода, укладка проводов должна быть безупречной. Не думаю что вам понравятся потрепанные провода, вылазящие изо всех щелей. Они не только будут мешать прокладке трубок, но и нормальной циркуляции воздуха. Блоки питания от Be Quiet!, Cooler Master, Corsair, EVGA и Seasonic укомплектованы уже отдельными кабелями с оплеткой. Как вариант, можно приобрести ее отдельно и "одеть" провода. Да, это сложно и займет много времени, но результат того стоит.

Ко всему прочему был приобретен отдельный контроллер кулеров от Phanteks. Благодаря ему, управлять пятью кулерами намного проще, к тому же скорость вращения будет зависеть от температуры процессора (которая в этой сборке будет достаточно низкая).

Сборка и наполнение СО

Пришло время начинать сборку системы охлаждения. Выровняйте отрезок трубки между двумя точками, которые вы хотите соединить, затем отрежьте немного больше чем вам кажется.

Лучше иметь немного про запас, так как трубку всегда можно обрезать. Затем открутите один из фитингов, насадите, покручивая, трубу на фитинг и наденьте другой конец обжимного фитинга на незакрепленный конец. Затем завинтите его, сжав трубопровод. Если вы изо всех сил пытаетесь вставить трубку, используйте пару плоскогубцев с иглами. Осторожно вставьте их в конец трубки и аккуратно растяните трубу, чтобы было легче работать.

Теперь вам предстоит снять муфту с другого фитинга, предварительно прикрепить его к новой трубке и сделать то же самое с другим концом.

Не столь важно, куда идет трубка, когда все работает в одном узле. Как только система загерметизирована и находится под давлением, температура воды будет одинакова, вне зависимости от того, к какому компоненту какая трубка идет. Все благодаря физике.

Подойдем к самому страшному этапу сборки - наполнению нашей системы. Сперва убедитесь что жидкость попадает из резервуара в помпы под силой тяжести. Затем прикрепите последний фитинг сверху резервуара. Используйте воронку, чтобы аккуратно налить наш хладагент в систему. В нашем случае мы просто взяли пустую вымытую бутылочку из-под соуса.

Прежде чем приступать, стоит убедиться что на материнскую плату не подается питание. Не лишним будет отключить питание и от процессора, видеокарт, и дисков. Сам блок тоже нужно обесточить.

Для удобства можно соединить две точки питания самом блоке питания канцелярской скрепкой, либо использовать специальный мостик. Тогда при заполнении резервуаров все сводится к банальному размыканию цепи питания. Помните, что этого не стоит делать, пока в резервуаре и насосе есть внутри жидкость.

Подведем итоги

Готовая сборка прекрасно выглядит. Как уже подметили, белая жидкость и черные блоки охлаждения отлично контрастируют с цветовой гаммой материнки. i7-5820k был разогнан до 4.4 ГГц, и температура оного вышла стандартная для подобного рода сборок - около 55 градусов Цельсия в нагрузке.

Видеокарты в режиме нагрузки выдавали около 60 градусов, а скорость кулеров для всей системы была выставлена на уровне 20%. Что касается производительности - выжать из видеокарт и процессора большее нам не удалось. В любом случае все работало на пределе их технологических возможностей. Все работало крайне тихо, даже под нагрузкой.

Тест на протекание прошел успешно. Несмотря на относительно небольшое время теста (около 45 минут), протечек не было никаких. Фитинги от EK действительно обеспечивают хороший уровень герметичности.

Главное - не повредить трубки во время сборки. В целом, перед тем, как запитать все комплектующие, стоит проводить тест как минимум в течении суток.

Если вы собираете компьютер, пользуясь критерием "цена/качество", не имеет смысла делать кастомное водяное охлаждение. Даже если брать не самые дорогие компоненты, это обойдется в сумму около 600 долларов США. система водяного охлаждения для компьютера предназначена для тех, кто хочет построить красивую и тихую рабочую станцию, способную выполнять любую задачу, которую только можно придумать.

Вывод

В этой статье было написано, какие компоненты понадобятся для сборки кастомной системы водяного охлаждения, а так же как собрать компьютер с водяным охлаждением. Думаю много кого не устраивает шум компьютера, особенно в ресурсоемких приложениях, например играх. Поэтому при наличии лишней пары сотен долларов можно взять готовый блок для процессора, и видеокарту с уже установленной водяной СО. Во всяком случае, даже если вы и не собираетесь приобретать "водянку", вы узнали как работает водяное охлаждение компьютера.

Системы водяного охлаждения уже много лет используются как высокоэффективное средство отвода тепла от нагревающихся компонентов компьютера.

Качество охлаждения напрямую влияет на стабильность работы Вашего компьютера. При избыточном тепле компьютер начинает зависать и возможен выход из строя перегревшихся компонентов. Высокие температуры вредны для элементной базы (конденсаторы, микросхемы и пр.), а перегрев жесткого диска может привести к потере данных.

С ростом производительности компьютеров приходится использовать более эффективные системы для охлаждения. Традиционной считается воздушная система охлаждения, но воздух обладает низкой теплопроводностью и при большом потоке воздуха создаётся сильный шум. Мощные кулера издают довольно сильный рёв, хотя при этом могут обеспечить приемлемую эффективность.

В таких условиях все более популярными становятся водяные системы охлаждения. Превосходство водяного охлаждения над воздушным объясняется показателями теплоемкости (4,183 кДж·кг -1 ·K -1 для воды и 1,005 кДж·кг -1 ·K -1 для воздуха) и теплопроводности (0,6 Вт/(м·K) для воды и 0,024-0,031Вт/(м·K) для воздуха). Поэтому, при прочих равных условиях, системы водяного охлаждения всегда будут эффективнее воздушных.

В интернете можно найти много материалов по готовым системам водяного охлаждения от ведущих производителей и примеры самодельных систем охлаждения (последние, как правило, более эффективны).

Система водяного охлаждения (СВО) – система охлаждения, в которой для переноса тепла используется вода в качестве теплоносителя. В отличие от воздушного охлаждения, в котором тепло передается напрямую воздуху, в системе водяного охлаждения тепло сначала передается воде.

Принцип работы СВО

Охлаждение компьютера необходимо для отвода тепла от нагретого компонента (чипсета, процессора, …) и его рассеивания. Обычный воздушный кулер снабжен монолитным радиатором, который выполняет обе данные функции.

В СВО каждая часть выполняет свою функцию. Водоблок осуществляет теплосъем, а другая часть рассеивает тепловую энергию. Примерную схему соединения компонентов СВО можно посмотреть на схеме ниже.

Водоблоки могут включаться в контур параллельно и последовательно. Первый вариант предпочтительнее при наличии одинаковых теплосъемников. Можно эти варианты скомбинировать и получить параллельно-последовательное подключение, но наиболее правильным будет соединение водоблоков один за другим.

Отвод тепла происходит по такой схеме: жидкость из резервуара подводится к помпе, а затем перекачивается дальше к узлам, которые охлаждают компоненты ПК.

Причиной такого подключения является незначительный прогрев воды после прохождения первого водоблока и эффективный отвод тепла от чипсета, GPU, CPU. Прогретая жидкость попадает в радиатор и там охлаждается. Затем она снова попадает в резервуар, и начинается новый цикл.

По конструктивным особенностям СВО можно разделить на два типа:

  1. Охлаждающая жидкость циркулирует за счет помпы в виде отдельного механического узла.
  2. Безпомповые системы, в которых используются специальные хладагенты, проходящие через жидкую и газообразную фазы.

Система охлаждения с помпой

Принцип ее действия эффективность и прост. Жидкость (обычно дистиллированная вода) проходит через радиаторы охлаждаемых устройств.

Все компоненты конструкции соединяются между собой гибкими трубками (диаметр 6-12 мм). Жидкость, проходя через радиатор процессора и других устройств, забирает их тепло, а затем по трубкам попадает в радиатор теплообменника, где охлаждается сама. Система замкнутая, и жидкость в ней постоянно циркулирует.

Пример такого соединения можно показать на примере продукции фирмы CoolingFlow. В ней помпа совмещается с буферным резервуаром для жидкости. Стрелки показывают движение холодной и горячей жидкости.

Безпомповое жидкостное охлаждение

Есть системы жидкостного охлаждения, не использующие помпу. В них используется принцип испарителя и создается направленное давление, вызывающее движение охлаждающего вещества. В качестве хладагентов применяются жидкости с низкой точкой кипения. Физику происходящего процесса можно рассмотреть на схеме ниже.

Изначально радиатор и магистрали полностью заполнены жидкостью. Когда температура радиатора процессора становится выше определенного значения, то жидкость превращается в пар. Процесс превращения жидкости в пар поглощает тепловую энергию и повышает эффективность охлаждения. Горячим паром создается давление. Пар, через специальный односторонний клапан, может выходить только в одну сторону – в радиатор теплообменника-конденсатора. Там пар вытесняет холодную жидкость в направлении радиатора процессора, и, остывая, превращается снова в жидкость. Так жидкость-пар циркулирует в замкнутой системе трубопровода, пока температура радиатора высокая. Такая система получается очень компактной.

Возможен другой вариант такой системы охлаждения. Например, для видеокарты.

В радиатор графического чипа встраивается жидкостный испаритель. Теплообменник располагается рядом с боковой стенкой видеокарты. Конструкция изготовлена из медного сплава. Теплообменник охлаждается высокооборотным (7200 об./мин.) вентилятором центробежного типа.

Компоненты СВО

В системах водяного охлаждения используется определенный набор компонентов, обязательных и необязательных.

Обязательные компоненты СВО:

  • радиатор,
  • фитинги,
  • ватерблок,
  • помпа,
  • шланги,
  • вода.

Необязательными компонентами СВО являются: термодатчики, резервуар, сливные краны, контролеры помпы и вентиляторов, второстепенные ватерблоки, индикаторы и измерители (расхода, температуры, давления), водные смеси, фильтры, бэкплейты.

  • Рассмотрим обязательные компоненты.

Ватерблок (англ. waterblock) – теплообменник, передающий тепло от нагревшегося элемента (процессора, видео чипа и др.) воде. Он состоит из медного основания и металлической крышки с набором креплений.

Основные типы ватерблоков: процессорные, для видеокарт, на системный чип (северный мост). Ватерблоки для видеокарт могут быть двух типов: закрывающие только графический чип («gpu only») и закрывающие все нагревающиеся элементы – фулкавер (англ. fullcover).

Ватерблок Swiftech MCW60-R(gpu-only):

Ватерблок EK Waterblocks EK-FC-5970(Фулкавер):

Для увеличения площади теплопередачи применяется микроканальную и микроигольчатая структура. Ватерблоки делают без сложной внутренней структуры если производительность не столь критична.

Чипсетный ватерблок XSPC X2O Delta Chipset:

Радиатор. В СВО радиатором называют водно-воздушный теплообменник, передающий воздуху тепло от воды в ватерблоке. Есть два подтипа радиаторов СВО: пассивные (безвентиляторные), активные (продуваемые вентилятором).

Безвентиляторные можно встретить довольно редко (например, в СВО Zalman Reserator) потому, что данный тип радиаторов обладает более низкой эффективностью. Такие радиаторы занимают много места и их сложно поместить даже в модифицированном корпусе.

Пассивный радиатор Alphacool Cape Cora HF 642:

Активные радиаторы более распространенны в системах водяного охлаждения из-за лучшей эффективности. Если использовать тихие или бесшумные вентиляторы, то можно добиться тихой или бесшумной работы СВО. Эти радиаторы могут быть самого разного размера, но в основном их делают кратными к размеру 120 мм или 140мм вентилятора.

Радиатор Feser X-Changer Triple 120mm Xtreme

Радиатор СВО за компьютерным корпусом:

Помпа – электрический насос, отвечает за циркуляцию воды в контуре СВО. Помпы могут работать от 220 вольт или от 12 вольт. Когда в продаже было мало специализированных компонентов для СВО, то использовали аквариумные помпы, работающие от 220 вольт. Это создавало некоторые трудности, из-за необходимости включать помпу синхронно с компьютером. Для этого применяли реле, включающее помпу автоматически при старте компьютера. Сейчас есть специализированные помпы, обладающие компактными размерами и хорошей производительностью, работающие от 12 вольт.

Компактная помпа Laing DDC-1T

У современных ватерблоков довольно высокий коэффициент гидросопротивления, поэтому желательно применять специализированные помпы, так как аквариумные не позволят современной СВО работать на полную производительность.

Шланги или трубки также являются обязательными компонентами любой СВО, по ним вода течет от одного компонента к другому. В основном применяют шланги из ПВХ, иногда из силикона. Размер шланга не сильно влияет на производительность в целом, важно не брать слишком тонкие (менее 8 мм.) шланги.

Флуоресцентный шланг Feser Tube:

Фитингами называют специальные соединительные элементы для подключения шлангов к компонентам СВО (помпе, радиатору, ватерблокам). Фитинги нужно вкручивать в отверстие с резьбой находящееся на компоненте СВО. Вкручивать их нужно не очень сильно (гаечных ключей не понадобится). Герметичность достиается уплотнительным кольцом из резины. Подавляющее большинство компонентов продаются без фитингов в комплекте. Это делается затем, чтобы пользователь мог сам подобрать фитинги, под нужный шланг. Самый распространенный тип фитингов – компрессионный (с накидной гайкой) и ёлочка (используются штуцеры). Фитинги бывают прямыми и угловыми. Фитинги еще различаются по типу резьбы. В компьютерных СВО чаще встречается резьба стандарта G1/4″, реже G1/8″ или G3/8″.

Водяное охлаждение компьютера:

Фитинги типа ёлочка от Bitspower:

Компрессионные фитинги Bitspower:

Вода тоже относится к обязательным компонентом СВО. Лучше всего заправлять дистиллированную воду (очищенную от примесей методом дистилляции). Используется и деионизированная вода, но существенных отличий от дистиллированной у нее нет, только производится другим способом. Можно применять специальные смеси или воду с различными присадками. Но использовать воду из-под крана или бутилированную для питья не рекомендуется.

Необязательные компонентами являются компоненты, без которых СВО стабильно может работать, и не влияют на производительность. Они делают эксплуатацию СВО более удобной.

Резервуар (расширительный бачек) считается необязательным компонентом СВО, хотя и присутствует в большинстве систем водяного охлаждения. Системы с резервуаром более удобны в заправке. Объем воды резервуара не принципиален, он не влияет на производительность СВО. Формы резервуаров встречаются самые разные и выбирают их по критериям удобства установки.

Трубчатый резервуар Magicool:

Cливной кран используется для удобного слива воды из контура СВО. Он перекрыт в обычном состоянии, и открывается, когда необходимо слить воду из системы.

Сливной кран Koolance:

Датчики, индикаторы и измерители. Выпускается довольно много различных измерителей, контролеров, датчиков для СВО. Среди них встречаются электронные датчики температуры воды, давления и потока воды, контролеры, согласующие работу вентиляторов с температурой, индикаторы движения воды и так далее. Датчики давления и расхода воды нужны лишь в системах, предназначенных для тестирования компонентов СВО, так как эта информация для обычного пользователя просто несущественна.

Электронный датчик потока от AquaCompute:

Фильтр. Некоторые системы водяного охлаждения комплектуются фильтром, включенным в контур. Он предназначен для отфильтровывания разнообразных мелких частиц попавших в систему (пыль, остатки пайки, осадок).

Присадки к воде и различные смеси. Дополнительно к воде можно использовать различные присадки. Некоторые из них предназначены для защиты от коррозии, другие для предотвращения развития бактерий в системе или подкрашивания воды. Выпускают также готовые смеси, содержащие воду, антикоррозионные присадки и краситель. Бывают готовые смеси, повышающие производительность СВО, но повышение производительности от них возможно лишь незначительное. Можно встретить жидкости для СВО, которые сделаны не на основе воды, а использующие специальную диэлектрическую жидкость. Такая жидкость не проводит электрический ток и при утечке на компоненты ПК не вызовет короткого замыкания. Дистиллированная вода тоже не проводит ток, но, если пролившись, попадет на запыленные участки ПК, может стать электропроводной. Необходимости в диэлектрической жидкости нет, потому, что хорошо протестированная СВО не протекает и обладает достаточной надежностью. Важно также соблюдать инструкцию к присадкам. Не нужно лить их сверх меры, это может привести к плачевным последствиям.

Зеленый флуоресцентный краситель:

Бэкплейтом называют специальную крепежную пластину, которая нужна, чтобы разгрузить текстолит материнской платы либо видеокарты от создаваемого креплениями ватерблока усилия, и уменьшить изгиб текстолита, снижая риск поломки. Бэкплейт не является обязательным компонентом, но очень часто встречается в СВО.

Фирменный бэкплейт от Watercool:

Второстепенные ватерблоки. Иногда, ставят дополнительные ватерблоки на слабо греющиеся компоненты. К таким компонентам относятся: оперативная память, силовые транзисторы цепей питания, жесткие диски и южный мост. Необязательность таких компонентов для системы водяного охлаждения заключается в том, что, они не несут улучшения разгона и никакой дополнительной стабильности системы или других заметных результатов не дают. Это связано с малым тепловыделением таких элементов, и с неэффективностью применения ватерблоков для них. Положительной стороной установки таких ватерблоком можно назвать только внешний вид, а минусом является повышение гидросопротивления в контуре и соответственно увеличение стоимости всей системы.

Ватерблок для силовых транзисторов на материнской плате от EK Waterblocks

Кроме обязательных и необязательных компонентов СВО существует еще категория гибридных компонентов. В продаже встречаются компоненты, которые представляют собой два или более компонента СВО в одном устройстве. Среди таких устройств известны: гибриды помпы с процессорным ватерблоком, радиаторы для СВО совмещенные с встроенной помпой и резервуаром. Такие компоненты заметно уменьшают занимаемее ими место и более удобны в установке. Но такие компоненты мало пригодны к апгрейду.

Выбор системы СВО

Различают три основных типа СВО: внешние, внутренние и встроенные. Они различаются расположением по отношению к корпусу компьютера их основных компонентов (радиатор/теплообменник, резервуар, насос).

Внешние системы водяного охлаждения, выполняют в виде отдельного модуля («ящика») , который при помощи шлангов подключен к ватерблокам, которые установлены на комплектующих в самом корпусе ПК. В корпус внешней системы водяного охлаждения практически всегда выносится радиатор с вентиляторами, резервуар, помпа, и, иногда, для помпы с датчиками блок питания. Среди внешних систем хорошо известны системы водяного охлаждения Zalman семейства Reserator. Такие системы устанавливаются в виде отдельного модуля, и их удобство заключается в том, что пользователю не нужно дорабатывать и переделывать корпус своего компьютера. Их неудобство состоит только в габаритах и сложнее становится перемещать компьютер даже на небольшие расстояния, например, в другую комнату.

Внешняя пассивная СВО Zalman Reserator:

Встроенная охлаждающая система вмонтирована в корпус и продаётся в комплекте с ним. Такой вариант является самым простым в обращении, потому, что вся СВО уже смонтирована в корпусе, и снаружи нет громоздких конструкций. К недостаткам такой системы можно отнести высокую стоимость и то, что старый корпус ПК будет бесполезным.

Внутренние системы водяного охлаждения расположены полностью внутри корпуса ПК. Иногда, некоторые компоненты внутренней СВО (в основном радиатор), устанавливают на внешней поверхности корпуса. Достоинством внутренних СВО является удобство переноски. Нет необходимости слива жидкости при транспортировке. Также при установке внутренних СВО не страдает внешний вид корпуса, и при моддинге СВО может отлично украсить корпус вашего компьютера.

Проект Overclocked Orange:

Недостатками внутренних систем водяного охлаждения являются сложность их установки и необходимость модификации корпуса во многих случаях. Также внутренняя СВО прибавляет вашему корпусу несколько килограмм веса.

Планирование и установка СВО

Водяное охлаждение, в отличие от воздушного, требует некоторого планирования перед установкой. Ведь жидкостное охлаждение налагает некоторые ограничения, которые необходимо принять во внимание.

Во время установки нужно всегда помнить об удобстве. Необходимо оставлять свободное место, чтобы дальнейшая работа с СВО и комплектующими не вызывала трудностей. Нужно, чтобы трубки с водой свободно проходили внутрь корпуса и между компонентами.

Кроме того течение жидкости не должно ничем ограничиватся. При прохождении через каждый водоблок охлаждающая жидкость нагревается. Чтобы снизить эту проблему, продумывается схема с параллельными путями охлаждающей жидкости. При таком подходе поток воды менее нагружен, и в водоблок каждого компонента поступает вода, которая не нагрета другими компонентами.

Хорошо известен набор Koolance EXOS-2. Он предназначен для работы с соединительными трубками сечения 3/8″.

При планировании расположения своей СВО рекомендуется сначала начертить простую схему. Начертив план на бумаге, приступают к реальной сборке и установке. Необходимо разложить на столе все детали системы и приблизительно промерять нужную длину трубок. Желательно оставлять запас и не обрезать слишком коротко.

Когда подготовительные работы проделаны, можно начинать установку водоблоков. На задней стороне материнской платы за процессором устанавливается металлическая скоба крепления головки охлаждения Koolance для процессора. Эта скоба крепления комплектуется пластмассовой прокладкой, для предотвращения замыкания с материнской платой.

Затем снимается радиатор, прикреплённый к северному мосту материнской платы. В примере используется материнская плата Biostar 965PT, у которой охлаждение чипсета происходит с помощью пассивного радиатора.

Когда радиатор чипсета снят, нужно установить элементы крепления водоблока для чипсета. После установки этих элементов материнскую плату ставят снова в корпус ПК. Не забывайте удалять с процессора и чипсета старую термопасту перед нанесением тонким слоем новой.

После этого осторожно устанавливаются водоблоки на процессор. Не прижимайте их с силой. Применяя силу вы можете повредить комплектующие.

Потом проводятся работы с видеокартой. Необходимо удалить имеющийся на ней радиатор и заменить его водоблоком. Когда водоблоки установлены, можно подсоединить трубки и вставить видеокарту в слот PCI Express.

Когда все водоблоки установлены, следует подсоединить все оставшиеся трубки. Последней подключается трубка, ведущая к внешнему блоку СВО. Проверьте правильность направления движения воды: охлаждённая жидкость должна сначала поступать в водоблок процессора.

После выполнения всех этих работ вода заливается в резервуар. Наполнять резервуар нужно только до уровня, который указан в инструкции. Внимательно смотрите за всеми креплениями и при малейших признаках протечки, немедленно устраните проблему.

Если все правильно собрано и не возникло протечек, нужно прокачать охлаждающую жидкость для удаления пузырьков воздуха. Для системы Koolance EXOS-2 нужно замкнуть контакты на блоке питания ATX, и подать питание водяному насосу, не подавая питание на материнскую плату.

Пусть система немного поработает в таком режиме, а вы осторожно наклоняйте компьютер то в одну, то в другую стороны, чтобы избавится от пузырьков воздуха. После выхода всех пузырьков добавьте охлаждающей жидкости, если потребуется. Если пузырьков воздуха больше не видно, то можно запускать систему полностью. Теперь вы можете протестировать эффективность установленной СВО. Хотя водяное охлаждение для пк еще является редкостью для обычных пользователей, его преимущества неоспоримы.