Open Library - открытая библиотека учебной информации. Структура файловой системы. Механизм доступа к файлам

Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы организовать эффективную работу с данными, хранящимися во внешней памяти, и обеспечить пользователю удобный интерфейс при работе с такими данными. Организовать хранение информации на магнитном диске непросто. Это требует, например, хорошего знания устройства контроллера диска, особенностей работы с его регистрами. Непосредственное взаимодействие с диском - прерогатива компонента системы ввода-вывода ОС, называемого драйвером диска. Для того чтобы избавить пользователя компьютера от сложностей взаимодействия с аппаратурой, была придумана ясная абстрактная модель файловой системы. Операции записи или чтения файла концептуально проще, чем низкоуровневые операции работы с устройствами.

Перечислим основные функции файловой системы.

1. Идентификация файлов. Связывание имени файла с выделенным ему пространством внешней памяти.

2. Распределение внешней памяти между файлами. Для работы с конкретным файлом пользователю не требуется иметь информацию о местоположении этого файла на внешнем носителе информации. Например, для того чтобы загрузить документ в редактор с жесткого диска, нам не нужно знать, на какой стороне какого магнитного диска, на каком цилиндре и в каком секторе находится данный документ.

3. Обеспечение надежности и отказоустойчивости. Стоимость информации может во много раз превышать стоимость компьютера.

4. Обеспечение защиты от несанкционированного доступа.

5. Обеспечение совместного доступа к файлам, так чтобы пользователю не приходилось прилагать специальных усилий по обеспечению синхронизации доступа.

6. Обеспечение высокой производительности.

Иногда говорят, что файл - это поименованный набор связанной информации, записанной во вторичную память. Для большинства пользователей файловая система - наиболее видимая часть ОС. Она предоставляет механизм для онлайнового хранения и доступа как к данным, так и к программам для всех пользователей системы. С точки зрения пользователя, файл - единица внешней памяти, то есть данные, записанные на диск, должны быть в составе какого-нибудь файла.

37. Простейшая таблица оглавления тома и её элементы

Файловая система включает в себя таблицу содержания и область данных – совокупность блоков на диске, идентифицируемых своими номерами / адресами. Пример простейшей (абстрактной) таблицы содержания, оглавления тома (диска, пакета дисков), которая в разных ОС имеет различные наименования – VTOC – Volume Table of Content(Таблица Содержания Тома), FAT – File Allocation Table (Таблица Размещения Файлов), FDT – File Definition Table (Таблица Определения Файлов) и т. п., приведена на рис. 1.

Рис. 1. Простейшая таблица оглавления тома

Она состоит из трех областей:

· область файлов. Это таблица, имеющая обычно ограниченное (в приведенном примере N =6) число строк N (в MS-DOS, например, N =500, т.е. число файлов не более 500). Количество столбцов M (в примере M= 5)обычно выбирается из тех соображений, чтобы 85 -95%файлом, создаваемых пользователем содержало бы не более М блоков, что зависит как от размера блока и типа пользователя, так и от общего уровня развития информационного и программного обеспечения. Первый столбец таблицы в каждой строке (заглавная запись – Title Record) содержит данные о файле, в данном примере – имя файла;

· область переполнения - дополнительная таблица аналогичной структуры, в которую записываются номера блоков особо длинных файлов (в примере - File_l). Организация таблицы размещения в форме области файлов и области переполнения, очевидно, позволяет сэкономить на объеме таблицы в целом, не ограничивая в то же время вероятной длины файла;

· список свободных блоков - необходимая информация для раз­мещения создаваемых или расширяемых файлов. Список со­здается при инициализации и включает все блоки, кроме по­врежденных, а затем корректируется при создании, удалении, модификации файлов;

· список сбойных блоков. Это таблица, создаваемая при инициа­лизации (разметке) тома (диска), пополняемая программами диагностики (примером которых может служить хорошо изве­стный пользователям NDD - Norton Disk Doctor) и предот­вращающая распределение испорченных областей на магнит­ном носителе под файлы данных.

Перечислим особенности ситуации, зафиксированной на рис.1. в простейшей (искусственной) файловой системе.

File_l занимает 6 блоков, это число больше максимального, по­этому адрес блока № 6 (23) размещен в таблице переполнения;

File_2 занимает 2 блока, что меньше ограничения, поэтому вся информация сосредоточена в области файлов.

Имеются следующие конфликтные ситуации:

· File_3 не содержит ни одного блока (следовательно, файл был удален, но заглавная запись сохранилась);

· File_4 и File_l ссылаются на блок № 3. Это ошибка, посколь­ку каждый блок должен быть закреплен за единственным фай­лом;

· в списке свободных блоков содержатся номера блоков № 12 (помеченный как сбойный) и № 13 (распределенный под File_1).

38. Логическая структура разделов диска на примере IBM- и MS-совместимых файловых систем


Логическими дисками D и E

Максимальное число первичных разделов- 4. Активный раздел тот, где находится системный загрузчик.

MBR - код и данные, необходимые для последующей загрузки операционной системы и расположенные в первых физических секторах (чаще всего в самом первом) на жёстком диске или другом устройстве хранения информации.

Запись расширенного раздела называют SMBR (Secondary Master Boot Record ). Отличие этой записи заключается в том, что она не имеет загрузчика, а таблица разделов состоит из двух записей: основной раздел и расширенный раздел.

39. Файловая система FAT. Структура тома FAT

40. Файловая система NTFS. Структура тома NTFS

41. Реестр ОС Windows

42. Операционные системы семейства Windows NT

43. Некоторые архитектурные модули Windows NT

44. Управление жесткими дисками в Windows NT

45. Проективные операционные системы, их принципы, преимущества, недостатки

46. Процедурные операционные системы, их принципы, преимущества, недостатки

47. История развития и идеология построения ОС Unix

48. Структура ОС Unix

49. Пользовательские интерфейсы Unix

50. Диспетчеризация процессов (задач) в Unix

51. ОС Linux и ее основные преимущества

52. Реализация графического режима в ОС Linux

53. Основные принципы работы в ОС Linux

54. Основные файлы конфигурации ОС Linux

55. Работа с дисковыми накопителями в ОС Linux

56. Приложения для ОС Linux

Файловая система обычно размещается на дисках или других устройствах внешней памяти, имеющих блочную структуру. Кроме блоков, сохраняющих каталоги и файлы, во внешней памяти поддерживается еще несколько служебных областей.

В мире UNIX существует несколько разных видов файловых систем со своей структурой внешней памяти. Наиболее известны традиционная файловая система UNIX System V (s5) и файловая система семейства UNIX BSD (ufs). Файловая система s5 состоит из четырех секций (рисунок 2.2,a). В файловой системе ufs на логическом диске (разделе реального диска) находится последовательность секций файловой системы (рисунок 2.2,b).

Рис. 2.2. Структура внешней памяти файловых систем s5 и ufs

Кратко опишем суть и назначение каждой области диска.

  • Boot -блок содержит программу раскрутки, которая служит для первоначального запуска ОС UNIX. В файловых системах s5 реально используется boot -блок только корневой файловой системы. В дополнительных файловых системах эта область присутствует, но не используется.
  • Суперблок - это наиболее ответственная область файловой системы, содержащая информацию, которая необходима для работы с файловой системой в целом. Суперблок содержит список свободных блоков и свободные i-узлы (information nodes - информационные узлы). В файловых системах ufs для повышения устойчивости поддерживается несколько копий суперблока (как видно из рисунка 2.2,b, по одной копии на группу цилиндров). Каждая копия суперблока имеет размер 8196 байт, и только одна копия суперблока используется при монтировании файловой системы (см. ниже). Однако, если при монтировании устанавливается, что первичная копия суперблока повреждена или не удовлетворяет критериям целостности информации, используется резервная копия.
  • Блок группы цилиндров содержит число i-узлов, специфицированных в списке i-узлов для данной группы цилиндров, и число блоков данных, которые связаны с этими i-узлами. Размер блока группы цилиндров зависит от размера файловой системы. Для повышения эффективности файловая система ufs старается размещать i-узлы и блоки данных в одной и той же группе цилиндров.
  • Список i-узлов (ilist) содержит список i-узлов, соответствующих файлам данной файловой системы. Максимальное число файлов, которые могут быть созданы в файловой системе, определяется числом доступных i-узлов. В i-узле хранится информация, описывающая файл: режимы доступа к файлу, время создания и последней модификации, идентификатор пользователя и идентификатор группы создателя файла, описание блочной структуры файла и т.д.
  • Блоки данных - в этой части файловой системы хранятся реальные данные файлов. В случае файловой системы ufs все блоки данных одного файла пытаются разместить в одной группе цилиндров. Размер блока данных определяется при форматировании файловой системы командой mkfs и может быть установлен в 512, 1024, 2048, 4096 или 8192 байтов.

Одной из компонент ОС является файловая система – основное хранилище системной и пользовательской информации. Все современные ОС работают с одной или несколькими файловыми системами, например, FAT (File Allocation Table), NTFS (NT File System), HPFS (High Performance File System), NFS (Network File System), AFS (Andrew File System), Internet File System.

Файловая система – это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися во внешней памяти, и обеспечить совместное использование файлов несколькими пользователями и процессами.

В широком смысле понятие "файловая система" включает:

Совокупность всех файлов на диске;

Наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске;

Комплекс системных программных средств, реализующих управление файлами, в частности: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.

Файловая система используется обычно как при загрузке ОС после включения компьютера, так и в процессе работы. Файловая система выполняет следующие основные функции:

Определяет возможные способы организации файлов и файловой структуры на носителе;

Реализует методы доступа к содержимому файлов и предоставляет средства работы с файлами и файловой структурой. При этом доступ к данным может быть организован файловой системой как по именам, так и по адресам (номер сектора, поверхности и дорожки носителя);

Отслеживает свободное пространство на носителе.

Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жестком диске или блоке флэш-памяти) он записан. Все, что знает программа – это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).

С точки зрения операционной системы, весь диск представляет собой набор кластеров (участков памяти) размером от 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные. Чтобы ясно представлять, как же хранятся данные на дисках, и как ОС обеспечивает доступ к ним необходимо представлять, хотя бы в общем виде логическую структуру диска.


3.1.5 Логическая структура диска

Для того чтобы компьютер мог хранить, читать и записывать информацию жесткий диск предварительно должен быть размечен. На нем с помощью соответствующих программ создаются разделы – это и называется "разбить жесткий диск". Без этой разметки на жесткий диск не удастся установить операционную систему (хотя Windows XP и 2000 могут устанавливаться на неразбитый диск, но они такую разметку проводят сами в процессе установки).

Жесткий диск можно разбить на несколько разделов, каждый из которых будет использоваться автономно. Для чего это надо? Один диск может содержать несколько различных операционных систем, расположенных в разных разделах. Внутренняя структура раздела, выделенного какой-либо ОС, полностью определяется этой операционной системой.

Кроме того, существуют и другие причины разбиения диска на разделы, например:

Возможность использования под управлением MS DOS дисков с емкостью большей, чем
32 Мб;

В случае повреждения диска, пропадает только та информация, которая находилась на этом диске;

Реорганизация и выгрузка диска маленького размера проще и быстрее, чем большого;

Каждому пользователю можно выделить свой логический диск.

Операция подготовки диска к работе называется форматированием , или инициализацией . Всё доступное дисковое пространства разбивается на стороны, дорожки и сектора, причем дорожки и стороны нумеруются с нуля, а сектора – с единицы. Совокупность дорожек, находящихся на одинаковом удалении от оси диска или пакета дисков, называется цилиндром. Таким образом физический адрес сектора определяется следующими координатами: номер дорожки (цилиндра – С), номер стороны диска (головки – H), номера сектора – R, т.е. CHR.

В самом первом секторе жесткого диска (C=0, H=0, R=1) содержится главная загрузочная запись Master Boot Record . Эта запись занимает не весь сектор, а только его начальную часть. Главная загрузочная запись является программой – внесистемным загрузчиком.

В конце первого сектора жесткого диска располагается таблица разделов диска – Partition Table . Эта таблица содержит четыре строки, описывающих максимально четыре раздела. Каждая строка в таблице описывает один раздел:

1) активный раздел или нет;

2) номер сектора, соответствующего началу раздела;

3) номер сектора, соответствующего концу раздела;

4) размер раздела в секторах;

5) код операционной системы, т.е. какой ОС принадлежит данный раздел.

Раздел называется активным, если он содержит программу загрузки операционной системы. Первым байтом в элементе раздела идет флаг активности раздела (0 – не активен, 128 (80H) – активен). Он служит для определения, является ли раздел системным (загрузочным), и для необходимости производить загрузку операционной системы с него при старте компьютера. Активным может быть только один раздел. Небольшие программы, называемые менеджерами загрузки (Boot Manager), могут располагаться в первых секторах диска. Они интерактивно запрашивают пользователя, с какого раздела производить загрузку и соответственно корректируют флаги активности разделов. Поскольку в Partition Table четыре строки, то на диске может быть до четырех различных ОС, следовательно, диск может содержать несколько первичных разделов, принадлежащих разным операционным системам.

Пример логической структуры жесткого диска, состоящего из трех разделов, два из которых принадлежат DOS, а один принадлежит UNIX, приведен на рисунке 3.2а.

Каждый активный раздел имеет свою загрузочную запись – программу, которая осуществляет загрузку данной ОС.

На практике диск разбивается чаще всего на два раздела. Размеры разделов, объявление их активными или нет, устанавливаются пользователем в процессе подготовки жесткого диска к работе. Делается это с помощью специальных программ. В DOS эта программа называется FDISK, в версиях Windows-XX – Diskadministrator.

В DOS первичный раздел – Primary Partition , это тот раздел, который содержит загрузчик операционной системы и саму ОС. Таким образом, первичный раздел является активным разделом, используется как логический диск с именем C:.

Операционная система WINDOWS (а именно WINDOWS 2000) изменила терминологию: активный раздел называется системным, а загрузочным называется логический диск, который содержит системные файлы WINDOWS. Загрузочный логический диск может совпадать с системным разделом, но может находиться в другом разделе того же жесткого диска или на другом жестком диске.

Расширенный раздел Extended Partition может разбиваться на несколько логических дисков с именами от D: до Z:.

На рисунке 3.2б представлена логическая структура жесткого диска, в котором всего два раздела и четыре логических диска.

Файловые системы. Типы файловых систем. Операции с файлами. Каталоги. Операции с каталогами.

Файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные.

Основные цели использования файла.

    Долговременное и надежное хранение информации . Долговременность достигается за счет использования запоминающих устройств, не зависящих от питания, а высокая надежность определяется средствами защиты доступа к файлам и общей организацией программного кода ОС, при которой сбои аппаратуры чаще всего не разрушают информацию, хранящуюся в файлах.

    Совместное использование информации . Файлы обеспечивают естественный и легкий способ разделения информации между приложениями и пользователями за счет наличия понятного человеку символьного имени и постоянства хранимой информации и расположения файла. Пользователь должен иметь удобные средства работы с файлами, включая каталоги-справочники, объединяющие файлы в группы, средства поиска файлов по признакам, набор команд для создания, модификации и удаления файлов. Файл может быть создан одним пользователем, а затем использоваться совсем другим пользователем, при этом создатель файла или администратор могут определить права доступа к нему других пользователей. Эти цели реализуются в ОС файловой системой.

Файловая система (ФС) - это часть операционной системы, включающая:

    совокупность всех файлов на диске;

    наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске;

    комплекс системных программных средств, реализующих различные операции над файлами, такие как создание, уничтожение, чтение, запись, именование и поиск файлов.

Таким образом, файловая система играет роль промежуточного слоя, экранирующего все сложности физической организации долговременного хранилища данных, и создающего для программ более простую логическую модель этого хранилища, а также предоставляя им набор удобных в использовании команд для манипулирования файлами.

Широко известны следующие файловые системы:

    файловая система операционной системы MS - DOS , в основу которой положена таблица размещения файлов - FAT ( File Allocation Table ).

Таблица содержит сведения о расположении всех файлов (каждый файл делится на кластеры в соответствии с наличием свободного места на диске, кластеры одного файла не обязательно расположены рядом). Файловая система MS-DOS имеет значительные ограничения и недостатки, например, под имя файла отводится 12 байт, работа с жестким диском большого объема приводит к значительной фрагментации файлов;

Основные функции в такой ФС нацелены на решение следующих задач:

    именование файлов;

    программный интерфейс для приложений;

    отображения логической модели файловой системы на физическую организацию хранилища данных;

    устойчивость файловой системы к сбоям питания, ошибкам аппаратных и программных средств.

    OS /2 , называемая HPFS ( High - Performance File System - быстродействующая файловая система).

Обеспечивает возможность иметь имя файла до 254 символов. Файлы, записанные на диск, имеют минимальную фрагментацию. Может работать с файлами, записанными в MS DOS;

К перечисленным выше задачам добавляется новая задача совместного доступа к файлу из нескольких процессов. Файл в этом случае является разделяемым ресурсом, а значит, файловая система должна решать весь комплекс проблем, связанных с такими ресурсами. В частности, в ФС должны быть предусмотрены средства блокировки файла и его частей, предотвращения гонок, исключение тупиков, согласование копий и т. п.

В многопользовательских системах появляется еще одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя.

    файловая система операционной системы Windows 95

Имеет уровневую структуру, что позволяет поддерживать одновременно несколько файловых систем. Старая файловая система MS-DOS поддерживается непосредственно, а файловые системы разработанные не фирмой Microsoft , поддерживаются с помощью специальных модулей . Имеется возможность использовать длинные (до 254 символов) имена файлов.

    файловые системы операционной системы Unix

Они обеспечивают унифицированный способ доступа к файловым системам ввода-вывода.

Права доступа к файлу практически определяют права доступа к системе (владелец файла – пользователь, который его создал).

Типы файлов

Файловые системы поддерживают несколько функционально различных типов файлов, в число которых, как правило, входят обычные файлы, файлы-каталоги, специальные файлы, именованные конвейеры, отображаемые в память файлы и другие.

Обычные файлы , или просто файлы, содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ. Большинство современных операционных систем (например, UNIX, Windows, OS/2) никак не ограничивает и не контролирует содержимое и структуру обычного файла. Содержание обычного файла определяется приложением, которое с ним работает. Например, текстовый редактор создает текстовые файлы, состоящие из строк символов, представленных в каком-либо коде. Это могут быть документы, исходные тексты программ и т. п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют коды символов, они часто имеют сложную внутреннюю структуру, например исполняемый код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов - их собственные исполняемые файлы.

Каталоги - это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (например, в одну группу объединяются файлы, содержащие документы одного договора, или файлы, составляющие один программный пакет). Во многих операционных системах в каталог могут входить файлы любых типов, в том числе другие каталоги, за счет чего образуется древовидная структура, удобная для поиска. Каталоги устанавливают соответствие между именами файлов и их характеристиками, используемыми файловой системой для управления файлами. В число таких характеристик входит, в частности, информация (или указатель на другую структуру, содержащую эти данные) о типе файла и расположении его на диске, правах доступа к файлу и датах его создания и модификации. Во всех остальных отношениях каталоги рассматриваются файловой системой как обычные файлы.

Специальные файлы - это фиктивные файлы, ассоциированные с устройствами ввода-вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю выполнять операции ввода-вывода посредством обычных команд записи в файл или чтения из файла. Эти команды обрабатываются сначала программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются операционной системой в команды управления соответствующим устройством.

Современные файловые системы поддерживают и другие типы файлов, такие как символьные связи, именованные конвейеры, отображаемые в память файлы.

Иерархическая структура файловой системы

Пользователи обращаются к файлам по символьным именам. Однако способности человеческой памяти ограничивают количество имен объектов, к которым пользователь может обращаться по имени. Иерархическая организация пространства имен позволяет значительно расширить эти границы. Именно поэтому большинство файловых систем имеет иерархическую структуру, в которой уровни создаются за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня (рис. 7.3).

Граф, описывающий иерархию каталогов, может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог (рис. 7.3, б), и сеть - если файл может входить сразу в несколько каталогов (рис. 7.3, в). Например, в MS-DOS и Windows каталоги образуют древовидную структуру, а в UNIX - сетевую. В древовидной структуре каждый файл является листом. Каталог самого верхнего уровня называется корневым каталогом, или корнем ( root ).

При такой организации пользователь освобожден от запоминания имен всех файлов, ему достаточно примерно представлять, к какой группе может быть отнесен тот или иной файл, чтобы путем последовательного просмотра каталогов найти его. Иерархическая структура удобна для многопользовательской работы: каждый пользователь со своими файлами локализуется в своем каталоге или поддереве каталогов, и вместе с тем все файлы в системе логически связаны.

Частным случаем иерархической структуры является одноуровневая организация, когда все файлы входят в один каталог (рис. 7.3, а).

Имена файлов

Все типы файлов имеют символьные имена. В иерархически организованных файловых системах обычно используются три типа имен -файлов: простые, составные и относительные.

Простое, или короткое, символьное имя идентифицирует файл в пределах одного каталога. Простые имена присваивают файлам пользователи и программисты, при этом они должны учитывать ограничения ОС как на номенклатуру символов, так и на длину имени. До сравнительно недавнего времени эти границы были весьма узкими. Так, в популярной файловой системе FAT длина имен ограничивались схемой 8.3 (8 символов - собственно имя, 3 символа - расширение имени), а в файловой системе s5, поддерживаемой многими версиями ОС UNIX, простое символьное имя не могло содержать более 14 символов. Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлам легко запоминающиеся названия, ясно говорящие о том, что содержится в этом файле. Поэтому современные файловые системы, а также усовершенствованные варианты уже существовавших файловых систем, как правило, поддерживают длинные простые символьные имена файлов. Например, в файловых системах NTFS и FAT32, входящих в состав операционной системы Windows NT, имя файла может содержать до 255 символов.

В иерархических файловых системах разным файлам разрешено иметь одинаковые простые символьные имена при условии, что они принадлежат разным каталогам. То есть здесь работает схема «много файлов - одно простое имя». Для одпозначной идентификации файла в таких системах используется так называемое полное имя.

Полное имя представляет собой цепочку простых символьных имен всех каталогов, через которые проходит путь от корня до данного файла. Таким образом, полное имя является составным, в котором простые имена отделены друг от друга принятым в ОС разделителем. Часто в качестве разделителя используется прямой или обратный слеш, при этом принято не указывать имя корневого каталога. На рис. 7.3, б два файла имеют простое имя main.exe, однако их составные имена /depart/main.ехе и /user/anna/main.exe различаются.

В древовидной файловой системе между файлом и его полным именем имеется взаимно однозначное соответствие «один файл - одно полное имя». В файловых системах, имеющих сетевую структуру, файл может входить в несколько каталогов, а значит, иметь несколько полных имен; здесь справедливо соответствие «один файл - много полных имен». В обоих случаях файл однозначно идентифицируется полным именем.

Файл может быть идентифицирован также относительным именем. Относительное имя файла определяется через понятие «текущий каталог». Для каждого пользователя в каждый момент времени один из каталогов файловой системы является текущим, причем этот каталог выбирается самим пользователем по команде ОС. Файловая система фиксирует имя текущего каталога, чтобы затем использовать его как дополнение к относительным именам для образования полного имени файла. При использовании относительных имен пользователь идентифицирует файл цепочкой имен каталогов, через которые проходит маршрут от текущего каталога до данного файла. Например, если текущим каталогом является каталог /user, то относительное имя файла /user/anna/main.exe выглядит следующим образом: anna/ main.exe.

В некоторых операционных системах разрешено присваивать одному и тому же файлу несколько простых имен, которые можно интерпретировать как псевдонимы. В этом случае, так же как в системе с сетевой структурой, устанавливается соответствие «один файл - много полных имен», так как каждому простому имени файла соответствует по крайней мере одно полное имя.

И хотя полное имя однозначно определяет файл, операционной системе проще работать с файлом, если между файлами и их именами имеется взаимно однозначное соответствие. С этой целью она присваивает файлу уникальное имя, так что справедливо соотношение «один файл - одно уникальное имя». Уникальное имя существует наряду с одним или несколькими символьными именами, присваиваемыми файлу пользователями или приложениями. Уникальное имя представляет собой числовой идентификатор и предназначено только для операционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

Атрибуты файлов

Понятие «файл» включает не только хранимые им данные и имя, но и атрибуты. Атрибуты - это информация, описывающая свойства файла. Примеры возможных атрибутов файла:

    тип файла (обычный файл, каталог, специальный файл и т. п.);

    владелец файла;

    создатель файла;

    пароль для доступа к файлу;

    информация о разрешенных операциях доступа к файлу;

    времена создания, последнего доступа и последнего изменения;

    текущий размер файла;

    максимальный размер файла;

    признак «только для чтения»;

    признак «скрытый файл»;

    признак «системный файл»;

    признак «архивный файл»;

    признак «двоичный/символьный»;

    признак «временный» (удалить после завершения процесса);

    признак блокировки;

    длина записи в файле;

    указатель на ключевое поле в записи;

    длина ключа.

Набор атрибутов файла определяется спецификой файловой системы: в файловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов. Например, в файловых системах, поддерживающих неструктурированные файлы, нет необходимости использовать три последних атрибута в приведенном списке, связанных со структуризацией файла. В однопользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователям и защите, такие как владелец файла, создатель файла, пароль для доступа к файлу, информация о разрешенном доступе к файлу.

Пользователь может получать доступ к атрибутам, используя средства, предоставленные для этих целей файловой системой. Обычно разрешается читать значения любых атрибутов, а изменять - только некоторые. Например, пользователь может изменить права доступа к файлу (при условии, что он обладает необходимыми для этого полномочиями), но изменять дату создания или текущий размер файла ему не разрешается.

Значения атрибутов файлов могут непосредственно содержаться в каталогах, как это сделано в файловой системе MS-DOS (рис. 7.6, а). На рисунке представлена структура записи в каталоге, содержащая простое символьное имя и атрибуты файла. Здесь буквами обозначены признаки файла: R - только для чтения, А - архивный, Н - скрытый, S - системный.

Рис. 7.6. Структура каталогов: а - структура записи каталога MS-DOS (32 байта), б - структура записи каталога ОС UNIX

Другим вариантом является размещение атрибутов в специальных таблицах, когда в каталогах содержатся только ссылки на эти таблицы. Такой подход реализован, например, в файловой системе ufs ОС UNIX. В этой файловой системе структура каталога очень простая. Запись о каждом файле содержит короткое символьное имя файла и указатель на индексный дескриптор файла, так называется в ufs таблица, в которой сосредоточены значения атрибутов файла (рис. 7.6, б).

В том и другом вариантах каталоги обеспечивают связь между именами файлов и собственно файлами. Однако подход, когда имя файла отделено от его атрибутов, делает систему более гибкой. Например, файл может быть легко включен сразу в несколько каталогов. Записи об этом файле в разных каталогах могут содержать разные простые имена, но в поле ссылки будет указан один и тот же номер индексного дескриптора.

Операции над файлами

Большинство современных ОС рассматривают файл как неструктурированную последовательность байт переменной длины. В стандарте POSIX над файлом определены следующие операции:

    int open ( char * fname , int flags , mode _ t mode )

Эта операция ``открывает"" файл, устанавливая соединение между программойи файлом. При этом программа получает дескриптор файла - целоечисло, идентифицирующее данное соединение. Фактически это индекс в системнойтаблице открытых файлов для данной задачи. Все остальные операции используютэтот индекс для ссылки на файл.

Параметр char * fname задает имя файла.int flags - это битовая маска, определяющая режим открытия файла.Файл может быть открыт только на чтение, только на запись и начтение и запись; кроме того, можно открывать существующий файл,а можно пытаться создать новый файл нулевой длины.Необязательный третий параметр mode используется толькопри создании файла и задает атрибуты этого файла.

    off _ t lseek ( int handle , off _ t offset , int whence )

Эта операция перемещает указатель чтения/записи в файле.Параметр offset задает количество байт, на которое нужно сместитьуказатель, а параметр whence - откуда отсчитывать смещение.Предполагается, что смещение можно отсчитывать от начала файла(SEEK_SET), от его конца (SEEK_END) и от текущегоположения указателя (SEEK_CUR). Операция возвращает положениеуказателя, отсчитываемое от начала файла. Таким образом, вызовlseek(handle, 0, SEEK_CUR) возвратит текущее положение указателя,не передвигая его.

    int read(int handle, char * where, size_t how_much)

Операция чтения из файла. Указатель where задает буфер,куда нужно поместитьпрочитанные данные; третий параметр указывает, сколько данных надо считать.Система считывает требуемое число байт из файла, начиная с указателячтения/записи в этом файле, и перемещает указатель к концу считаннойпоследовательности. Если файл кончился раньше, считывается столько данных,сколько оставалось до его конца. Операция возвращает количествосчитанных байт. Если файл открывался только для записи, вызов readвозвратит ошибку.

    int write(int handle, char * what, size_t how_much)

Операция записи в файл. Указатель what задает начало буфера данных;третий параметр указывает, сколько данных надо записать.Система записывает требуемое число байт в файл, начиная с указателячтения/записи в этом файле, заменяя хранившиеся на в этом месте данные,и перемещает указатель к концу записанного блока. Если файл кончился раньше,его длина увеличивается. Операция возвращает количество записанных байт.

Если файл открывался только для чтения, вызов write возвратит ошибку.

    int ioctl(int handle, int cmd, ...) ; int fcntl ( int handle , int cmd , ...)

Дополнительные операции над файлом. Первоначально, по-видимому,предполагалось, что ioctl - это операции над самим файлом,а fcntl - это операции над дескриптором открытого файла,но потом историческое развитие несколько перемешало функции этих системныхвызовов. Стандарт POSIX определяет некоторые операции как наддескриптором, например дублирование (в результате этой операции мы получаемдва дескриптора, связанных с одним и тем же файлом), так и над самим файлом,например, операцию truncate - обрезать файл до заданной длины.В большинстве версий Unix операцию truncate можноиспользовать и для вырезания данных из середины файла. При считывании данныхиз такой вырезанной области считываются нули, а сама эта область незанимает физического места на диске.

Важной операцией является блокировка участков файла.Стандарт POSIX предлагает для этой целибиблиотечную функцию, но в системах семейства Unix этафункция реализована через вызов fcntl.

Большинство реализаций стандарта POSIX предлагает и своидополнительные операции. Так, в Unix SVR 4 этими операциямиможно устанавливать синхронную или отложенную запись и т.д.

    caddr_t mmap(caddr_t addr, size_t len, int prot, int flags, int handle, off_t offset)

Отображение участка файла в виртуальное адресное пространство процесса.Параметр prot задает права доступа к отображенному участку:на чтение, запись и исполнение. Отображение может происходитьна заданный виртуальный адрес, или же система может выбирать адрес дляотображения сама.

Еще две операции выполняются уже не над файлом, а над его именем:это операции переименования и удаления файла. В некоторых системах,например в системах семейства Unix , файл может иметьнесколько имен, и существует только системный вызов для удаления имени.Файл удаляется при удалении последнего имени.

Видно, что набор операций над файлом в этом стандарте очень похожна набор операций над внешним устройством. И то и другое рассматриваетсякак неструктурированный поток байт. Для полноты картины следует сказать,что основное средство межпроцессной коммуникации в системах семействаUnix (труба ) также представляет собойнеструктурированный поток данных. Идея о том, что большинство актов передачиданных может быть сведено к байтовому потоку, довольно стара, ноUnix был одной из первых систем, где эта идея была приближена клогическому завершению.

Примерно та же модель работы с файлами принята в CP / M ,а набор файловых системных вызовов MS DOS фактическископирован с вызовов Unix v 7 . В свою очередь, OS /2 и Windows NT унаследовали принципы работы с файламинепосредственно от MS DOS .

Напротив, в системах, не имеющих Unix в родословной,может использоваться несколько иная трактовка понятия файла.Чаще всего файл трактуется как набор записей. Обычно система поддерживаетзаписи как постоянной длины, так и переменной. Например, текстовый файлинтерпретируется как файл с записями переменной длины, а каждой строке текстасоответствует одна запись. Такова модель работы с файлами в VMS и в ОС линии OS /360 -MVS фирмы IBM.

Запись информации о файлах производится в специальные области диска. Учитывая зависимость отаппаратных средств компьютера и возможностей установленной операционной системы для организации работы применяются различные файловые системы.

Файловая система (FAT (File Allocation Table) – таблица размещения файлов ) – общая структура, определяющая в операционной системе наименование, сохранение и размещение файлов. От файловой системы зависят правила именования файлов, способы обращения к файлам и способы работы с ними.

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы зависит от операционной системы. Наиболее распространенный тип - табличный.

Диск представляется как набор поверхностей. У гибких дисков их всœего две (верхняя и нижняя), но жесткие диски - это на самом делœе ʼʼэтажеркиʼʼ, состоящие из нескольких пластин, в связи с этим количество поверхностей у них больше.

Каждая поверхность диска разделяется на кольцевые дорожки, а каждая дорожка - на секторы. Размеры секторов фиксированы и равны 512 байт.

Сектор - это наименьшая единица хранения данных, но для адресации она используется далеко не во всœех файловых системах. Для этого она чересчур мала. Такие операционные системы, как MS-DOS, Windows, OS/2, используют для адресации более крупную единицу хранения, называемую кластером . Кластер - это группа сосœедних секторов. Размер кластера зависит от размера жесткого диска. Чем больше диск, тем большим назначается размер кластера. Типовые значения: 8, 16, 32 или 64 сектора.

Кластер минимальный объём дискового пространства, который должна быть выделœен для размещения файла. Все файловые системы, используемые Windows для работы с жесткими дисками, основаны на кластерах, которые состоят из одного или нескольких смежных секторов. Чем меньше размер кластера, тем более эффективно используется дисковая память. В случае если при форматировании диска размер кластера не указан в явном виде, Windows выбирает одно из стандартных значений, исходя из размера тома. Стандартные значения подобраны таким образом, чтобы снизить потерю дискового пространства и степень возможной фрагментации тома. Размер кластера принято называть также единицей выделœения памяти.

В файловой системе FAT , данные о том, в каком кластере диска начинается тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT -таблицах). Поскольку нарушение FAT -таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности, и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Файловая система FAT16. Эта система существовала еще до MS-DOS. Максимальный размер поддерживаемого дискового пространства не превышает 4096 Мбайт, большие объёмы FAT16 не поддерживает. В FAT16 применяется 16-битная адресация и, соответственно, возможно использование до 2 адресов. Том памяти, отформатированный FAT 16, разделяется на кластеры. Размер кластера зависит от размера тома и колеблется от 512 байт до 64 Кбайт, принимая ряд определœенных значений. В том, организованный файловой системой FAT16, входят загрузочный диск, FAT16-оригинал, FAT16-копия, корневой каталог, каталоги и файлы. Отличием корневого каталога от всœех прочих подкаталогов является фиксированное число вхождений (обычно 512). Это число равно общему количеству подкаталогов и файлов, созданных в корневом каталоге.

Файловая система FAT32. Начиная с Windows 95, появилась FAT32, которая способна обслуживать тома до 2 Тбайт с размером кластера до 32 Кбайт. В целом размеры кластеров в FAT32 меньше соответствующих размеров в FAT16. Это приводит к более эффективному использованию дискового пространства. Вместе с тем, максимальное число вхождений в корневой каталог увеличено до 65 535. В FAT32 применяется 32-битная адресация, но первые четыре бита таблицы расположения файлов FAT32 необходимы для собственных нужд, в связи с этим

Файловая система NTFS. В состав Windows 2000 входит поддержка новой версии файловой системы NTFS (New Technology File System). Ключевое преимущество NTFS – возможность ограничения доступа к файлам и папкам. При формировании файловой системы NTFS создается файл MTF (Master File Table), в котором хранятся адреса копий данных. Полная копия загрузочного сектора располагается в конце тома. В MTF, кроме того, находится таблица имен атрибутов, корневой каталог и т. д. В случае если у файла чересчур большой набор атрибутов, то информация о нем хранится в нескольких записях, причем первая (базовая) запись хранит адреса других записей.

Сравнение файловых систем FAT16, FAT32 и NTFS. Цифры в названиях файловых систем FAT16 и FAT32 указывают на число бит, необходимых для хранения информации о номерах кластеров, используемых файлом, т. е. на разрядность адресации. Проведем сравнение этих файловых систем, указав их преимущества и недостатки.

FAT16 имеет следующие преимущества :

1) эта файловая система поддерживается всœеми ОС, входящими в линœейку программных продуктов Windows и некоторыми версиями ОС UNIX;

2) накоплено большое число программ для исправления ошибок в этой файловой системе и восстановления данных;

3) система должна быть загружена с системной дискеты;

4) эта файловая система весьма эффективна для томов памяти объёмом менее 256 Мбайт.

К недостаткам FAT16 можно отнести:

1) в системе не поддерживается резервная копия загрузочного сектора;

2) в FAT 16 не поддерживается встроенная защита файлов и их сжатие.

Преимущества FAT32 таковы:

1) для дисков большого объёма более эффективно используется выделœенное дисковое пространство;

2) корневой каталог в FAT32 занимает цепочку кластеров и может располагаться в любом месте диска, благодаря чему система не накладывает никаких ограничений на число элементов (вхождений) в корневом каталоге;

3) из-за меньшего размера кластеров занятое дисковое пространство на 10 – 15% меньше, чем у FAT 16;

4) FAT32 из-за возможности использования резервной копии FAT является более надежной системой, чем FAT 16.

Основные недостатки FAT32 :

1) размер тома памяти под Windows 2000 ограничен объёмом 32 Гбайт;

2) тома недоступны для других ОС кроме Windows 95 и Windows 98;

3) не поддерживается резервная копия загрузочного сектора;

4) не поддерживается встроенная защита файлов и их сжатие.

Файловая система NTFS имеет несколько возможностей, не реализованных в системах FAT16 и FAT32. По сравнению с этими файловыми системами она не имеет явных недостатков. Отметим лишь ее дополнительные возможности:

а) возможность восстановления информации. NTFS гарантирует сохранность данных за счёт ведения протокола и некоторых встроенных алгоритмов восстановления информации;

б) сжатие данных. При чтении файл автоматически распаковывается, при закрытии и сохранении файл снова упаковывается;

в) защита файлов и каталогов путем задания атрибутов доступа;

г) поддержка резервной копии загрузочного сектора (в конце тома памяти);

д) поддержка системы шифрования содержимого файлов.

Эта файловая система наиболее эффективно работает с файлами большого объёма, недостатком системы является тот факт, что она не поддерживается ОС MS-DOS, Windows 95 и Windows 98.

До появления операционной системы Windows 95 общепринятым способом именования файлов на компьютерах IBM PC было соглашение 8.3 . Согласно этому соглашению, принятому в MS-DOS, имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводилось 8 символов, а на его расширение - 3 символа. Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита.

Соглашение 8.3 не является стандартом, и потому в ряде случаев отклонения от правильной формы записи допускаются как операционной системой, так и ее приложениями. Так, к примеру, в большинстве случаев система ʼʼне возражаетʼʼ против использования некоторых специальных символов (восклицательный знак, символ подчеркивания, дефис, тильда и т. п.), а некоторые версии MS-DOS даже допускают использование в именах файлов символов русского и других алфавитов.

Сегодня имена файлов, записанные в соответствии с соглашением 8.3, считаются короткими.

Основным недостатком коротких имен является их низкая содержательность. Далеко не всœегда удается выразить несколькими символами характеристику файла, в связи с этим с появлением операционной системы Windows 95 было введено понятие длинного имени. Такое имя может содержать до 256 символов. Этого вполне достаточно для создания содержательных имен файлов. Длинное имя может содержать любые символы, кроме девяти специальных: \ / : * ? " < > |.В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются всœе символы, идущие после последней точки.

Файловая система - понятие и виды. Классификация и особенности категории "Файловая система" 2017, 2018.