Поколение эвм таблица. Поколения ЭВМ: элементная база. История поколений ЭВМ

Электронно-вычислительные виды машин в нашей стране делятся на несколько поколений. Определяющими признаками при отнесении устройств к определенному поколению служат их элементы и разновидности таких важных характеристик, как быстродействие, емкость памяти, способы управления и переработки информации. Деление ЭВМ является условным - есть немалое количество моделей, которые, по одним признакам, относятся к одному, по другим - к другому виду поколения. В результате эти виды ЭВМ могут относиться к различным этапам развития техники электронно-вычислительного типа.

Первое поколение ЭВМ

Развитие ЭВМ разделяется на несколько периодов. Поколение устройств каждого периода имеет отличия друг от друга элементными базами и обеспечением математического типа.

1 поколение ЭВМ (1945-1954) - электронно-вычислительные машины на лампах электронного типа (подобные были в телевизорах первых моделей). Это время можно назвать эпохой становления такой техники.

Большая часть машин первого вида поколения называлась экспериментальными типами устройств, которые создавались с целью проверки одних или других положений теорий. Размер и вес компьютерных агрегатов, которые часто нуждались в отдельных зданиях, давно превратились в легенду. Введение чисел в первые машины производилось при помощи перфокарт, а программные управления последовательностями выполнимости функций осуществлялись, к примеру, в ENIAC, как в машинах счетно-аналитического типа, при помощи штекеров и видов наборного поля. Несмотря на то что подобный метод программирования требовал множества времени для того, чтобы подготовить машину - для соединений на наборных полях (коммутационной доске) блоков он давал все возможности для реализации счетных «способностей» ENIAC’а, и с большой выгодой имел отличия от метода программной перфоленты, который характерен для устройств релейного типа.

Как работали эти агрегаты

Сотрудники, которые были приписанными к данной машине, постоянно находились возле нее и осуществляли наблюдение за работоспособностью электронных ламп. Но, как только перегорала хотя бы одна лампа, ENIAC сразу же поднимался, и наставали хлопоты: все в спешке осуществляли поиск сгоревшей лампы. Главной причиной (может быть, и не точной) очень частой замены ламп была следующая: тепло и свечение ламп привлекали мотыльков, они залетали внутрь машины и способствовали возникновению короткого замыкания. Таким образом, 1 поколение ЭВМ было крайне уязвимым относительно внешних условий.

Если вышесказанное является правдой, то термин «жучки» («баги»), под которым подразумеваются ошибки в программном и аппаратном оборудовании компьютерной техники, набирает уже новое значение. Когда все лампы находились в рабочем состоянии, инженерный персонал мог сделать настройку ENIAC на какую-либо задачу, изменив вручную подключения 6 000 проводов. Все провода нужно было снова переключать, если требовалась задача другого типа.

Самые первые серийные машины

Первой серийно выпускавшейся ЭВМ первого поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчиками данного компьютера были: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Это был первый тип электронного цифрового компьютера общего назначения. UNIVAC, работы по разработкам которого начались в 1946 году и завершились в 1951, обладал временем сложений 120 мкс, умножений - 1800 мкс и делений - 3600 мкс.

Данные машины занимали много площади, использовали множество электроэнергии и состояли из огромной численности ламп электронного типа. К примеру, машина «Стрела» имела 6400 таких ламп и 60 тысяч штук диодов полупроводникового типа. Быстродействия этого поколения ЭВМ не превышали 2-3 тысяч операций в секунду, объемы оперативной памяти были не больше 2 Кб. Только машина «М-2» (1958) имела оперативную память 4 Кб, а быстродействие ее было 20 тысяч операций в секунду.

ЭВМ второго поколения - существенные отличия

В 1948 году физиками-теоретиками Джоном Бардиным и Уильямом Шокли, вместе с ведущим экспериментатором фирмы «Белл телефон лабораториз» Уолтером Браттейном, был создан первый действующий транзистор. Это был прибор точечно-контактного типа, в котором три металлических «усика» имели контакт с бруском из поликристаллического материала. Таким образом, поколения ЭВМ начали совершенствоваться уже в то далекое время.

Первые виды компьютеров, которые работали на основе транзисторов, отмечают свое появление в конце 1950 годов, а к середине 1960 годов были создано внешние типы устройств с более компактными функциями.

Особенности архитектуры

Одной из удивительных способностей транзистора является то, что он один может осуществлять работу за 40 ламп электронного типа, и даже в этом случае иметь большую скорость работы, выделять минимальное количество теплоты, и практически не употреблять электрические ресурсы и энергию. Вместе с процессами замены ламп электрического типа на транзисторы усовершенствовались способы сохранения информации. Произошло увеличение объема памяти, а магнитная лента, которая впервые была применена в ЭВМ первого поколения UNIVAC, начала использоваться как для введения, так и для выведения информации.

В середине 1960 годов применялось сохранение информации на дисках. Огромные виды достижений в архитектуре компьютеров позволяли получить быстрые действия в миллион операций в секунду! Например, к транзисторным компьютерам 2 поколения ЭВМ можно отнести «Стретч» (Англия), «Атлас» (США). В тот период Советский Союз также выпускал не уступающие вышеуказанным устройствам (к примеру, «БЭСМ-6»).

Создание ЭВМ, которые построены с помощью транзисторов, стало причиной уменьшения их габаритов, масс, затрат энергии и цены на них, а также увеличило надежность и производительность. Это поспособствовало расширению круга пользователей и номенклатуры решаемых задач. Учитывая улучшенные характеристики, которыми обладало 2 поколение ЭВМ, разработчики начали создавать алгоритмические виды языков для инженерно-технического (к примеру, АЛГОЛ, ФОРТРАН) и экономического (к примеру, КОБОЛ) вида расчетов.

Значение ОС

Но даже на этих этапах главной из задач технологий программирования было обеспечение экономии ресурсов - машинного времени и количества памяти. Для решения этой задачи начали создавать прототипы современных операционных систем (комплексы программ служебного типа, которые обеспечивают хорошие распределения ресурсов ЭВМ при исполнениях задач пользователя).

Виды первых операционных систем (ОС) способствовали автоматизации работы операторов ЭВМ, которая связана с выполнением заданий пользователя: ввод в устройство текстов программ, вызовы необходимых трансляторов, вызовы требуемых для программы библиотечных подпрограмм, вызовы компоновщика для размещения данных подпрограмм и программы основного типа в памяти ЭВМ, введение данных исходного типа и т. п.

Теперь, помимо программы и данных, в ЭВМ второго поколения нужно было вводить еще и инструкцию, где находилось перечисление этапов обработки и список сведений о программе и ее авторах. После этого в устройства начали вводить одновременно некоторое количество заданий для пользователей (пакеты с заданиями), в этих видах операционных систем нужно было распределить типы ресурсов ЭВМ между данными типами заданий - возник мультипрограммный режим для обработок данных (к примеру, пока происходит вывод результатов задачи одного типа, делаются расчеты для другого, и в память можно ввести данные для третьего типа задачи). Таким образом, 2 поколение ЭВМ вошло в историю появлением упорядоченных ОС.

Третье поколение машин

За счет созданий технологии производств интегральных микросхем (ИС) получилось добиться увеличений быстрого действия и уровней надежности полупроводниковых схем, а также уменьшения их размеров, потребляемых уровней мощности и стоимости. Интегральные виды микросхем состоят из десятков элементов электронного типа, которые собраны в прямоугольных пластинах кремния, и обладают длиной стороны не больше 1 см. Подобный тип пластины (кристаллов) размещают в пластмассовом корпусе небольших габаритов, размеры в котором можно определить только с помощью числа «ножек» (выводов от входа и выхода электронных схем, созданных на кристаллах).

Благодаря указанным обстоятельствам, история развития ЭВМ (поколения ЭВМ) сделала большой прорыв. Это дало возможность не только для повышения качества работы и снижения стоимости универсальных устройств, но и создать машины малогабаритного, простого, дешевого и надежного типа - мини-ЭВМ. Такие агрегаты сначала были предназначены для замены контроллеров аппаратно-реализованнных назначений в контурах управления какими-либо объектами, в автоматизированных системах управления процессами технологического типа, системах сборов и обработки данных экспериментального типа, различных управляющих комплексах на объектах подвижного типа и т. п.

Главным моментом в то время считались унификации машин с конструктивно-технологическими параметрами. Третье поколение ЭВМ начинает выпуски своих серий или семейств, совместимых типов моделей. Дальнейшие скачки развития математических и программных обеспечений способствуют созданиям программ пакетного типа для решаемости типовых задач, проблемно ориентированного программного языка (для решаемости задач отдельных категорий). Так впервые создаются программные комплексы - виды операционных систем (разработанные IBM), на которых и работает третье поколение ЭВМ.

Машины четвертого поколения

Успешное развитие электронных устройств привело к созданиям больших интегральных схем (БИС), где один кристалл имел пару десятков тысяч элементов электрического типа. Это способствовало тому, что появились новые поколения ЭВМ, элементная база которых имела большой объем памяти и малые циклы для выполнения команд: использование байтов памяти в одной машинной операции начало резко понижаться. Но, так как затраты на программирование практически не имели сокращений, то на первый план ставились задачи экономии ресурсов человеческого, а не машинного типа.

Создавались операционные системы новых видов, которые позволяли программистам делать отладки своих программ прямо за дисплеями ЭВМ (в диалоговом режиме), и это способствовало облегчению работы пользователей и ускорению разработок нового программного обеспечения. Этот момент полностью противоречил концепциям первичных этапов информационных технологий, которые использовали ЭВМ первого поколения: «процессором выполняется только тот объем работы обработок данных, который люди принципиально не могут выполнить, - массовый счет». Стали прослеживаться тенденции иного типа: «Все, что выполнимо машинами, они должны выполнять; людьми выполняется только та часть работ, которую невозможно автоматизировать».

В 1971 году была изготовлена большая интегральная схема, где полностью размещался процессор электронно-вычислительной машины простых архитектур. Стали реальными возможности для размещений в одной большой интегральной схеме (на одном кристалле) практически всех устройств электронного типа, которые не являются сложными в архитектуре ЭВМ, то есть возможности серийных выпусков простых устройств по доступным ценам (не учитывая стоимости устройств внешнего типа). Так было создано 4 поколение ЭВМ.

Появилось много дешевых (карманных клавишных ЭВМ) и управляющих устройств, которые обустроены на одной-единственной либо нескольких больших интегральных схемах, содержащих процессоры, объемы памяти и систему связей с датчиками исполнительного типа в объектах управления.

Программы, которые управляли подачами топлив в двигатели автомобилей, движениями электронных игрушек или заданными режимами стирок белья, устанавливались в память ЭВМ или при изготовлениях подобных видов контроллеров, или непосредственно на предприятиях, которые занимаются выпуском автомобилей, игрушек, стиральных машин и т. д.

На протяжении 1970 годов началось изготовление и универсальных вычислительных систем, которые состояли из процессора, объемов памяти, схем сопряжений с устройством ввода-вывода, размещенных в единой большой интегральной схеме (однокристальные ЭВМ) или в некоторых больших интегральных схемах, установленных на одной плате печатного типа (одноплатные агрегаты). В результате, когда 4 поколение ЭВМ получило распространение, происходило повторение ситуации, возникшей в 1960 годах, когда первые мини-ЭВМ забирали часть работ в больших универсальных электронно-вычислительных машинах.

Характерные свойства ЭВМ четвертого поколения

  1. Мультипроцессорный режим.
  2. Обработки параллельно-последовательного типа.
  3. Высокоуровневые типы языков.
  4. Появление первых сетей ЭВМ.

Технические характеристики этих устройств

  1. Средние задержки сигналов 0,7 нс./в.
  2. Основной вид памяти - полупроводниковый. Время выработок данных из памяти такого типа - 100-150 нс. Емкости - 1012-1013 символов.
  3. Применение аппаратной реализации оперативных систем.
  4. Модульные построения начали применяться и для средств программного типа.

Впервые персональный компьютер был создан в апреле 1976 года Стивом Джобсом, сотрудником фирмы Atari, и Стивеном Возняком, сотрудником фирмы Hewlett-Packard. На основе интегральных 8-битных контроллеров схемы электронной игры, они создали простейший, запрограммированный на языке BASIC, компьютер игрового типа «Apple», который имел огромные успехи. В начале 1977 года была зарегистрирована компания Apple Comp., и с того времени началось производство первых в мире персональных компьютеров Apple. История поколения ЭВМ отмечает это событие как наиболее важное.

В настоящее время фирма Apple занимается выпусками персональных компьютеров Macintosh, которые за большинством параметров превосходят виды компьютеров IBM PC.

ПК в России

В нашей стране в основном используют виды компьютеров IBM PC. Этот момент объясняется такими причинами:

  1. До начала 90-х США не разрешали поставлять в Советский Союз информационные технологии передового типа, к каким и относились мощные компьютеры Macintosh.
  2. Устройства Макинтош были намного дороже, чем IBM PC (в настоящее время они имеют примерно одинаковую стоимость).
  3. Для IBM PC разработано множественное число программ прикладного типа и это облегчает их использование в самых различных сферах.

Пятый вид поколения ЭВМ

В поздние1980 годы история развития ЭВМ (поколения ЭВМ) отмечает новый этап - появляются машины пятого вида поколения. Возникновение этих устройств связывают с переходами к микропроцессорам. С точки зрения структурных построений характерны максимальные децентрализации управлений, говоря о программных и математических обеспечениях - переходы на работу в программной сфере и оболочке.

Производительность пятого поколения ЭВМ - 10 8 -10 9 операций за секунду. Для этого типа агрегатов характерна многопроцессорная структура, которая созданная на микропроцессорах упрощенных типов, которых применяется множественное количество (решающее поле или среда). Разрабатываются электронно-вычислительные типы машин, которые ориентированы на высокоуровневые типы языков.

В данный период существуют и применяются две противоположные функции: персонификации и коллективизации ресурсов (коллективные доступы к сети).

Из-за вида операционной системы, которая обеспечивает простоту общения с электронно-вычислительными машинами пятого поколения, огромной базы программ прикладного типа из различных сфер человеческой деятельности, а также низких цен ЭВМ становится незаменимой принадлежностью инженеров, исследователей, экономистов, врачей, агрономов, преподавателей, редакторов, секретарей и даже детей.

Развитие в наши дни

Про шестое и более новые поколения развития ЭВМ можно пока только мечтать. Сюда можно отнести нейрокомпьютеры (виды компьютеров, которые созданы на основе сетей нейронного типа). Они пока не могут существовать самостоятельно, но активным образом моделируются на компьютерах современного типа.

Эра электронных вычислительных машин началась в 40-х годах XX века и связана с работами таких теоретиков и практиков вычислительной техники как Алан Тьюринг (Великобритания), Конрад Цузе (Германия), Клод Шеннон, Джон Атанасофф, Говард Эйкен, Преспер Экерт, Джон фон Нейман (США) и других ученых и инженеров.

В 1943 году по заказу ВМФ США при финансовой и технической поддержке фирмы IBM под руководством Г. Эйкена была создана первая универсальная цифровая вычислительная машина Mark 1.Она достигала 17 м в длину и более 2,5 м в высоту. В качестве переключательных устройств использовались электромеханические реле, данные вводились на перфоленте в десятичной системе счисления . Эта машина могла выполнять сложение и вычитание 23-разрядных чисел за 0,3 с, умножать два числа за 3 с и использовалась для расчета траектории полета артиллерийских снарядов.

За два года до этого в Германии под руководством К. Цузе была создана электромеханическая вычислительная машина Z-3, основанная на двоичной системе счисления. Эта машина была значительно меньше машины Эйкена и гораздо дешевле в производстве. Она использовалась для расчетов, связанных с конструированием самолетов и ракет. Но дальнейшее ее развитие (в частности, идеи перевода на вакуумные электронные лампы) не получили поддержки правительства Германии.

В Великобритании в конце 1943 года вошла в строй вычислительная машина Colossus, в которой вместо электромеханических реле содержалось около 2000 электронных ламп. В ее разработке активное участие принял математик А. Тьюринг с его идеями по формализации описания расчетных задач. Но эта машина имела узкоспециализированный характер: была предназначена для дешифровки немецких кодов путем перебора различных вариантов. Скорость обработки достигала 5000 символов в секунду.

Первой ламповой универсальной цифровой вычислительной машиной считают ENIAC (Electronic Numerical Integrator and Computer), которая была создана в 1946 году по заказу Министерства обороны США под руководством П. Экерта. Она содержала более 17000 электронных ламп и работала с десятичной арифметикой. По своим размерам (около 6 м в высоту и 26 м в длину) машина более чем вдвое превосходила Mark-1, но и быстродействие ее было намного больше – до 300 операций умножения в секунду. На этом компьютере были проведены расчеты, подтверждающие принципиальную возможность создания водородной бомбы.

Следующая модель (1945-1951 гг.) тех же разработчиков – машина EDVAC (Electronic Discrete Variable Automatic Computer) имела более вместительную внутреннюю память, в которую можно было записывать не только данные, но и программу. Система кодировки была уже двоичной, что позволило значительно сократить количество электронных ламп.

В этой разработке в качестве консультанта принимал участие талантливый математик Д. фон Нейман. В 1945 году он опубликовал "Предварительный доклад о машине EDVAC ", в котором описал не только конкретную машину, но и сумел обрисовать формальную, логическую организацию компьютера, выделил и детально обрисовал ключевые компоненты того, что сейчас называют "архитектурой фон Неймана" (рис. 1).

Исходной точкой отсчета истории нашей отечественной вычислительной техники считается 1948 год, когда сотрудники Энергетического института АН СССР Исаак Брук и Башир Рамеев получили авторское свидетельство на изобретение "Автоматическая цифровая вычислительная машина". В том же 1948 году в Институте электротехники АН УССР под руководством академика Сергея Лебедева начались работы над проектом создания МЭСМ - малой электронной счетной машины.

В период с 1948 по 1952 гг. создавались опытные образцы, единичные экземпляры вычислительных машин, которые, также как и в США, использовались одновременно как для проведения особо важных расчетов (зачастую засекреченных), так и для отладки конструкторских и технологических решений.
Рис. 1 - Архитектура "машины фон Неймана"

В дальнейшем работы в области создания ЭВМ велись в нескольких направлениях.

Например, проекты С.А. Лебедева. МЭСМ, введенная в строй в декабре 1951 года, стала первой действующей ЭВМ в СССР. В 1953 году С.А. Лебедев стал директором московского Института точной механики и вычислительной техники (ИТМ и ВТ) и возглавил разработку серии знаменитых БЭСМ (больших электронных счетных машин): от БЭСМ-1 до БЭСМ-6. Каждая машина этой серии на момент своего создания была лучшей в классе универсальных ЭВМ.

БЭСМ-1 (1953 г.) имела 5000 электронных ламп, выполняла 8...10 тыс. операций в секунду. Ее особенностью стало введение операций над числами с плавающей запятой с обеспечением большого диапазона используемых чисел. На БЭСМ-1 были испытаны в реальной эксплуатации три типа оперативной памяти объемом 1024 39-разрядных слова:

  1. на электроакустических ртутных трубках (линиях задержки); память такого типа использовалась в EDSAC и EDVAC;
  2. на электронно-лучевых трубках (потенциалоскопах);
  3. на ферритовых магнитных сердечниках.

Внешняя память была выполнена на магнитных барабанах и магнитных лентах.

Особое место в истории развития отечественной вычислительной техники занимает БЭСМ-6, серийно выпускавшаяся с 1967 года в течение 17 лет. В ее архитектуре был реализован принцип распараллеливания вычислительных процессов, и ее производительность – 1 млн. операций в секунду – была рекордной для середины 60-х годов. На БЭСМ-6 появились первые полноценные операционные системы, мощные трансляторы, ценнейшая библиотека стандартных подпрограмм, реализующих численные методы решения различных задач, всё – отечественного производства.

К концу 60-х годов в нашей стране выпускалось около 20 типов ЭВМ общего назначения - серии БЭСМ (Москва, С.А.Лебедев), Урал (Пенза, Б.И.Рамеев), Днепр, Мир (Киев, В.М.Глушков), Минск (Минск, В. Пржиялковский) и другие, а также специализированные машины преимущественно для оборонного ведомства. Кстати, в отличие от Запада, где "двигателями прогресса" в области вычислительной техники были не только военные, но и представители делового мира, в СССР ими были только военные. Но постепенно и ученые, и хозяйственники, и чиновники стали осознавать роль вычислительных машин в экономике страны и насущную необходимость в разработке машин нового поколения.

Встал вопрос о переходе к индустрии ЭВМ. В декабре 1969 году на правительственном уровне было принято решение выбрать в качестве промышленного стандарта для универсальных вычислительных машин единой серии (ЕС ЭВМ) серии машин IBM S/360. Первая машина этой серии – ЕС-1020 была выпущена в 1971 году.
Производство ЕС ЭВМ было налажено совместно с другими социалистическими странами в рамках СЭВ (Совета по экономической взаимопомощи). Многие ученые выступили против копирования систем IBM, но предложить что-то взамен в качестве единого стандарта не смогли.
Конечно, идеальным вариантом была бы реализация архитектурных принципов IBM в сотрудничестве с самой компанией, и не семейства почти пятилетней давности, а самых современных моделей, и в сочетании с всесторонней поддержкой собственных разработок. Но на всё у государства не хватало средств, и пошли по более простому варианту. Так начался закат отечественной индустрии вычислительной техники.
Отметим, что отставание от Запада было обусловлено вовсе не решением копировать машины IBM. Технологическая база производства элементов, на которых строились компьютеры, стала с угрожающей быстротой отставать от мировой. Чем больше требовалось вкладывать средств в развитие микроэлектроники, тем труднее было поддерживать необходимый уровень. Отставание элементной базы, неповоротливость централизованной экономики, отсутствие конкуренции, зависимость разработчиков и производителей от чиновников Госплана не позволили повторить компьютерную революцию, которая происходила в годы создания ЕС на Западе.

Если в качестве основной характеристики ЭВМ принять ее элементную базу, то в истории их развития можно выделить четыре поколения (таблица).
Таблица - Основные характеристики ЭВМ различных поколений


Поколение

1

2

3

4

Период, гг

1946 -1960

1955-1970

1965-1980

1980-наст. вр.

Элементная база

Вакуумные электронные лампы

Полупроводниковые диоды и транзисторы

Интегральные схемы

Сверхбольшие интегральные схемы

Архитектура

Архитектура фон Неймана

Мультипрограммный режим

Локальные сети ЭВМ, вычислительные системы коллективного пользования

Многопроцессорные системы, персональные компьютеры, глобальные сети

Быстродействие

10 – 20 тыс. оп/с

100-500 тыс. оп/с

Порядка 1 млн. оп/с

Десятки и сотни млн. оп/с

Программное обеспечение

Машинные языки

Операционные системы, алгоритмические языки

Операционные системы, диалоговые системы, системы машинной графики

Пакеты прикладных программ, базы данных и знаний, браузеры

Внешние устройства

Устройства ввода с перфолент и перфокарт,

АЦПУ, телетайпы, НМЛ, НМБ

Видеотерминалы, НЖМД

НГМД, модемы, сканеры, лазерные принтеры

Применение

Расчетные задачи

Инженерные, научные, экономические задачи

АСУ, САПР, научно – технические задачи

Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа

Примеры

ENIAC , UNIVAC (США);
БЭСМ - 1,2, М-1, М-20 (СССР)

IBM 701/709 (США)
БЭСМ-4, М-220, Минск, БЭСМ-6 (СССР)

IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)

Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей

Что мы назовем компьютерами пятого поколения?
В настоящее время прорабатывается несколько принципиально отличающихся направлений:

  1. оптический компьютер, в котором все компоненты будут заменены их оптическими аналогами (оптические повторители, оптоволоконные линии связи, память на принципах голографии;
  2. молекулярный компьютер, принцип действия которого будет основан на способности некоторых молекул находиться в различных состояниях;
  3. квантовый компьютер, состоящий из компонентов субатомного размера и работающий по принципам квантовой механики.
Принципиальная возможность создания таких компьютеров подтверждена как теоретическими работами, так и действующими компонентами запоминающих и логических схем.

Лекция №4.1. Поколения ЭВМ.

    Первое поколение ЭВМ.

    Второе поколение ЭВМ.

    Третье поколение ЭВМ.

    Четвертое поколение ЭВМ.

    Пятое поколение ЭВМ.

    Супер ЭВМ.

    Вопросы для самопрверки.

        ПервоепоколениеЭВМ. 1948-1958.

Не учитывая элементную базу вычислительных машин можно было бы сказать, что первый компьютер был разработан Аланом Тьюрингом «Колос» разработанный еще в 1943 г. Эта машина предназначалась для дешифровки немецких секретных сообщений времен второй мировой войны. Это была одна из первых попыток создания универсальной программируемой машины.

Компонентная база компьютеров первого поколения это электронные лампы. Они предназначались для решения научно-технических задач. Такими машинами обладали военные ведомства и государственные институты. Их стоимость была на столько велика, что даже крупные корпорации не могли приобрести их. Эти машины были огромных размеров и весили порядка 5 – 30 тонн, занимали площадь в несколько сотен квадратных метров.

Вычислительная мощность составляла всего несколько тысяч операций в секунду. К примеру на такие операции как сложение, вычитание требовалось несколько секунд. На деления и умножение уходило до нескольких десятков секунд. А на вычисление логарифма или тригонометрической функции понадобилось больше минуты. Если сравнить с компьютерами нашего времени, то на это понадобилось меньше секунды!

Элементной базой компьютеров этого поколения были: электромеханические реле, которые быстро ломались и создавали сильный шум как в производственном цехе, электронно-вакуумные лампы срок службы которых не превышал несколько месяцев. Их в машине было десятки тысяч. Таким образом каждый день, что-то ломалось.

ЭВМ первого поколения были полностью программируемые машины. Что их и отличало от арифмометров и калькуляторов. Но программировать на таких компьютерах было довольно сложно. Т.к. языков высокого уровня не было и языков низкого уровня (ассемблер) тоже не было. Все инструкции компьютеру давались в машинном коде.

Представитель первого поколения ЭВМ.

          Второе поколение ЭВМ . 1959 – 1967.

Элементной базой второго поколения стали полупроводники. Транзисторы пришли на смену не надежным электронно-вакуумным лампам. Транзисторы значительно уменьшили компьютеры в размере и стоимости. И не удивительно. Один транзистор способен заменить несколько десятков электронных ламп. При этом тепловыделение значительно уменьшилось и потребление электроэнергии тоже, а скорость работы стала выше. Если сравнивать машины первого и второго поколения то на примере это выглядело так:

Марк-1 это компьютер первого поколения занимавший огромный зал. Его высота 2,5 м и длина 17 м и при этом он стоил 500 тыс. долларов.

PDP-8 – ЭВМ второго поколения. Размером с холодильник, и при этом он стоил всего 20 тыс. долларов.

С появлением компьютеров второго поколения расширилась сфера их применения. От правительственных и военных учреждении они стали появляться в частных организациях, институтах. Главным образом за счет снижения стоимости машин и развитию программного обеспечения. Начали создавать специальное системное программное обеспечение. Появились системы пакетной обработки информации. Предшественники операционных систем. Которые предназначались для управления вычислительным процессом.

Представитель второго паколения ЭВМ.

    ТретьепоколениеЭВМ. 1968 – 1973.

Интегральные схемы стали элементной базой компьютеров третьего поколения. Интегральная схема это схема изготовленная на полупроводниковом кристалле и помещенная в корпус. Иногда интегральную схему называют – микросхемой или чипом.

Первые микросхемы появились в 1958 году. Два инженера почти одновременно изобрели их, не зная друг о друге. Это Джек Килби и Роберт Нойс.

Все элементы предыдущего поколения производятся на одной подложке и в одном корпусе ИС. Используя одни и те же технологические операции. Рабочая область чипа это поверхность между кристаллом и металлом, который наносятся путем технологии напыления. Это происходит в вакууме когда атомы одного материала бомбардируют атомы другого.

ЭВМ третьего поколения можно было встретить на борту самолета, корабля, подводной лодке, спутнике. Ощутимые плоды микроминиатюризации. Эти машины называли Мини-ЭВМ. И не смотря на то, что алфавитно-цифровые дисплеи появились еще во втором поколении машин. На третьем они окончательно закрепились. И стали неотъемлемой частью компьютера.

Память ЭВМ этого поколения значительно возросла. В качестве внешней памяти стали применять магнитные диски. Накопитель магнитных дисков представлял несколько дисков вращающихся на одном шпинделе. Диски были расположены на небольшом расстоянии друг от друга. Между ними находился блок головок. Которые позиционировались одновременно. Что позволяло производить чтение-запись одновременно сразу на несколько дисков. Емкость таких накопителей измерялась миллионами байт. Это был существенный шаг по сравнению с перфокартами и магнитными лентами.

IBM-360. На эту ЭВМ равнялись советские конструкторы при создании Единой Серии.

4. Четвертое поколениеЭВМ . 1974 – 1982.

Новым этапом для развития ЭВМ послужили большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров. Небольшие ЭВМ могли разместиться на одном письменном столе. Именно в эти годы зародился термин «Персональный компьютер». Исчезают огромные дорогостоящие монстры. За одним таким компьютером, через терминалы, работало сразу несколько десятков пользователей. Теперь. Один человек – один компьютер. Машина стала, действительно персональной.

Важный переход от мини-компьютеров к микро-компьютерам, это создание микропроцессора. Благодаря БИС стало возможным разместить все основные элементы центрального процессора на одном кристалле. Первым микропроцессором стал Intel-4004 созданный 1971 г.

Одним из первых персональных компьютеров четвертого поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня.

Перснальные ЭВМ.

                  5. Пятое поколение ЭВМ . 1982 – наши дни.

Пятое поколение ЭВМ это правительственная программа в Японии по развитию вычислительной техники и искусственного интеллекта. Если говорить о предыдущих поколениях то первое это ламповые компьютеры, второе – транзисторные, третье – интегральные схемы, четвертое – микропроцессоры. Но пятое поколение не имеет отношение к данной градации. Как предыдущее поколения. Пятое поколение компьютеров это название «плана действий» по развитию IT-индустрии. И не смотря на то, что пятое поколение базируется на микропроцессорах как и четвертое т.е. у них общая элементная база. А именно по этому критерию разделяют компьютеры на поколения. Тем не менее сегодняшние компьютеры относят к пятому поколению.

Япония начала свою широкомасштабную программу в начале 80-х. Их цель не изменять элементную базу компьютеров. А изменить и усовершенствовать, технические подходы, методы программирования и развивать научное направление в области искусственного интеллекта. На начало своего проекта Япония вложила пол миллиарда долларов США. На тот момент она не была настолько технически развита как США, Европа. Министерство международной торговли и промышленности Японии поставило четкую цель – пробиться в лидеры. Именно в то время зародился термин «пятое поколение компьютеров». ЭВМ пятого поколения должны достигнуть сверхпроводимости и в них должно быть интегрировано огромное количество процессоров на одной подложке.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

                    Супер ЭВМ.

Термин “суперкомпьютер” - чисто американский, рожден из любви к двум словам “супер” и “компьютер” (которое в советское время тщательно выхолащивалось словом ЭВМ; как следствие, ещё один используемый термин “суперЭВМ” замечателен своим эклектизмом). Компьютер в представлении обывателей может всё, суперкомпьютер может ещё больше. В традициях российской науки, не избалованной вычислительными ресурсами, со студенческой скамьи прививается любовь к разработке моделей и формул, которые на логарифмической линейке дают оценочные результаты, а на калькуляторе - точные. Американцы как правило полагаются на грубую вычислительную силу: проще заставить один компьютер перебирать всё множество решений, чем просить десять математиков найти способ усечения перебора, когда задачу можно будет решить вручную.

Что такое “суперкомпьютер”, как менялось его неявное определение с середины 70-х годов - подробно рассмотрено в статье Константина Прокшина. Отметим лишь, что как более близкий русскому языку синоним будем использовать понятие высокопроизводительной системы , то есть системы, созданной не для решения прикладных офисных задач или даже хранения больших СУБД, а именно для массивных вычислений. Впрочем, с точки зрения реализации разницы между двумя системами IBM RS/6000 SP, одна из которых ведёт ERP-систему, а вторая рассчитывает результаты виртуального крэш-теста нового автомобиля, нет. Тем не менее, нас интересует рынок компьютеров, которые именно вычисляют. И очень быстро.

В своё время соревнование в области суперкомпьютеров СССР проиграл. Если знаменитая БЭСМ-6, созданная в 60-х, была одной из самых (если не самой) быстродействующих ЭВМ в мире, то в 70-х годах, во времена расцвета Cray, СССР взял курс на развитие ЕС ЭВМ, клонированной с устаревшей уже к тому времени архитектуры IBM 360. Оригинальные разработки продолжались, но начала сказываться слабость элементной базы, которая так и не дала толком довести проект “Эльбрус” дальше “Эльбруса-2”, сравнимого на конец 80-х годов по производительности с очень мощным персональным компьютером. “Эльбрус-3.1”, выпущенный в 1990 году, имел производительность на векторных операциях около 500 мегафлоп, а объём ОЗУ - до 8 млн. 64-разрядных слов (то есть 64 мегабайта). До 1995 года таких машин сумели сделать только 4 экземпляра.

Ктеме рынка суперкомпьютеров “Инфобизнес” обращается не случайно, недавно произошло как минимум два знаковых события в этой области, которые заставили говорить о себе не только специализированные, но и массовые издания.

Во-первых, 7 сентября сенат США проголосовал за существенное ослабление ограничений на экспорт высокопроизводительных систем. С 1979 года нижний порог производительности компьютеров, запрещённых к вывозу из США в некоторые страны, постоянно повышался. Чем дольше существовали компьютеры, тем абсурднее были запреты: под них в разное время подпадали новые процессоры для самых обычных настольных систем. С появлением возможности создавать относительно недорогие кластеры на общедоступной элементной базе ограничения становились всё более абсурдными, что и послужило толчком к указанному послаблению, которое, кстати, было лоббировано крупнейшими американскими производителями компьютеров и комплектующих. Пока верстался номер, произошла нью-йорская трагедия, но о том, какое отношение к этому имеют суперкомпьютеры - читайте в колонке Игоря Гордиенко. Здесь же отметим, что планы по снятию экспортных ограничений, вероятно, будут пересмотрены.

Вторая причина, заставившая нас обратиться к суперкомпьютерной теме, состоит в том, что в начале августа было объявлено о создании российского суперкомпьютера МВС-1000М с пиковой производительностью 1 терафлоп. Не исключено, что это было одним из факторов, как раз способствовавших принятию в США решения по ослаблению экспортных ограничений. Дело не только в том, что Россия вместо закупок американских суперкомпьютеров будет производить собственные, но и в том, что она может покрыть спрос в странах Восточной Европы и третьего мира. Неслучайно, что в число стран “первого пояса” (подробнее см. материал Александра Чачавы) попала Литва.

Как бы там ни было, создание МВС-1000М - пример, наглядно показывающий, что в России можно собирать не только персональные компьютеры, но и высокопроизводительные системы. Конечно, производство суперкомпьютеров требует на порядок большего уровня подготовки специалистов, но будем утверждать, что разработка технологий и производство таких систем на основе доступной элементной базы и программного обеспечения - такое же перспективное для нашей страны направление развития высокотехнологической отрасли, как экспорт программных продуктов и оффшорное программирование.

Компьютеры фирмы Cray Research стали классикой в области векторно-конвейерных суперкомпьютеров. Существует легенда, что первый суперкомпьютер Cray был собран в гараже, однако этот гараж был размером 20 х 20 метров, а платы для нового компьютера заказывались на лучших заводах США.

К классу суперкомпьютеров относят компьютеры, которые имеют максимальную на время их выпуска производительность, или так называемые компьтеры 5-го поколения.

Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 - 1964, см. компьютеры второго поколения), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Это LARC фирмы UNIVAC, Stretch фирмы IBM и "CDC-6600" (семейство CYBER) фирмы Control Data Corporation, в них были применены методы параллельной обработки (увеличивающие число операций, выполняемых в единицу времени), конвейеризация команд (когда во время выполнения одной команды вторая считывается из памяти и готовится к выполнению) и параллельная обработка при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе. Компьютеры, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем.

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном - выдаёт сразу векторые команды

В состав структуры компьютера Cray-1 входили:

1. Основная память, объемом до 1048576 слов, разделенная на 16 независимых блоков, емкостью 64К слов каждый;

2. Регистровая память, состоящая из пяти групп быстрых регистров, предназначенных для хранения и преобразования адресов, для хранения и обработки векторных величин;

3. Функциональные модули, в состав которых входят 12 параллельно работающих устройств, служащих для выполнения арифметических и логических операций над адресами, скалярными и векторными величинами.

Двенадцать функциональных устройств машины Cray-1, играющие роль арифметико-логических преобразователей, не имеют непосредственной связи с основной памятью. Так же как и в машинах семейства CDC-6000, они имеют доступ только к быстрым операционным регистрам, из которых выбираются операнды и в которые записываются результаты выполнения операций;

4. Устройство, выполняющее функции управления параллельной работой модулей, блоков и устройств центрального процессора;

5. 24 канала ввода-вывода, организованные в 6 групп с максимальной пропускной способностью 500000 слов в секунду (2 млн. байт в сек.);

6. Три группы операционных регистров, непосредственно связанных с арифметико-логическими устройствами, называются основными. К ним относятся восемь А-регистров, состоящих из 24 разрядов каждый. А-регистры связаны с двумя функциональными модулями, выполняющими сложение (вычитание) и умножение целых чисел. Эти операции используются главным образом для преобразования адресов, их базирования и индексирования. Они также используются для организации счетчиков циклов. В ряде случаев А-регистры используются для выполнения арифметических операций над целыми числами.

До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs. Первая известна, в частности, своими мэйнфреймами UNIVAC-1108 и UNIVAC-1110, которые широко использовались в университетах и государственных организациях.

После слияния Sperry Univac и Burroughs объединенная фирма UNISYS продолжала поддерживать обе линии мэйнфреймов с сохранением совместимости снизу вверх в каждой. Это является ярким свидетельством непреложного правила, поддерживавшего развитие мэйнфреймов - сохранение работоспособности ранее разработанного программного обеспечения.

В мире суперкомпьютеров известна и компания Intel. Многопроцессорные компьютеры Paragon фирмы Intel в семействе многопроцессорных структур с распределенной памятью стали такой же классикой, как компьютеры фирмы Cray Research в области векторно-конвейерных суперкомпьютеров.

    Вопросы для самопроверки.

    Характеристика первого поколения ЭВМ.

    Характеристика второго поколения ЭВМ.

    Характеристика третьего поколения ЭВМ.

    Характеристика четвертого поколения ЭВМ.

    Характеристика пятого поколения ЭВМ.

    Характеристика супер ЭВМ.

Введение

1. Первое поколение ЭВМ 1950-1960-е годы

2. Второе поколение ЭВМ: 1960-1970-е годы

3. Третье поколение ЭВМ: 1970-1980-е годы

4. Четвертое поколение ЭВМ: 1980-1990-е годы

5. Пятое поколение ЭВМ: 1990-настоящее время

Заключение

Введение

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

ЭВМ проделали большой эволюционный путь в смысле элементной базы (от ламп к микропроцессорам) а также в смысле появления новых возможностей, расширения области применения и характера их использования.

Деление ЭВМ на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с ЭВМ.

К первому поколению ЭВМ относятся машины, созданные на рубеже 50-х годов: в схемах использовались электронные лампы. Команд было мало, управление - простым, а показатели объема оперативной памяти и быстродействия - низкими. Быстродействие порядка 10-20 тысяч операций в секунду. Для ввода и вывода использовались печатающие устройства, магнитные ленты, перфокарты и перфоленты.

Ко второму поколению ЭВМ относятся те машины, которые были сконструированы в 1955-65 гг. В них использовались как электронные лампы, так и транзисторы. Оперативная память была построена на магнитных сердечниках. В это время появились магнитные барабаны и первые магнитные диски. Появились так называемые языки высокого уровня, средства которых допускают описание всей последовательности вычислений в наглядном, легко воспринимаемом виде. Появился большой набор библиотечных программ для решения различных математических задач. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем, поэтому в середине 60х годов наметился переход к созданию ЭВМ, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение ЭВМ. Это машины, создаваемые после 60х годов, обладающих единой архитектурой, т.е. программно совместимых. Появились возможности мультипрограммирования, т.е. одновременного выполнения нескольких программ. В ЭВМ третьего поколения применялись интегральные схемы.

Четвертое поколение ЭВМ. Это нынешнее поколение ЭВМ, разработанных после 1970 г. Машины 4го поколения проектировались в расчёте на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно использование больших интегральных схем как элементной базы и наличие быстродействующих запоминающих устройств с произвольной выборкой, объемом несколько Мбайт.

Машины 4-го поколения- многопроцессорные, многомашинные комплексы, работающие на внеш. память и общее поле внеш. устройств. Быстродействие достигает десятков миллионов операций в сек, память - нескольких млн. слов.

Переход к пятому поколению ЭВМ уже начался. Он заключается в качественном переходе от обработки данных к обработке знаний и в повышении основных параметров ЭВМ. Основной упор будет сделан на «интеллектуальность».

На сегодняшний день реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, однако, как бы ни были ограничены возможности нейронных сетей сегодня, множество революционных открытий, могут быть не за горами.

1. Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и «умирали» вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ «Минск» и «Урал», относятся к первому поколению вычислительных машин.

2. Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках1 и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

3. Третье поколение ЭВМ: 1970-1980-е годы

В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Эти схемы позже стали называться схемами с малой степенью интеграции (Small Scale Integrated circuits - SSI). А уже в конце 60-х годов интегральные схемы стали применяться в компьютерах.

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

Так, первыми ЭВМ этого поколения стали модели систем IBM (ряд моделей IBM 360) и PDP (PDP 1). В Советском Союзе в содружестве со странами Совета Экономической Взаимопомощи (Польша, Венгрия, Болгария, ГДР и др1.) стали выпускаться модели единой системы (ЕС) и системы малых (СМ) ЭВМ.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Модульная организация вычислительных машин и модульное построение их операционных систем создали широкие возможности для изменения конфигурации вычислительных систем. В связи с этим возникло новое понятие «архитектура» вычислительной системы, определяющее логическую организацию этой системы с точки зрения пользователя и программиста.

4. Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем (Large Scale Integration - LSI и Very Large Scale Integration - VLSI), микропроцессора (1969 г.) и персонального компьютера. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений (единицы вольт), потребляющими меньше мощности, нежели биполярные, и тем самым позволяющими реализовать более прогрессивные нанотехнологии (в те годы - масштаба единиц микрон).

Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) - сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер «Apple», имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.

5. Пятое поколение ЭВМ: 1990-настоящее время

Особенности архитектуры современного поколения компьютеров подробно рассматриваются в данном курсе.

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

1. Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

2. Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Заключение

Все этапы развития ЭВМ принято условно делить на поколения.

Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент.

Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.

Новрузлу Эльнура 10 а

1. Электронно-вычислительная машина (ЭВМ)

2.

2.1. I поколение ЭВМ

2.2. II поколение ЭВМ

2.3. III поколение ЭВМ

2.4. IV поколение ЭВМ

2.5. V поколение ЭВМ

3. Поколение ЭВМ (таблица)

Список использованной литературы

1. ПОКОЛЕНИЕК ЭВМ

Поколение

Годы

Элементная база

Быстродействие

Объем ОП

Устройства ввода-вывода

Программное обеспечение

Примеры ЭВМ

Электронная лампа

10-20 тыс. операций в 1 с.

2 Кбайт

Перфоленты

Перфокарты

Машинные коды

UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

c 1955

Транзистор

2 – 32 Кбайт

«Традис»

БЭСМ -6

c 1966

Интегральная схема (ИС)

1-10 млн. операций в 1 с.

64 Кбайт

Многотерминальные системы

Операционные системы

БЭСМ -6

c 1975

1-100 млн. операций в 1 с.

1-64 Кбайт

Сети ПЭВМ

Базы и банки данных

Корнет

УКНЦ

с 90-х годов 20 в.

Экспертные системы

Скачать:

Предварительный просмотр:

МБОУ г. Астрахани СОШ № 52

РЕФЕРАТ на тему:

«ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА»

Подготовила

Ученица 10 а класса

Новрузлу Эльнура

Проверила учитель по информатике и ИКТ

Комиссарова И.М.

г. Астрахань, 2013

Стр.

  1. Электронно-вычислительная машина (ЭВМ) 3
  2. Электронный этап развития вычислительной техники
  1. I поколение ЭВМ 3
  2. II поколение ЭВМ 4-5
  3. III поколение ЭВМ 5-7
  4. IV поколение ЭВМ 7-8
  5. V поколение ЭВМ 8-10
  1. Поколение ЭВМ (таблица) 11
  2. Список использованной литературы 12
  1. ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ)

Электронно-вычислительная машина (ЭВМ) - быстродействующие вычислительные машины, решающие математические и логические задачи с большой точностью при выполнении в секунду несколько десятков тысяч операций. Техническая основа ЭВМ - электронные схемы. В ЭВМ есть запоминающее устройство (память), предназначенное для приема, хранения и выдачи информации, арифметическое устройство для операций над числами и устройство управления. Каждая машина имеет определенную систему команд.

  1. ЭЛЕКТРОННЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
  1. I поколение ЭВМ

Принято считать, что первое поколение ЭВМ появилось в ходе Второй мировой войны после 1943 года, хотя первым работающим представителем следовало бы считать машину V-1 (Z1) Конрада Цузе, продемонстрированную друзьям и Гг родственникам в 1938 году. Это была первая электронная (построенная на самодельных аналогах реле) машина, капризная в обращении и ненадёжная в вычислениях. В мае 1941 года в Берлине Цузе представил машину Z3, вызвавшую восторг у специалистов. Несмотря на ряд недостатков, это был первый компьютер, который, при других обстоятельствах, мог бы иметь коммерческий успех. Однако первыми ЭВМ считаются английский Colossus (1943 г.) и американский ENIAC (1945 г.). ENIAC был первым компьютером на вакуумных лампах.

Характерные черты

  • Элементная база – электронно-вакуумные лампы .
  • Соединение элементов – навесной монтаж проводами .
  • Габариты – ЭВМ выполнена в виде громадных шкафов .
  • Быстродействие – 10-20 тыс. операций в секунду .
  • Эксплуатация – сложная из-за частого выхода из строя электронно-вакуумных ламп.
  • Программирование – машинные коды .
  • Оперативная память – до 2 Кбайт .
  • Ввод и вывод данных с помощью перфокарт, перфолент .
  1. II поколение ЭВМ

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени. Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса. Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО. Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет). К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.

Характерные черты

  • Элементная база – полупроводниковые элементы (транзисторы) .
  • Соединение элементов – печатные платы и навесной монтаж .
  • Габариты – .
  • Быстродействие – 100-500 тыс. операций в секунду .
  • Эксплуатация – вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность – оператор ЭВМ.
  • Программирование – на алгоритмических языках, появление ОС .
  • Оперативная память – 2 – 32 Кбайт .
  • Введен принцип разделения времени .
  • Введен принцип микропрограммного управления .
  • Недостаток – несовместимость программного обеспечения .
  1. III поколение ЭВМ

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника - 100/25», «Электроника - 79», «СМ-3», «СМ-4» и др. Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера. Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Характерные черты

  • Элементная база – интегральные схемы .
  • Соединение элементов – печатные платы .
  • Габариты – ЭВМ выполнена в виде однотипных стоек .
  • Быстродействие – 1-10 мил. операций в секунду .
  • Эксплуатация – вычислительные центры, дисплейные классы, новая специальность – системный программист.
  • Программирование – алгоритмические языки, ОС .
  • Оперативная память – 64 Кбайт .
  • Применяется принцип разделения времени, принцип модульности, принцип микропрограммного управления, принцип магистральности .
  • Появление магнитных дисков , дисплеев, графопостроителей.
  1. IV поколение ЭВМ

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

1-ое направление - создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.

2-ое направление - дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC (XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др. Начиная с этого поколения ЭВМ повсеместно стали называть компьютерами. А слово «компьютеризация» прочно вошло в наш быт. Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Характерные черты

  • Элементная база – большие интегральные схемы (БИС) .
  • Соединение элементов – печатные платы .
  • Габариты – компактные ЭВМ, ноутбуки .
  • Быстродействие – 10-100 млн. операций в секунду .
  • Эксплуатация – многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ .
  • Программирование – базы и банки данных .
  • Оперативная память – 2-5 Мбайт .
  • Телекоммуникационная обработка данных, объединение в компьютерные сети.
  1. V поколение ЭВМ

ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры. На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

Программное обеспечение

Примеры ЭВМ

c 1946

Электронная лампа

10-20 тыс. операций в 1 с.

2 Кбайт

Перфоленты

Перфокарты

Машинные коды

UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

c 1955

Транзистор

100-1000 тыс. операций в 1 с.

2 – 32 Кбайт

Магнитная лента, магнитные барабаны

Алгоритмические языки, операционные системы

«Традис»

М-20

IBM-701

БЭСМ-6

c 1966

Интегральная схема (ИС)

1-10 млн. операций в 1 с.

64 Кбайт

Многотерминальные системы

Операционные системы

EC-1030

IBM-360

БЭСМ-6

c 1975

Большая интегральная схема (БИС)

1-100 млн. операций в 1 с.

1-64 Кбайт

Сети ПЭВМ

Базы и банки данных

IBM-386

IBM-486

Корнет

УКНЦ

с 90-х годов 20 в.

Сверхбольшая интегральная схема (СБИС)

Более 100 млн. операций в 1 с.

Оптические и лазерные устройства

Экспертные системы

4.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. http://evm-story.narod.ru/#P0
  1. http://www.wikiznanie.ru/ru-wz/index.php/ЭВМ